
Data-Driven Parametric Text Normalization: Rapidly Scaling Finite-State
Transduction Verbalizers to New Languages

Sandy Ritchie, Eoin Mahon, Kim Heiligenstein, Nikos Bampounis, Daan van Esch,
Christian Schallhart, Jonas Fromseier Mortensen, Benoı̂t Brard

Google
{sandyritchie, emahon, kheiligenstein, nbampounis, dvanesch, schallhart, jfmortensen, benoitb}@google.com

Abstract
This paper presents a methodology for rapidly generating FST-based verbalizers for ASR and TTS systems by efficiently sourcing
language-specific data. We describe a questionnaire which collects the necessary data to bootstrap the number grammar induction
system and parameterize the verbalizer templates described in Ritchie et al. (2019), and a machine-readable data store which allows the
data collected through the questionnaire to be supplemented by additional data from other sources. This system allows us to rapidly
scale technologies such as ASR and TTS to more languages, including low-resource languages.

Keywords: verbalization, data collection, linguistic typology

1. Introduction
Written-domain text can be challenging for automatic
speech recognition (ASR) and text-to-speech (TTS) sys-
tems to process due to the presence of non-standard words
or semiotic classes such as numbers, money expressions
and measure expressions (Sproat et al., 2001; Taylor, 2009;
van Esch and Sproat, 2017). Before the pronunciation of
semiotic classes can be determined, they must be verbal-
ized: expanded into word sequences (see Table 1). Ver-
balizers are usually a key part of TTS (Ebden and Sproat,
2015) and ASR (Sak et al., 2013a; 2013b) text processing
systems, as well as various data preparation modules.

Written domain Spoken domain
35 thirty five
$1.50 one dollar and fifty cents
5cm five centimeters

Table 1: Verbalization of semiotic classes

Approaches to the verbalization problem have generally not
been favorable to low-resource languages. Manually con-
figured systems based on finite-state transducers (FSTs),
such as Ebden and Sproat (2015), require linguistic exper-
tise as well as knowledge of an FST compiler such as Thrax
(Roark et al., 2012) or Pynini (Gorman, 2016) to set up in
a new language. This makes scaling up to a wide range of
languages difficult due to the expense of sourcing and on-
boarding an expert for each language. Recurrent neural net-
works (RNNs) with finite-state covering grammars (Sproat
and Jaitly, 2017; Zhang et al., 2019) or dual encoder clas-
sifiers (Gokcen et al., 2019) propose to solve the scaling
problem by collecting annotated training examples instead
of encoding the verbalizations directly in FST grammars.
Such approaches still require a large amount of annotated
data, as well as the development of language-specific out-
put filters. For under-resourced languages, the candidate
pool of linguistic experts or annotators diminishes, as does
the availability of existing resources. This situation poses
difficulties for both types of approaches described above.

Various attempts to address this problem have been pre-
sented. Gorman and Sproat (2016) use an algorithm which
relies on knowledge about the possible factorizations of
numbers across languages to induce an FST from a dataset
of 300 examples. Gutkin et al. (2016) develop an FST-
based system for Bangla by taking an existing Hindi system
and translating all of the strings into Bangla. A more gen-
eral approach has been to identify language-independent
characteristics of each semiotic class and to construct tem-
plates exposing a limited number of parameters which cap-
ture the possible variation across languages (Ritchie et al.,
2019). This approach is in the spirit of Bender (2009;
2011; 2016); Sproat (2016) and Ponti et al. (2019), as
the template parameters were selected based on insights
from linguistic typology, in particular those relating to word
order, morphological concord, and other morphosyntactic
features of verbalization.

These approaches all assume certain universal constraints
on possible verbalizations and a closed set of data points
required to specify a particular language. This offers the
potential to turn the development of verbalizers into a data-
collection problem where the quantity of data needed is
tractable for low-resource languages.

In this paper, we discuss the nature of the data required
to develop verbalizers for low-resource languages, and ad-
dress the operational question of how to rapidly and effi-
ciently obtain the data in the context of the unified verbal-
izer approach outlined by Ritchie et al. (2019). We also
discuss some design features of our data store and poten-
tial benefits of our method for low resource languages, in
particular the possibility of integration with the Unicode
Common Locale Data Repository (CLDR) (Unicode, Inc,
2019) for greater collaboration with community members
and other stakeholders in the development of high-quality
verbalization data.

This paper is structured as follows. Section 2 recaps the
unified verbalizers approach. We discuss and exemplify the
types of data required in Section 3, and describe our data
collection questionnaire as well as other data sources in-
cluding CLDR in Section 4. Section 5 describes the format

in which the data is stored and how verbalizers can be gen-
erated from the data. Section 6 outlines the benefits of this
approach for low-resource languages.

2. Unified verbalizers
Ritchie et al. (2019) describe a system of verbalizer tem-
plates with parameters for language-specific features and
sub-templates for the different requirements of ASR and
TTS verbalizers. In combination with a number names
grammar for conversion of cardinal and ordinal numbers,
lexical data for the conversion of other written tokens, and
parameters for various features of written tokens and their
spoken equivalents, these templates can generate verbaliza-
tions for a language without the need for hand-written ver-
balizers.

2.1. Number names
The most complex aspect of converting non-standard words
to their spoken form is the conversion of cardinal and ordi-
nal numbers. We achieve this using a labeled set of 300
examples and an induction algorithm which employs real
arithmetic to compute all possible factorizations for num-
bers up to 999 using addition and multiplication. The al-
gorithm then selects the best parse by analogy with similar
parses of smaller numbers (see Ritchie et al. (2019, Sec-
tion 2.3) for more details). Developers can also manually
set certain parameters to handle some more complex as-
pects of number names systems, such as (weak) vigesimal
systems,1 and ‘flop’ arithmetic.2 With an induced num-
ber name grammar, the cardinal and ordinal number sub-
components of verbalizations can be handled.

2.2. Verbalizer templates
While cardinal and ordinal numbers exhibit significant vari-
ation across languages, the verbalization of other semiotic
classes is more constrained and can often be captured using
some lexical content and a few parameters relating to the
style and ordering of components in the written and spo-
ken domains. For example, in written money tokens, the
currency symbol can only precede or follow the numbers,
while in decimal numbers like ‘1.23’, the fractional part
can typically only be read as a sequence of digits, as in
‘one point two three’, or a cardinal number, as in ‘one point
twenty three’, or both.
This parametric nature of verbalization makes it a good
candidate for templatization. Rather than supporting near-
identical hand-written verbalizers for each language, we
have developed verbalization templates which offer options
to set parameters like ‘currency symbol precedes numbers’
and ‘decimal fractional part is read as a digit sequence’.
Since both ASR and TTS verbalizers convert written tokens
to their spoken form, we can also share these templates be-
tween the two systems with only minor modifications for
each use case.

1Vigesimal systems use 20 as a base for larger numbers, as in
French quatre-vingts, ‘eighty’, lit. ‘four twenties’.

2Flop arithemetic systems exhibit alternative word orders of
addends and multiplicands, e.g. German einundzwanzig ‘twenty
one’, lit. ‘one and twenty’.

Building on this system, we have developed a suite of
data collection and storage methodologies which allow us
to capture knowledge of verbalization in a structured and
standardized format. In the following sections, we discuss
the nature of the data that we need to collect to generate
verbalizations, followed by a description of some poten-
tial sources for this data, with a particular focus on our
questionnaire which covers all the data and parameters re-
quired. We then discuss methods for ingesting and storing
the data and possibilities for generating FSTs directly from
the store.

3. Verbalization data types
Data required for verbalizers can be divided into four major
categories: written domain, lexical, morphological and syn-
tactic. We will consider these in turn, using examples from
high- and medium-resource languages to illustrate each cat-
egory. We return to the issue of how to gather this data for
low-resource languages in Section 4.

3.1. Written domain data
Written domain data are details about writing conventions
in the target language, such as:

• whether the full stop or the comma is used to separate
decimal numbers (e.g. ‘1.2’ or ‘1,2’);

• which symbol is used to separate numbers in dates
(e.g. ‘1.2.2020’ or ‘1/2/2020’);

• the order of elements in written dates (e.g.
DDMMYYYY or MMDDYYYY);

• which currency symbols are used and whether they
precede or follow the numbers (e.g. ‘$21’ or ‘21C’);

• common phone number formats, including the number
of digits in a block, and the separator used (e.g.
‘1-800-234-5678’ or ‘07123 456 789’).

This information is used to constrain the possible inputs
for a verbalizer so that it will only convert written tokens
which follow these conventions. This reduces the poten-
tial for some written tokens to be classified and verbalized
inappropriately. For example, in writing systems like En-
glish where decimals are separated by a full stop, powers
of ten in big numbers are typically separated by a comma,
and vice versa in other languages. If the decimal verbalizer
knows it should only convert numbers with a full stop as
the separator, a token like ‘1,234’ will not be inappropri-
ately classified and verbalized as a decimal number.

3.2. Lexical data
Lexical data primarily consists of spoken equivalents of
written tokens. This includes lists of punctuation and other
orthographic symbols, emojis and emoticons, currencies,
weekdays, months, time zones, etc. Spoken equivalents of
written tokens often exhibit variation of two major types.
The first is ‘free’ variation, where a symbol can be ver-
balized in more than one way in the same context. In US
English for example, the hyphen-minus symbol in negative
numbers like ‘-1’ can be read as either ‘minus’ or ‘nega-
tive’. The more complex kind of variation is the case in
which the same written symbol is verbalized differently de-
pending on the context or type of numeric token in which

it is used. For example, the hyphen-minus is verbalized in
British English in various other ways in different contexts,
as shown in Table 2.

Written domain Spoken domain
- hyphen
-1 minus one
1-2 one to two
abc-123.com abc dash one two three dot com
3 - 2 = 1 three take away two equals one
1-2-2020 first of February twenty twenty

Table 2: British English verbalizations of hyphen-minus in
different contexts

We need to capture all contexts in which multi-functional
tokens like hyphen-minus are used in order to convert them
appropriately.

3.3. Morphological data
Morphological data can include inherent features of nouns
like gender, and inflection of nouns and their dependents
for features like number.3 An example can be found in time
verbalizations in Romance languages, where the words for
‘hour’ and ‘minute’ have masculine and feminine gender
features and exhibit singular/plural number splits. In such
cases, some numbers (typically only 1, but also other num-
bers in some languages like Portuguese) exhibit gender
agreement with the hour and minute words, even if the lat-
ter are not overtly realized. Examples from Portuguese are
shown in (1).

(1) a. uma
one.F

(hora)
hour.F.SG

e
and

um
one.M

(minuto)
minute.M.SG

‘one minute past one’
b. duas

two.F
(hora-s)
hour.F-PL

e
and

dois
two.M

(minuto-s)
minute.M-PL

‘two minutes past two’

Here the hour and minute words exhibit a singular/plural
split (marked by a final -s on the plural variants) and the
cardinal numbers agree with them in gender. In order to
generate these verbalizations, we need to know all the rele-
vant inflectional forms that the hour and minute words can
take, as well as those of the numbers that agree with them.
Another common type of morphological marking is case
marking. In languages like Russian, verbalizations of some
written tokens can exhibit different marking depending on
their grammatical function in the clause, like subject, (indi-
rect) object, etc. See Sproat (2010) for a discussion of the
problem in Russian number names.

3.4. Syntactic data
Syntactic data primarily includes word order parameters.
Nearly all semiotic classes exhibit variation in word or-
der. For example, in classes like decimals, percentages, and

3Inflection refers to alternative forms of words depending on
their morphological features, for example marking of plural num-
ber by the plural suffix -s in English ‘dollars’ versus singular ‘dol-
lar’.

temperatures, the words for ‘minus’, ‘percent’ and ‘degree’
can all occur in different orders relative to the numeral. This
type of variation can be seen in temperature verbalizations
in Malagasy (2a), Bambara (2b) and Swahili (2c), which all
exhibit different word orders for the ‘minus’ and ‘degree’
words and the numeral.

(2) a. miiba
minus

iray
one

degre
degree

b. duguma
minus

ni degere
degree

kelen
one

ye

c. digrii
degree

hasi
minus

moja
one

‘minus one degree’

Malagasy follows the word order found in English, with
the minus word preceding the numeral and the degree word
following. In Bambara, the minus word precedes the de-
gree word, and both precede the numeral. In Swahili, both
also precede the numeral, but in this case the degree word
precedes the minus word.
Another example of this kind of variation in word order
can be found in dates. In date verbalizations, most possi-
ble orders of day, month and year are attested across lan-
guages, and even within a single language, the order in the
spoken form doesn’t necessarily match the written order.
For example, British English speakers may read a date in
DDMMYYYY format (e.g. ‘1/2/2020’) as ‘February the
first twenty twenty’ (month-day-year) instead of ‘the first
of February twenty twenty’ (day-month-year). Both are ac-
ceptable readings for this date.

4. Data sources
In the high-resource scenario, recruiting a skilled worker
with expertise in a domain-specific formal language like
Thrax or Pynini is a viable option for development of ver-
balizers. They can use a combination of ad-hoc research
and consultation with native speakers (or their own intu-
itions if they are a native speaker) to create custom gram-
mars which produce naturalistic and comprehensive verbal-
izations for non-standard words.
One potential solution to the verbalization problem for low-
resource languages could be to bypass the written domain
altogether, and simply transcribe audio training data for
ASR in the spoken domain, for example transcribing times
as ’two thirty p m’ instead of ’2:30pm’ and so on. How-
ever, there are several issues with this kind of approach.
First of all, TTS systems would not be able to convert writ-
ten tokens in any existing text corpora, and our system cov-
ers both ASR and TTS. Second, using spoken-to-written
and written-to-spoken conversion makes it easier to build
natural language understanding and natural language pro-
cessing systems on top of ASR and TTS systems for low-
resource languages, by using existing technology to clas-
sify and otherwise operate on semiotic classes like times in
the written domain. Finally, and perhaps most importantly,
handling high-, medium- and low-resource languages in the
same way is more scalable; it is easier to iterate and im-
prove on existing systems if they are all set up in the same
way, and this also allows us to share insights and knowledge
from higher-resource languages to other languages.

This is not to deny the significant issues present in the
development of verbalizers for low-resource languages.
In general, the resources available in academic literature
and online are scarcer, and the pool of potential linguis-
tic consultants with experience in computational linguistics
and knowledge of finite-state transducers is significantly
smaller. Thus, to produce verbalizations of comparable
quality to those in higher-resource languages, we need to
turn to other sources of data and linguistic knowledge. The
most effective approach appears to be the use of a dedi-
cated questionnaire which asks language consultants with
native competence in the target language to transcribe ver-
balizations of numeric written tokens, as well as answer-
ing metalinguistic questions about certain features of these
transcriptions.
In addition to such a questionnaire, other potential sources
for data include the Unicode Common Locale Data Repos-
itory (CLDR), lexical resources like Wiktionary and tradi-
tional dictionaries, and typological resources like the World
Atlas of Language Structures (WALS) (Dryer and Haspel-
math, 2013). Another interesting possibility proposed by
Bender et al. (2013) is the use of interlinear glosses in lin-
guistic data to derive lexical and morphosyntactic informa-
tion. In this section we provide an outline of a questionnaire
we have developed for data collection, and briefly discuss
CLDR and WALS as potential alternative sources.

4.1. Unified verbalization questionnaire
Verbalization questionnaires have been in use at Google for
several years (see Sodimana et al. (2018) for a brief discus-
sion in the context of development of TTS systems for low-
resource languages). In tandem with the move to shared
verbalizers for TTS and ASR, we significantly expanded
our existing questionnaire to cover all types of semiotic
classes, taking into account insights from the typology lit-
erature and the needs of both ASR and TTS.
The unified verbalization questionnaire takes the form of a
Google Sheet with machine-readable labels, which is de-
signed such that educated native speakers with some lin-
guistic knowledge (for example translators or educators)
can complete it. It typically asks the respondent to tran-
scribe a representative written token like ‘-1’ and provide
alternatives alongside the primary or canonical verbaliza-
tion. Follow-up questions then target sub-parts of the ver-
balization in order to discern parameters like word order
in the spoken form. For example, alongside questions like
“How do you say ‘-1’?” we include follow-up questions
like “Which part of this is ‘-’?”. In this way, we can deduce
whether the word for hyphen-minus precedes or follows the
number in the spoken form, without the need to ask for this
piece of information directly.
This indirect method for eliciting data like word order pa-
rameters is inspired by data collection methodologies in lin-
guistic fieldwork, where language consultants sometimes
do not have any formal linguistic training, so it is necessary
to devise elicitation techniques which access this kind of
information through other means than direct questions (e.g.
Payne (1997); Bowern (2015), among many others). Here
we briefly describe how we use this and other techniques to
elicit the different types of data described in Section 3.

We elicit written domain data through various means in our
questionnaire, including:

• asking for user input in the case of written symbols
such as currency symbols;

• asking the respondent to select from a list in the case
of ordering of elements in written dates;

• asking respondents to provide examples in the case of
phone number formats.

We then dynamically update follow up questions based on
initial responses. For example, if a respondent fills out the
currency symbol field with the dollar sign ‘$’, and selects
the parameter ‘currency symbol precedes number’, the fol-
low up questions will then be automatically updated to re-
flect these facts, for example ‘How do you say ‘$1’?’.
To elicit lexical data, we ask for spoken forms of exem-
plary written tokens for each class, and also ask respondents
to provide alternative forms to capture free variation in the
spoken form. For example, to gather information about the
verbalization of mathematical expressions, we ask the re-
spondents to transcribe an example like ‘3 - 2 = 1’ with any
alternatives. Then in follow up questions, we ask them to
identify which parts of the verbalization refer to each sym-
bol, for example “Which part of this is ‘=’?”.
Using this approach, we elicit both the mapping between
written symbols as well as their verbalizations in specific
contexts, which also provides us with test cases with which
we can evaluate our template verbalizer. In order to cap-
ture context-dependent variation of the type demonstrated
in Table 2, the questionnaire includes examples of differ-
ent written contexts in which multi-functional tokens like
hyphen-minus occur. This exposes the overlaps and splits
in the use of different words for the same symbol in differ-
ent contexts.
In order to elicit morphological data, we ask respondents
to transcribe verbalizations for representative examples of
written currencies, times, and the like, which we have se-
lected to ensure that phenomena like gender features, num-
ber splits, and morphological concord will be exposed in
the transcriptions. Of course it is not possible to predict ex-
actly what we might find in a new language, but we strive
to cover as many features as possible by including singular
and plural entities to cover potential singular/plural splits,
more than one type of currency to cover potential varia-
tion in inherent features like gender among currencies, and
examples of numbers in combination with currencies, per-
centages, degrees and so on to cover potential morpholog-
ical concord between numbers and the nouns which they
modify.
We elicit syntactic data by asking respondents to transcribe
at least one representative written token for every relevant
semiotic class. In the case of more complex classes like car-
dinals, ordinals and times, we ask them to transcribe more
examples in order to capture the character of the word or-
dering systems and subsystems for these classes. For ex-
ample, German exhibits addend flops in numbers 21-99.
However, above 100, addends occur in the same order as
in English, as demonstrated in (3).

(3) a. ein
one

-und
and

-zwanzig
twenty

(1 + 20)

‘twenty one’
b. zwei

two
hundert
hundred

eins
one

(200 + 1)

‘two hundred and one’

In order to elicit splits in word order parameters like this, it
is necessary to ask for a larger number of examples. This
approach to data collection for number names developed
by Gorman and Sproat (2016) has led to refinement of our
models of morphosyntactic phenomena in several less well-
studied languages. For example, we improved our handling
of multiplicand flop arithmetic4 in the Nigerian languages
Hausa and Igbo, and noun class agreement phenomena (as
well as multiplicand flops) in Bantu languages like Kin-
yarwanda and Zulu. Again it is not possible to predict what
we might find in less well-studied languages, but request-
ing more examples allows us to capture at least some of the
syntactic complexity present in the target language.

4.2. CLDR
For some languages, CLDR also contains a certain subset
of the data described in Section 3. It contains some written
domain data (e.g. time and date formats) and some lexi-
cal data (day, month, time period and era names; days of
the week; time zone names; currency names and measure
names). For currency and measure names, it also provides
information about morphological concord, indicating how
the forms differ when quantified by different amounts. This
information can be used to extract e.g. singular/plural num-
ber splits in currency and measure words. The machine-
readable LDML format of this resource makes it amenable
to automated ingestion into a common data store.
A drawback of CLDR is the limited number of languages
covered. Nearly all of the languages for which they have
significant data are already supported in industry applica-
tions. Moreover, many languages that have a lot of new and
emerging Internet users, such as those in regions of India,
Indonesia, and Africa, are not covered by CLDR. CLDR is
also limited in some of the information we require for our
purposes; for example it lacks symbols and verbalizations
for currency subunits (like ‘25p’ → ‘twenty five pence’).
Despite these issues, it is currently the most comprehensive
open-source resource for verbalization data. In Section 6.,
we briefly discuss the potential for expanding the data avail-
able in CLDR.

4.3. WALS
WALS offers an interesting source of supplementary sup-
port for verbalization data, in particular morphological and
syntactic data. For example, the chapter on the order of
numeral and noun (Dryer, 2013a) contains parameters for
1153 languages (as of 7th February 2020). For languages
where no data is yet available from the questionnaire or
CLDR, we could use this information in combination with
some basic lexical data to provide best-guess verbalizations

4In multiplicand flop systems, the order of multiplicands is re-
versed with respect to the order found in English, so the equivalent
of e.g. ‘two hundred’ (2 * 100) is ‘hundred two’ (100 * 2).

for currencies, assuming that the order of the currency word
like ‘dollar’ and the number name follows the stated pat-
tern.
Furthermore, in the case that a language is not listed in that
specific chapter, it is also at least theoretically possible to
rely on implicational universals of the type introduced by
Greenberg (1963) to generate verbalizations. For exam-
ple, if the chapter on the order of subject, object and verb
(Dryer, 2013b) indicates that VSO is the predominant order,
even if we do not have information on the order of numeral
and noun, it is possible to predict using implicational uni-
versals that the numeral will follow the noun. Of course
this information will be tenuous at best, but it at least pro-
vides some method to localize verbalizations in the absence
of any other kind of data.
In this section we identified some possible sources for ver-
balization data and discussed our data collection methodol-
ogy via the questionnaire. In the next section we discuss the
storage format for the data and briefly touch on the possi-
bility of generating verbalizer FSTs directly from this data
store.

5. Data storage and verbalizer generation
While unified verbalizers facilitate verbalizer development,
there remains the task of transforming data from different
sources into the parameters expected by the templates.
Our solution to this is a data store with a unified data format
into which all sources are converted before parameterizing
the verbalizers. This means that for any new data source,
all that is needed is to convert the data into this format. We
use a machine-readable protocol buffer5 as the data storage
format. In its present iteration, the store focuses primar-
ily on lexical (and some basic morphological) data, but our
goal is to extend it to all types of data discussed in Section
3.
Entries in the data store take the form of protocol buffers.
The data store representation for a particular verbalizable
entity provides:

• the data type (e.g. emoji, currency, measure unit, etc.);
• the reference key (typically a written form of the en-

tity);
• possible verbalizations;
• data source;
• time of entry or update;
• any additional entity- and/or language-specific fea-

tures, such as morphological features like singu-
lar/plural number.

Data from each source are imported to the data store when
and if they are available, incrementally constructing a grad-
ually more complete set of available data. For example, a
record for the verbalization of US dollars in Spanish can be
formalized as shown in Figure 1.
In this example, the currency verbalization has been im-
ported from CLDR, while the verbalization for the sub-
unit has been imported from the questionnaire, since CLDR
does not provide such information by design. Although the

5See https://developers.google.com/protocol-buffers

currencies {
key: "USD"
currency_verbalization {

text: "dólar estadounidense"
number: SINGULAR
source: CLDR
timestamp: 1578813004

}
subcurrency_verbalization {

text: "centavo"
number: SINGULAR
source: QUESTIONNAIRE
timestamp: 1578839575

}
}

Figure 1: Entry for verbalization of US dollars in Spanish

main currency information was available in the question-
naire data, it was not re-imported, as in this case, it was
identical to the CLDR data. If needed, manual edits such
as importing additional verbalizations obtained from other
sources, or corrections can be applied to the collected data.
Having data from questionnaires, CLDR, and any other ad-
hoc sources in a single data store makes it easier to param-
eterize verbalizers automatically. It is possible to set up an
automatic data pipeline where data from the various sources
are ingested into a common data store, and then used to
automatically produce ASR and TTS verbalizers (see Fig-
ure 2).

Questionnaire CLDR
Other sources
e.g. WALS

Linguistic
data store

Verbalizer
template

ASR
verbalizer

TTS
verbalizer

Figure 2: The flow of data from sources to verbalizers

We maintain a source preference hierarchy to reconcile
conflicts in the event of competing verbalizations for a
given item. All else being equal, a candidate will be se-
lected if its source is preferred according to this hierarchy.
For example, a manual correction to a questionnaire entry
will eventually take effect and become the default verbal-
ization, since manual entries have been defined as having

precedence over any other source. In case of conflicting
verbalizations coming from the same source, the newest en-
try is preferred.
With the above setup, the gradual integration of many
sources of data is performed with minimal manual interven-
tion. Having all data in the same place also enables the easy
and timely identification of gaps in data coverage. Once
all available data have been imported, the data store can be
queried for automatic extraction of the necessary data. With
further integration of morphological and syntactic informa-
tion into the store, we can generate verbalization FSTs di-
rectly from these specifications, without the need for other
intermediate types of representation.
In this section we demonstrated our storage format and
preference hierarchy for verbalization data. In the final sec-
tion we discuss some potential benefits of the system for
low resource languages.

6. Benefits for low-resource languages
Producing high-quality verbalizations has long been one of
the major bottlenecks in the development of ASR and TTS
systems for new languages. Without verbalizers, the qual-
ity of text-to-speech and speech-to-text conversion is sig-
nificantly reduced. Data pipelines like the one we have
described in this paper cut down the amount of detailed
language-specific work required to set up basic verbaliz-
ers for new languages, allowing developers to effectively
scale the development of ASR and TTS systems, and to
make them available to more language communities faster.
Comparing a typical hand-written verbalizer with a config-
uration file in the new template system, we see a reduction
from about 200 lines of custom code to just 25 lines speci-
fying the lexical data, morphological features and syntactic
parameters to be used.
A longer-term benefit of our work includes the potential to
expand the CLDR data specification based on our analysis
of the information needed to set up verbalizers in new lan-
guages, so that CLDR can become a central repository of
this kind of data. As mentioned above, CLDR already con-
tains a subset of the necessary information, but extending
it to cover all relevant information would enable commu-
nities and vendors to contribute and share data, paving the
way to supporting more languages in more technology plat-
forms. In 2019, we open-sourced part of our number names
data for 186 language locales.6 Open-sourcing verbaliza-
tion data is more complicated, as it requires further devel-
opment and refinement of data storage formats and proto-
cols, as well as additional tooling. We are currently work-
ing with the CLDR team to explore the options. Our hope
is that by including all necessary information in CLDR, ev-
eryone would be able to build verbalizers based on data
stored in a format which follows well-established protocols
from natural language processing as well as insights from
linguistic typology.

6Verbalizations for numbers 1 to 100 along with
powers of ten (1000, 10000, etc.) are available at
https://github.com/google/UniNum.

7. Summary
In this paper, we discussed the problem of expansion of
written tokens to their spoken form. We recapped Ritchie
et al. (2019), in which we discussed the development
of shared templates for ASR and TTS verbalizers. We
then broke down the types of data required for verbaliz-
ers according to their linguistic nature, and discussed our
methodologies for data collection using a targeted and ty-
pologically informed questionnaire, as well as other sup-
plementary data sources. We then described our data stor-
age format and preference hierarchy for data from different
sources. Finally we discussed how our system might help
to expand the pool of verbalization data, and showed how
through better specification and parameterization of the ver-
balization problem, we can rapidly scale language tech-
nologies such as ASR and TTS to more languages around
the world.

8. Bibliographical References
Bender, E. M., Goodman, M. W., Crowgey, J., and Xia,

F. (2013). Towards creating precision grammars from
interlinear glossed text: Inferring large-scale typological
properties. In LaTeCH@ACL.

Bender, E. M. (2009). Linguistically naı̈ve != language in-
dependent: Why NLP needs linguistic typology. In Pro-
ceedings of the EACL 2009 Workshop on the Interaction
between Linguistics and Computational Linguistics: Vir-
tuous, Vicious or Vacuous?, pages 26–32.

Bender, E. M. (2011). On achieving and evaluating
language-independence in NLP. Linguistic Issues in
Language Technology, 6(3):1–26.

Bender, E. M. (2016). Linguistic typology in natural lan-
guage processing. Linguistic Typology, 20(3):645–660.

Bowern, C. (2015). Linguistic fieldwork: A practical
guide. Springer.

Dryer, M. S. and Haspelmath, M. (2013). The World Atlas
of Language Structures Online. Max Planck Institute for
Evolutionary Anthropology, Leipzig.

Dryer, M. S. (2013a). Order of numeral and noun. In
Matthew S. Dryer et al., editors, The World Atlas of Lan-
guage Structures Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Dryer, M. S. (2013b). Order of subject, object and verb. In
Matthew S. Dryer et al., editors, The World Atlas of Lan-
guage Structures Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Ebden, P. and Sproat, R. (2015). The Kestrel TTS text
normalization system. Natural Language Engineering,
21(3):333–353.

Gokcen, A., Zhang, H., and Sproat, R. (2019). Dual en-
coder classifier models as constraints in neural text nor-
malization. Proc. Interspeech 2019, pages 4489–4493.

Gorman, K. and Sproat, R. (2016). Minimally supervised
number normalization. Transactions of the Association
for Computational Linguistics, 4:507–519.

Gorman, K. (2016). Pynini: A Python library for weighted
finite-state grammar compilation. In Proceedings of the
SIGFSM Workshop on Statistical NLP and Weighted Au-
tomata, pages 75–80.

Greenberg, J. (1963). Some universals of grammar with
particular reference to the order of meaningful elements.
In J. Greenberg, ed., Universals of Language. 73-113.
Cambridge, MA.

Gutkin, A., Ha, L., Jansche, M., Pipatsrisawat, K., and
Sproat, R. (2016). TTS for low resource languages: A
Bangla synthesizer. In Proceedings of the Tenth Inter-
national Conference on Language Resources and Eval-
uation (LREC’16), pages 2005–2010, Portorož, Slove-
nia, May. European Language Resources Association
(ELRA).

Payne, T. E. (1997). Describing morphosyntax: A guide
for field linguists. Cambridge University Press.

Ponti, E. M., O’Horan, H., Berzak, Y., Vulić, I., Reichart,
R., Poibeau, T., Shutova, E., and Korhonen, A. (2019).
Modeling language variation and universals: A survey on
typological linguistics for natural language processing.
Computational Linguistics, 45(3):559–601.

Ritchie, S., Sproat, R., Gorman, K., van Esch, D., Schall-
hart, C., Bampounis, N., Brard, B., Mortensen, J. F.,
Holt, M., and Mahon, E. (2019). Unified verbalization
for speech recognition & synthesis across languages. In
Proc. Interspeech 2019, pages 3530–3534.

Roark, B., Sproat, R., Allauzen, C., Riley, M., Sorensen,
J., and Tai, T. (2012). The OpenGrm open-source finite-
state grammar software libraries. In Proceedings of the
ACL 2012 System Demonstrations, pages 61–66, Jeju Is-
land, Korea, July. Association for Computational Lin-
guistics.

Sak, H., Beaufays, F., Nakajima, K., and Allauzen, C.
(2013a). Language model verbalization for automatic
speech recognition. In ICASSP, pages 8262–8266.

Sak, H., Beaufays, F., Nakajima, K., and Allauzen, C.
(2013b). Written-domain language modeling for au-
tomatic speech recognition. In INTERSPEECH, pages
675–679.

Sodimana, K., Silva, P. D., Sproat, R., Theeraphol, A., Li,
C. F., Gutkin, A., Sarin, S., and Pipatsrisawat, K. (2018).
Text normalization for Bangla, Khmer, Nepali, Javanese,
Sinhala, and Sundanese TTS systems. In 6th Interna-
tional Workshop on Spoken Language Technologies for
Under-Resourced Languages (SLTU-2018), pages 147–
151, 29-31 August 2018, Gurugram, India.

Sproat, R. and Jaitly, N. (2017). An RNN model of
text normalization. In INTERSPEECH, pages 754–758.
Stockholm.

Sproat, R., Black, A. W., Chen, S., Kumar, S., Os-
tendorf, M., and Richards, C. (2001). Normalization
of non-standard words. Computer Speech Language,
15(3):287–333.

Sproat, R. (2010). Lightly supervised learning of text nor-
malization: Russian number names. In 2010 IEEE Spo-
ken Language Technology Workshop, pages 436–441.
IEEE.

Sproat, R. (2016). Language typology in speech and lan-
guage technology. Linguistic Typology, 20(3):635–644.

Taylor, P. (2009). Text-to-Speech Synthesis. Cambridge
University Press.

Unicode, Inc. (2019). Unicode Common Locale Data
Repository. http://cldr.unicode.org/.

van Esch, D. and Sproat, R. (2017). An expanded taxon-
omy of semiotic classes for text normalization. In IN-
TERSPEECH, pages 4016–4020. Stockholm.

Zhang, H., Sproat, R., Ng, A. H., Stahlberg, F., Peng,
X., Gorman, K., and Roark, B. (2019). Neural models
of text normalization for speech applications. Computa-
tional Linguistics, 45(2):293–337.

http://cldr.unicode.org/

	Introduction
	Unified verbalizers
	Number names
	Verbalizer templates

	Verbalization data types
	Written domain data
	Lexical data
	Morphological data
	Syntactic data

	Data sources
	Unified verbalization questionnaire
	CLDR
	WALS

	Data storage and verbalizer generation
	Benefits for low-resource languages
	Summary
	Bibliographical References

