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Abstract
We describe a new approach to converting written tokens to
their spoken form, which can be shared by automatic speech
recognition (ASR) and text-to-speech synthesis (TTS) systems.
Both ASR and TTS need to map from the written to the spo-
ken domain, and we present an approach that enables us to
share verbalization grammars between the two systems while
exploiting linguistic commonalities to provide simple default
verbalizations. We also describe improvements to an induction
system for number names grammars. Between these shared
ASR/TTS verbalizers and the improved induction system for
number names grammars, we achieve significant gains in de-
velopment time and scalability across languages.
Index Terms: speech recognition, text-to-speech, verbaliza-
tion, factorization, allomorphy, concord, markedness

1. Introduction
Most automatic speech recognition (ASR) and text-to-speech
(TTS) technologies employ systems for converting between
“written” and “spoken” forms of currencies, dates, measures,
numbers, and the like; e.g., ‘25’→ twenty five, ‘£9.50’→ nine
pounds fifty, ‘11:05’ → five past eleven. Such categories are
sometimes known as semiotic classes [1]. This component of
the text normalization process is known as verbalization and the
systems which perform it as verbalizers [2, 3]. Verbalizers for
most semiotic classes depend on underlying core number names
grammars specifying the verbalization of numbers like English
one, two, three. We first describe how we modify the induction
algorithm in [4] to build these number names grammars across
a wider range of languages. We then describe a system which
builds on this algorithm to induce verbalization grammars for
ASR and TTS systems alike.

Before we can build grammars for semiotic classes such as
currencies, we require number names grammars. While semi-
otic classes typically use similar structures across many lan-
guages, the basic underlying number systems of languages typi-
cally show a lot of diversity in terms of their structures. Cardinal
numbers like one, two, three and ordinals like first, second, third
exhibit far more cross-linguistic heterogeneity than most other
semiotic classes. For example, languages differ substantially
in which numeric base they use, in how they factor large num-
bers, and in how they prefer to order those factors. This vari-
ation, and the recursive complexity of number naming in gen-
eral, makes them less amenable to templates than other semiotic
classes. [4] induce the basic factorization and other features of
number names systems from a small set of labeled examples.
In Section 2, we describe some extensions to this system which
provide better support for factorizations commonly found in the
languages of South Asia and sub-Saharan Africa.

Even highly dissimilar languages exhibit considerable over-

lap in how they verbalize other semiotic classes apart from num-
ber names (see also [5, 6]). For example, while languages
vary in whether they write a currency symbol before or after
the amount—‘£5’ versus ‘5C’, the word denoting the currency
is usually spoken after the amount, as in English five pounds
(*pounds five). This is a general property of how numeral words
modify nouns across languages, though there are exceptions:
in Sinhala and some Bantu languages, for example, the ba-
sic word order is the equivalent of pounds five (see [7] for an
overview). Such exceptions are rare, however. In other words,
these structures are typologically marked. We use this notion
of markedness as a guiding principle in designing template ver-
balizer grammars. By default, we generate the unmarked ver-
balization using a simple template, in this case numeral-noun
word order five pounds. We also include options to specify that
a language has some marked feature like noun-numeral word
order. Marked verbalizations are also generated by the template
verbalizers, but require additional flags and possibly additional
information such as morphosyntactic features. These principles
and some of our design decisions are set out in more detail in
Section 3. We describe a system of customizable, cross-lingual,
finite-state template grammars which take advantage of shared
tendencies across languages, while also supporting linguistic
features like allomorphy, morphological concord, and marked
word orders.

With an induced number names grammar and a customized
template verbalizer, basic verbalizations of major semiotic
classes can be produced without the need for complex custom
grammars, paving the way to scaling verbalization to more lan-
guages in the future. This research forms part of a wider re-
search effort at Google investigating how language technology
can be scaled to more languages quickly [8, 9, 10, 11].

2. Number names induction
Our general process of minimally supervised number names in-
duction is described in [4]. In essence, we use a set of train-
ing data consisting of digits mapped to their verbalization (like
123→ one hundred twenty three) to induce a finite state trans-
ducer (FST) which can produce the factorization for any num-
ber.1 The system is inspired by the insight that number ver-
balizations can be viewed as arithmetic expressions composed
of addends, as in twenty three, and multiplicands, as in four
hundred [12]. As part of an effort to scale this system to a
wider variety of languages, we encountered major issues with
two marked features of number names: addend flops and mul-
tiplicand flops. In both cases, the system in [4] did not account
for the full host of structural phenomena observed across hu-

1An open-source data set containing verbalizations for numbers
1 to 100 along with powers of ten (1000, 10000, etc.) is available at
https://github.com/google/UniNum.



man languages. We describe these phenomena in Sections 2.1
and 2.2, and then present solutions to them in Section 2.3.

2.1. Addend flops

Addends refer to number expressions which denote a sum. For
instance, in the English verbalization twenty four, the expres-
sion denotes the sum of 20 and 4. In modern English, as in the
vast majority of languages we have surveyed, the larger addend
always precedes the smaller addend, and the alternative order is
ungrammatical under the intended reading (*four twenty, *four
and twenty).2 However, in some other languages, including
most other West Germanic languages, some addends take the
opposite order. In German, for example, 24 is vierundzwanzig,
lit. ‘four-and-twenty’. Such flop systems present an interesting
challenge: we need to map from one kind of factorization or
arithmetic in the written domain to a different kind in the spo-
ken domain. Abstractly, this process can be represented as a
three-stage process consisting of factorization, flop, and verbal-
ization (1):

(1) ‘24’→ ‘20 4’→ ‘4 20’→ vierundzwanzig

We are aware of two cases where addends are flopped in all
cases: Malagasy and Sanskrit. In Sanskrit, for example, small
addends always precede large addends, as can be seen by com-
paring the German and Sanskrit examples in (2) and (3).

(2) zwei-
two

hundert-
hundred

zwei-
two

und-
and

zwanzig
twenty

‘two hundred twenty two’ (200 + 2 + 20)

(3) dvā
two

vim. ś
twenty

ottara
and

dvi
two

śatam
hundred

‘two hundred twenty two’ (2 + 20 + 200)

In German, 2 precedes 20, but their sum 22 follows 200, be-
cause addend flops occur only with decades (20, 30, 40, . . . )
and digits (1–9). However, in Sanskrit, 2 precedes 20, and both
precede 200; this is a general feature of Malagasy and Sanskrit.
Even in very long numbers, the addends occur from smallest to
largest, as in (4a), whereas in the Arabic numeral system (and
in English and many others) they occur from largest to smallest,
as in (4b):

(4) a. 2 + 20 + 200 + 2000 + 2000000 . . .
b. . . . 2000000 + 2000 + 200 + 20 + 2

Unbounded addend flops are challenging to encode with finite-
state grammars because the mapping between the digit se-
quence and the verbalization requires the order of factors to be
reversed, and unbounded reversal is not a rational relation [13,
p. 191]. Our current system does not handle such unbounded
cases, but in future work, this problem can be handled with pre-
or post-processing.

2.2. Multiplicand flops

Multiplicands are number expressions which denote a product.
For instance, in the English verbalization two hundred, two and
hundred denote the product of 2 and 100. In modern English, as
in most languages we have surveyed, smaller multiplicands pre-
cede larger multiplicands and reversing their order leads them to
be interpreted as addends (as in one hundred two). However, in

2Notwithstanding the well-known historical use of four and twenty
in the English nursery rhyme Sing a Song of Sixpence.

Igbo, for example, larger multiplicands always precede smaller
multiplicands:

(5) a. nnari
hundred

abu. o.
two

‘two hundred’
b. nnari

hundred
na
and

abu. o.
two

‘one hundred two’

The conjunction na ‘and’ in (5b) is used to signal that nnari
‘hundred’ and abu. o. ‘two’ are addends rather than multipli-
cands. Multiplicand flops also pose a problem for verbalization,
both because it requires a reordering of factors, and additional
bookkeeping is required to prevent ambiguity:

(6) a. ‘200’→ ‘2 100’→ ‘100 2’→ (5a) or (5b)?
b. ‘102’→ ‘100 2’→ . . .→ (5a) or (5b)?

We therefore must include some representation of the status of
small numbers in multiplicand flop systems to produce the cor-
rect spoken form. In our induction algorithm (Section 2.3), we
keep these cases separate in two ways. For numbers less than
1000, the system learns that a conjunction like na ‘and’ should
be mapped to a reserved symbol ‘&’, so ‘hundred and two’
maps to ‘100 & 2’ whereas ‘hundred two’ maps to ‘100 2’, as
in (7):

(7) a. ‘200’→ ‘2 100’→ ‘100 2’→ (5a) ‘nnari abu. o. ’
b. ‘102’→ ‘100 & 2’→ (5b) ‘nnari na abu. o. ’

The system can then generalize the resulting arithmetic struc-
tures (* 100 2) versus (+ 100 2) to larger numbers less
than 1000. For numbers involving larger factors, a boundary
marker ‘|’ is inserted between the addends to distinguish, say
‘1000 | 2’ (1002) from ‘1000 2’ (2000).

2.3. Algorithmic improvements

One of the limitations of the algorithm reported in [4] was the
fact that all of the ‘arithmetic’ was handled using grammati-
cal rules. So, for example, the sequence of factors ‘3 100 20 4’
(324) corresponding to English three hundred twenty four needs
to be combined as ‘(+ (* 3 100) (+ 20 4))’. In French the number
97, quatre-vingt-dix-sept is factored as ‘4 20 10 7’, combined as
‘(+ (* 4 20) (+ 10 7))’. For German, a reordering rule is needed
in order to cover the addend flops described above. All of these
require that we provide grammatical rules to cover all cases,
including bases of 10 or 20, ‘flop’ rules with certain powers of
ten, and so on. This proved hard to maintain and as we extended
to new languages we found ourselves continually adding to the
rule set. When we began work on verbalizers for Wolof, a lan-
guage that makes productive use of base 5 (‘8’ is ‘5 3’, ‘900’ is
‘5 4 100’), we decided to try a different approach.

Rather than the finite-state rule-based ‘arithmetic’ de-
scribed above, the new induction method uses real arithmetic to
try to determine the optimal binary tree to build over a string
of number factors, given the numerical denotation. For the
French case above, the input would be the pair ‘4 20 10 7’
and its denotation 97, and the algorithm computes all possible
trees involving addition and multiplication over the factor string
that evaluate to the value 97. This requires a brute-force com-
putation over all possible trees, but since the strings are very
short, this is not a problem in practice. In many cases, as in
this example, there is more than one possible tree: here both
‘(+ (* 4 20) (+ 10 7))’ and ‘(+ (+ (* 4 20) 10) 7)’ are possible.



In this case we choose the best parse based on analogy with
previous parses from smaller numbers. In the case of ‘96’ the
only available parse of the factors ‘4 20 16’ is ‘(+ (* 4 20) 16)’,
and so we choose ‘(+ (* 4 20) (+ 10 7))’ on analogy with that
structure.

Since the data which we collected to train the earlier sys-
tem [4] always includes all numbers from 1 to 200, we can in-
duce grammars for all numbers in that range, and also determine
if the expression for 100 includes the word ‘one’ (as in English
one hundred) or not (as in Spanish cien ‘hundred’). Since the
training data also includes the hundreds (300, 400, . . . , 900), the
remaining numbers from 201 to 999 can then be generated (and
checked against examples in the training data) by substituting
the terms for the higher hundreds into the template ‘1xx’ cov-
ering numbers from 101 to 199. After we have a collection of
trees for numbers from 1 to 999, we compile an FST that maps
between the strings representing those numbers into the proper
factorization of each number in the language.

The above method requires no special rules to cover dif-
ferent orderings of factors, nor do we need any rules to cover
different bases: base 5 works as straightforwardly as base 10 or
base 20. For numbers involving larger factors (1000 and above),
the combination with smaller numbers as multiplicands is con-
trolled by a compile-time flag. In the English verbalization of
‘246,000’, two hundred forty six is a pre-modifier of thousand,
whereas in Igbo the factors can be glossed as thousand two hun-
dred forty six, with two hundred forty six as a post-modifier.
While one could attempt to induce this marked word order from
data, it is simple enough to have the grammar developer set the
flag appropriately for the target language, and in any case much
simpler than the various choices of bases and flop rules that had
to be selected by the developer in the earlier system.

3. Verbalization templates
With induced number names grammars, much of the work of
verbalizing dates, times, currencies and the like is already done,
because these semiotic classes consist mostly of verbalizations
for number names. However, typically, each language requires
some additional work to handle language-internal variation in
verbalization. For instance, a currency expression like ‘$2.50’
can be read as two fifty in English but also as two (US) dollars
and fifty cents. To produce the second verbalization, we need
some support for reordering of the numbers and currency sym-
bol in currency expressions.

In order to gather data for new languages, we use a
questionnaire asking language consultants to describe all the
ways written tokens in various domains can be verbalized (see
also [10, 11]). We then need to convert this information to a
machine-readable format so that it can be used in verbalizer
grammars. Initially [10, 11], this was performed by populat-
ing a Thrax [14] grammar template. However, we have moved
this system to Pynini [15], a Python library which inherits the
functionality of Thrax and can use Python’s extensive libraries
and testing frameworks.

The new grammar template framework uses a system of
classes to instantiate shared variables in a base class. These
generalized classes are based on a taxonomy of semiotic classes
described in [6]. The base class is then inherited by separate
ASR- and TTS-specific subclasses; we need separate subclasses
because ASR systems should be able to accept multiple variants
(where applicable), while TTS verbalizers should emit exactly
one form to speak. In the subclasses, different rules are applied
to the variables to produce FSTs which convert written tokens

to their spoken form. We then populate a configuration file with
information from the questionnaire, and specify the templates
and subclasses needed for a particular language or locale. This
simple architecture allows us to quickly generate basic verbal-
izations for languages. Linguists then develop unit tests and
make language-specific adjustments to bring the outputs of the
template grammars as close as possible to naturalistic verbal-
izations.

3.1. Description of a unified grammar template: money

The money template verbalizes currency tokens for ASR and
TTS. As an illustration, this process is briefly described here,
followed by a description of some of the linguistic features of
money verbalizations supported by the template.

Written-domain money tokens like ‘$1.01’ are modified
in the ASR template so that they contain the same ele-
ments as more structured inputs from our TTS text normaliza-
tion system, such as integer_part:1, currency:usd,
fractional_part:1, currency:usd.

First, the currency symbol is removed from the beginning
of the string:

(8) $1.01→ 1.01

Next, the currency code is inserted in the middle and end of the
string:

(9) 1.01→ 1 usd .01 usd

This achieved using a concatenated series of transducers and
acceptors, here given as Pynini code:

transducer("\$", "") + \
closure(DIGIT, 1) + \
transducer("", "usd") + \
acceptor(".") + \
closure(DIGIT, 2) + \
transducer("", "usd")

With these changes, the elements of the ASR and TTS in-
puts now occur in the same order. By concatenating a further
series of transducers which convert each of these components
to their spoken form, defined differently for ASR and TTS in
their respective subclasses, we can produce verbalizations with
English word order directly from these inputs, as in Table 1.

Table 1: Aligning ASR and TTS verbalization

ASR TTS output

1 integer_part:1 → one
usd currency:usd → dollar
.01 fractional_part:1 → one
usd currency:usd → cent

As well as producing basic verbalizations like this one, the
money template supports various marked linguistic features of
money expressions. For example, as stated in the introduc-
tion, the currency amount typically precedes the unit, as in five
pounds, and the template outputs this word order by default.
However, languages like Swahili and Sinhala exhibit the oppo-
site word order (the equivalent of pounds five). The word order
of the output can be adjusted using a boolean parameter that can
be flipped to support this type of language.



Another assumption made by the template is that there is a
singular/plural split in the verbalization of currency units, e.g.
one dollar versus two dollars. Languages like Maori and Sun-
danese don’t exhibit this split, and the template supports this
alternative style using another simple parameter. Further, lan-
guages like Polish and Ilocano include a word for and between
the main and subunit, e.g. five dollars and fifty cents while oth-
ers do not. The template supports both styles.

Another common feature of money expressions is agree-
ment in gender and other features between numbers and cur-
rency units, as in Spanish una peseta (feminine) versus un euro
(masculine). If a language has this property, users can define the
features of the currency units, and in conjunction with a number
names grammar which can produce inflected forms of numbers,
the template will produce the correct inflected form of the num-
ber, as in (10):

(10) doscient-as
two.hundred-F.PL

peset-as
peseta-F.PL

y
and

un
one.M.SG

céntim-o
cent-M.SG
‘two hundred pesetas and one cent’

Here doscientas ‘two hundred’ agrees with the feminine gender
of the currency peseta, while un ‘one’ agrees with the masculine
gender of céntimo. The only requirement of the user to produce
this verbalization is to specify the gender or other features of
the different units of currency.

Tokens denoting large amounts of money can feature deci-
mals, exponents, and big powers of ten, as in ‘$3.5 × 102 bn’.
The money template uses another decimal template plus a few
more rules to support verbalization of this kind of token, as in
three point five times ten to the two billion dollars.

The templates can also be customized to support other small
differences from the basic verbalizations produced by default.
For example, in Hebrew, tokens like ‘$0.50’ can be verbalized
as the rough equivalent of zero dollars fifty, and as half a dol-
lar. Rather than developing a custom verbalizer just to support
this single alternative, users can specify ‘fix-up’ FSTs which are
composed with the FST produced by the template.

3.2. Advantages of unified approach

There are some significant advantages to sharing verbalizer
templates between ASR and TTS: (1) The system reduces code
duplication, as both ASR and TTS verbalizations are produced
with a single set of files. Comparing a typical set of Thrax
verbalizers for the money class with the new system, we see
a reduction from around 200 lines of custom handwritten code
to just 25 lines specifying the constants (words for dollar and
the like) and the template parameters to be used. (2) Having a
template-based system that is robust to verbalization structures
across many of the world’s languages paves the way for us to
scale faster to more languages, as development cost is signifi-
cantly reduced by using these templates. The templates enable
developers to flip parameters to match the grammatical struc-
tures of the target languages, and they make it easy to share
verbalization knowledge across subsystems. They also make it
easy to inject knowledge elicited from speakers of the language.

One specific simplification is that the system offers a prin-
cipled approach to variation in the spoken domain. Verbalizers
for ASR are normally designed to output many variants, since
they need to match whatever is said. On the other hand, TTS
verbalizers need to produce exactly one output for any given

input. In our system, TTS clients can select alternative verbal-
izations, normally available only for ASR, by selecting a ver-
balization ‘style’. For example, the money template produces
the following variants for ‘$1.50’:

(11) a. one United States dollar and fifty cents
b. one dollar and fifty cents
c. one dollar fifty
d. one fifty

In the unified system, the rules which produce these variants
can be shared across the two platforms. For TTS, we specify a
style number for each of these outputs, and clients of the TTS
system can select among them for different purposes. For ex-
ample, if an end user asks What is ten dollars in pounds?, the
TTS client who produces the response message might choose a
style like (11a), as in ten United States dollars is seven British
pounds and sixty pence, in order to state unambiguously which
currencies they are referring to. With a single set of rules, we
can specify both TTS styles and ASR variants, a significant sav-
ing in code complexity and development time.

Another simplification is out-of-the-box support for allo-
morphy and morphological concord. Previously, each language
required complex custom architecture to produce inflected vari-
ants of numbers and other tokens. With templates and number
names grammars which can produce inflected forms of num-
bers, it is possible to support phenomena such as noun-modifier
agreement without the need for custom grammars, as demon-
strated by example (10) from Spanish. This substantially re-
duces the amount of custom code required.

4. Future work

There are several areas of the system which will benefit from
further development. First, developing tools to parse the ques-
tionnaires obtained from language consultants would allow
grammars to be generated more rapidly and with less human
effort. We also could leverage other data sources such as the
Unicode Common Locale Data Repository [16] to obtain some
of the template parameters for languages. Second, we could
extend our coverage by creating templates for more semiotic
classes. Finally, we could further improve our templates for
increased robustness to typological diversity (such as the Mala-
gasy and Sanskrit addend flops described in Section 2.1).

5. Conclusion

We have described a system of induced number names gram-
mars and template verbalizers which enable us to generate ba-
sic verbalizer systems for many languages. In this system,
we support marked features of number names systems such as
flop arithmetic and morphosyntactic phenomena within semi-
otic classes such as noun-modifier agreement, while maximiz-
ing consistency across languages using templates. This enables
us to develop these verbalization systems for new languages
faster, and lowers the maintenance burden per language. Our
system handles both simple unmarked verbalization formats as
well as more complex linguistic features without the need for
substantial language-specific architecture.
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