
PEACE-ful Web Event Extraction and Processing
as Bi-Temporal Mutable Events

Tim Furche, Oxford University
Giovanni Grasso, Oxford University
Michael Huemer, Johannes Kepler University
Christian Schallhart, Oxford University
Michael Schrefl, Johannes Kepler University

The web is the largest bulletin board of the world. Events of all types, from flight arrivals to business
meetings, are announced on this board. Tracking and reacting to such event announcements, however, is a
tedious manual task, only slightly alleviated by email or similar notifications. Announcements are published
with human readers in mind, and updates or delayed announcements are frequent. These characteristics
have hampered attempts at automatic tracking.

PEACE provides the first integrated framework for event processing on top of web event ads, consisting of
event extraction, complex event processing, and action execution in response to these events. Given a schema
of the events to be tracked, the framework populates this schema by extracting events from announcement
sources. This extraction is performed by little programs called wrappers which produce the events including
updates and retractions. PEACE then queries these events to detect complex events, often combining an-
nouncements from multiple sources. To deal with updates and delayed announcements, PEACE’s schemas
are bitemporal, as to distinguish between occurrence and detection time. This allows complex event spec-
ifications to track updates and to react upon differences in occurrence and detection time. In case of new,
changing, or deleted events, PEACE allows to execute actions, such as tweeting or sending out email notifi-
cations. Actions are typically specified as web interactions, e.g., to fill and submit a form with attributes of
the triggering event.

Our evaluation shows that PEACE’s processing is dominated by the time needed for accessing the web
to extract events and perform actions, allotting to 97.4%. Thus, PEACE requires only 2.6% overhead, and
therefore, the complex event processor scales well even with moderate resources. We further show that sim-
ple and reasonable restrictions on complex event specifications and the timing of constituent events suffice
to guarantee that PEACE only requires a constant buffer to process arbitrarily many event announcements.

Categories and Subject Descriptors: Information Systems [World Wide Web]: Web Mining

General Terms: Languages, Design

Additional Key Words and Phrases: web events, web engineering, complex event processing, temporal
databases, active database systems

ACM Reference Format:

Tim Furche, Giovanni Grasso, Michael Huemer, Christian Schallhart, and Michael Schrefl, 2014. PEACE-
ful Web Event Extraction and Processing
as Bi-Temporal Mutable Events. ACM Trans. Web V, N, Article A (January YYYY), 47 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Most events are announced at first and often exclusively on the web. This trend is even
more pronounced for time critical events, as the web is a ubiquitous and prompt infor-
mation source. While the immediate availability of up-to-date information is a blessing
in enabling much more complex, rapid interactions, it also imposes a challenge: The
immediacy of web-published events allows for frequently and quickly distributed up-
dates, leading to fragmentary and preliminary but inaccurate advertisements which
are possibly revised later. Therefore, modern coordination tasks often boil down to
continuously checking all relevant event sources for changes which might necessitate
further actions in response. For example, awaiting a person on a flight with a stopover,
one needs to check that both flights are in time. If the second flight is delayed, the
person will arrive late the same day; in contrast, if the first flight is late, the person

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:3

might not even arrive on the same day, depending on the timeliness of the second
flight and other available connections. But these distinctions do not suffice, as incom-
plete, incorrect, and late announcements complicate the situation even more. For ex-
ample, not only may scheduled flights arrive late, but also the event announcements
for such events may be advertised late. Depending on all these conditions, we want to
decide which actions to enact, e.g., notifying affected people with emails or changing
hotel reservations. To differentiate these cases, we need to consider the bitemporality
of events: Each event has an occurrence time, when it supposedly takes place, and a
detection time, when its advertisement is detected on the web.

1.1. Background and rationale of our approach to web event extraction and processing
It took about 25 years till the commercial database world (IBM’s DB2, Oracle, and
Teradata) took over the idea of temporal databases [Snodgrass and Ahn 1986] distin-
guishing transaction time (synonym: system time) and valid time (synonyms: applica-
tion time, business time) in recording business events, such as the move of a person
from e.g. Vienna to Oxford, the arrival of a flight, or the discharge of a patient from
hospital. The valid time of such business events may be in the future, events may be
recorded pro-actively (valid time > transaction time) and retro-actively (valid time <
transaction time), and knowledge about events may be updated, i.e., the valid time of
a business event may change.

Our work on bi-temporal web event processing is based on this event model of tem-
poral databases, with occurrence time corresponding to valid time and detection time
to transaction time of temporal databases. Most event processing systems do not con-
sider high-level business events as described above, but model low-level system events
that represent the notification about a new business event or the change of a busi-
ness event by different kinds of events. Such system events are immutable, whereas
business events are mutable (i.e., their occurrence times or their event attributes may
change). We believe that the processing of web events is best addressed by considering
high-level business events that are mutable.

We present a holistic approach to web-event extraction and processing. We extract
events from web sources and consider them as high-level, bi-temporal business events.
We introduce a high-level language to define complex events based over subscribed
events that are extracted from the web and an accompanying business rule language
that defines how to react to detected business events by initiating diverse actions,
including publishing events on the web.

Snapshot databases assume that transaction time is identical to valid time, as many
event processing systems do. Valid time database systems allow to record future events
(i.e., to record events before they occur), but usually do not support recording events
retro-actively (i.e., after they have occurred). This approach is sufficient for many ap-
plications, such as insurance, where one cannot take out insurance retro-actively.

In a first instance, our event model and our event processing rules (condition action
statements associated with events) are based on this valid time database approach,
thereby taking a perfectness assumption. The perfectness assumption assumes that the
real world is perfect (perfect world assumption) in that the occurrence time of a busi-
ness event does not change, i.e., an airplane lands as expected; a patient is discharged
from hospital as planned and that the system world is perfect (perfect system assump-
tion), i.e., there are no delays in detecting, communicating and recording events, and
also in reacting to events. We will lift the perfectness assumption later.

From a design perspective, we abstract from an imperfect world when defining com-
plex events and associated business rules in a first instance. This assists in focusing on
the core business functionality. Such an approach is very common in system design: (1)
One designs a conceptual model of database abstracting from physical storage details

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 T. Furche et al.

and access structures (physical data independence), (2) Distributed database design
may first concentrate on the global schema, abstracting from data fragmentation and
data allocation (distribution independence), or (3) bi-temporal database design starts
out with a snapshot or valid-time database first.

Our event-processing approach is event-oriented. Condition-action rules do not stand
alone, but are always associated with an event class and define how to react to an
event of the class once it occurs. Different to event-stream processing systems, where
a complex event occurs at the time a certain event pattern is detected, our notion of
event-occurrence is tied to real-world time (wall-clock-time). An event occurs when
its occurrence time coincides with real-world time. We believe such a time-centric and
event-oriented approach best addresses the business perspective of handling web an-
nouncements.

Condition-action rules are defined for event classes with the semantics that they are
fired for an event of the event class if the event occurs (i.e., the time of the real world is
the event’s occurrence time). Thereby we assume a chronon-model, i.e., time changes
at fixed-sized intervals (chronons). Time advancing, business rules are fired if there
is an event that occurs at the current real-world time. For efficient processing, a time
index may be used to initiate rule processing for an event class only at chronons for
which an event of the event class occurs. If one wishes to act before the occurrence of
an event, e.g., to leave for the airport an hour before the airplane arrives, one would
define a relative temporal event to the arrival event that occurs one hour before the
arrival.

We take a high-level declarative approach to specify complex events and we define
their semantics by mapping complex events to SQL. Complex events are defined by
predicates over attributes and occurrence-times of other events, primitive or complex.
We represent primitive events by base relations and complex events by views over
base relations and views. Thereby, we utilize the SQL-query optimizer for complex
event detection and SQL index structures to index events on occurrence time or other
attributes for efficient processing of events.

Lifting the perfectness assumption, we need to take into account that events may be
detected or processed late (imperfect system) or that attributes and occurrence times
of events may change in the real world (imperfect world). This is a major difference to
many complex event processing systems and mandated by the characteristics of event
announcements on the web.

Unlike many stream-processing systems, we do not process a continuous stream of
events based on their detection time, but we compare the past and the current valid-
time view of the event database, with potentially a bulk of new or changed events being
available additionally once time advances a chronon.1

The underlying idea of bi-temporal event processing is taken from traditional office
work. The metaphor we use is as follows: The office worker has a mail box used to
deliver subscribed events (primitive events). He or she empties the mailbox at every
chronon change (e.g., each day, each hour) and records with each event delivered a re-
ceived time stamp (= detection time) that is the current real-world time. He or she uses
the occurrence time stamps and other attributes of the subscribed events to determine
complex events according to the specification of the complex event. If the occurrence
time of an event is the real world time then he or she has to react to the occurrence of
the event by processing the associated condition-action statement.

To deal with imperfectness, the office worker does not wish to make complicated
comparisons involving detection time and occurrence time over the event history. A

1A detailed comparison to event processing in Active Database Systems, Data Stream Management Sys-
tems, Complex Event Processing and Event Stream Processing Systems is given in the Related Work section

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:5

much simpler approach is sufficient and has been used for many years in office work
based on paper-based systems. The office worker knows the previous state of the world
for each event (i.e., the state before emptying the mail box) and knows the current
state of the world for each event (i.e., the state after emptying the mail box). Thereby,
new events may have been announced, some may have been canceled, others retro-
actively changed. The office worker can recognize anyone of these situations by com-
paring event occurrences with the same event identifier in the old and in the new event
history. He or she will have for each type of event a set of business rules that tell him or
her how to react to particular constellation of occurrence times of the old and the new
event relative to now (the current reading of the wall-clock time). The office worker will
react based on obsolete, additional, and changed information, considering it relative to
the current time of his or her arm watch. Our approach to web event extraction and
processing mimics how a human agent would behave having looked at some web page
some time ago and looking at the web page later again, taking into account the current
real-world time.

From a language design perspective, we provide for each event class a set of clauses
to define how to react in the case of a perfect system and a perfect world and we pro-
vide a set of clauses to define how to deal with various cases of imperfectness (late
announcement of an event, revocation of an event, retro-active change of an event;
etc.). Typically, one would initially concentrate on the business problem itself and de-
sign the event processing for the perfect case first; thereafter one would define how to
react to various cases that can arise due to an imperfect world or imperfect system.

1.2. Application domains
Our approach to high-level processing of events announced in inter- and intra-nets is
applicable across most application domains where timely reaction or adaption to the
events is necessary. Our running example is on flight arrival and departure announce-
ments, a domain commonly known. Other examples include logistics and health care.
In care at home, nurses visiting patients have to adapt their schedules if patients are
discharged early or late from hospital or, if they should meet with a general practi-
tioner jointly at some patient and the general practitioner is delayed. Discharge in-
formation of patients is made available at the hospital’s intra-net, accessible to the
home care organisation for its patients; as with flight arrivals, discharge events are bi-
temporal and may change. New, canceled or updated discharge events do not mean a
complete re-scheduling of nurses. Overall scheduling tasks are rather complex and in-
volve optimization of minimum travel distance of nurses, considering employment law
as to work hours, and required support of patients. Re-acting to web announcements of
discharge events does not involve a re-running of scheduling software, it rather means
the adaption of the round trip on which the patient is typically visited (by squeezing
another patient in or leaving the patient out). Similar, if a scheduled event (e.g., a joint
meeting with a GP at a patient) is delayed (which will be again announced on the web,
used as integration platform), the nurse would not unnecessarily wait there, but just
see another patient in between. Our rule language is geared toward such common,
but simple scenarios that require timely but simple action. In our running example on
flight arrivals, we wish to advise that the passenger is late, a pick-up service is to be
canceled, or a meeting he or she chairs is to be postponed or canceled. Re-planning a
business trip is more complex, but typically not as time-constringent and would not
be handled by our presented rule-language. However, the business rules determining
whether the business trip should be replanned or be canceled may well be expressed
by our rule language. The corresponding action events will be raised by the complex
event processor and handled by a human agent, who is relieved from the tedious task
of observing and tracking web events and their interactions.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 T. Furche et al.

Our approach to web event extraction and processing is based on a chronon-based
temporal event model in which time advances at the size of one chronon, which is
typically between a second or a minute. We do not strive to support mission-critical
real-time processing, but web-based business applications as described above in which
timely reactions at second or minute level are sufficient and which otherwise would
require application-specific complex programming or human processing.

1.3. Contributions and Organization
PEACE(Processing Event Ads into Complex Events) is the first integrated framework
for complex event processing on event announcements in the web, designed around the
following five contributions:
— Bitemporal Event Model (Subsection 2.4). Our approach distinguishes 10 timing

cases, arising by different relationships of occurrence, detection, and wall-clock
time. These cases are programmatically accessible to condition the action taken
in response.

— Integrated Event Extraction and Action Execution (Sections 3). Instances of events
are extracted with OXPATH wrappers, a declarative language for web interaction
and data extraction built atop XPATH, able to fully interact with modern, scripted
sites. The actions triggered during event processing are also implemented in OX-
PATH as web interactions, parameterized with the attributes of the triggering event.

— Bitemporal and Mutable Complex Event Processing (Section 4). PEACE provides
BICEPL (BI-temporal Complex Event Processing Language) to specify condition-
action statements for all event classes and to define complex event classes based
on other constituent classes. The condition-action statements may relate event at-
tributes, occurrence and wall-clock time to decide which action to execute. The defi-
nition of complex events extends familiar SQL-select statements to provide a pow-
erful yet easily understood way for describing event schemata. We define the bitem-
poral event processing for a buffering and windowing semantics and show their
equivalence under reasonable assumptions.

— Efficient and Flexible Implementation (Section 5). The prototype implementation
of PEACE is highly memory-efficient, requiring in windowing semantics only con-
stant memory regardless of the number of events or sources to extract from. Our
architecture allows mixed deployments to develop mobile, light-weight front ends
which connect to server systems bearing the application’s load. Our implementa-
tion also comprises a development and a simulation and visualization environment
for debugging and demonstrations.

— Evaluation (Section 6). We demonstrate by a comprehensive evaluation and exten-
sive performance tests of the prototype implementation that our novel approach for
web event extraction and processing as bi-temporal complex events can be put effec-
tively into practice using web- and off-the-shelf relational technology. We show that
our implementation only requires 2.6% overhead over loading and rendering for
web access and that it is also well-suited for mobile devices with limited resources.
This paper extends and details a preliminary version of PEACE presented at WISE

2013 [Furche et al. 2013b].

2. COMPONENTS OF PEACE AND RUNNING EXAMPLE
In this section we introduce the components of PEACE along a running example used
throughout the paper.

A PEACE application consists of BICEPL event classes for event processing and
OXPATH wrappers for event extraction and action execution. All event classes in BI-
CEPL have a schema of typed attributes, a subset thereof as key and a set of condition-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:7

OXPath Server

perform action

OXPath Action
Wrapper

PEACE Client

get events

extract events

add events

add events process
events

get actions
and events

OXPath Event
Wrapper

Event Detector
Controller

Event Repository

BiCEP
Controller

Action Executor
Controller

Event Detector

Bitemporal Complex Event Processor

Action Executor

Fig. 1: Components of PEACE.

action statements. The condition-action statements describe when an event triggers an
action to be executed. The involved conditions refer to the preceding and current ver-
sion of the event, thus allowing for reactions on changes. Subscribed event classes and
complex event classes only differ in the way their event instances are produced: Sub-
scribed events originate from OXPATH wrappers and database triggers, while complex
events are computed from extended SQL queries over subscribed and other complex
events. Thus, in BICEPL, subscribed classes do not require any further treatment,
while complex classes need to include their constitutive queries.

Our running example deals with business travelers and their arrangements. To
keep up with tight schedules, business travelers observe and quickly react upon many
events, e.g., upon learning about flight delays, they need to check for connecting flights,
or change hotel reservations. Observing flight data and reacting on deviations from the
schedule is not only costly in time and effort but sometimes impossible, e.g., when the
traveling person is on a flight without access to communication services. But having
PEACE, all this hassle can be dealt with automatically. Aside managing the daily nui-
sances of business travel, PEACE can keep friends and family informed about ongoing
trips by posting, e.g., Twitter messages.

2.1. Components of PEACE
PEACE consists of three different components, namely its event detector, bitemporal
complex event processor, and action executor. Each of these components is an event
consumer and/or an event supplier, i.e., they take events as input for further processing
and/or produce events to serve consumers. Therein, detected events are pulled from

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 T. Furche et al.

the detectors to the processors, and actions are pushed from the processors to the
executors. Figure 1 shows these components of PEACE in a distributed deployment:

Event Detector. An event detector assumes the role of an event supplier which ob-
serves one event source, e.g., a web site publishing flight arrivals, to detect and supply
events belonging to one subscribed event class, e.g., FlightArrival. Each subscribed
event can be pulled by and delivered to several event consumers. A web-based event de-
tector consists of an OXPATH event wrapper and an event detector controller. The event
wrapper is started at predefined intervals by its controller. After each run, the wrap-
per returns the extracted events to the controller which returns them on request by its
subscribed event processors. As depicted in Figure 1, the event detector controller and
its OXPATH wrapper may run on different nodes, e.g., for workload distribution.

Bitemporal Complex Event Processor. Event processors pull events from event detec-
tors or other event processors and derive from these input events new complex events.
Accordingly, each processor acts as event consumer and supplier at the same time. As
a supplier, it can serve several action executors or other event processors: The derived
complex events are supplied to other event processors for pulling, while the actions
triggered by these complex events are pushed to the action executors. The event pro-
cessor contains an active event repository and a controller. The active event repository
not only stores events but also processes subscribed events into complex ones, checks
condition-action statements and creates actions if condition-action statements evalu-
ate to true. For this purpose the event repository offers three different interfaces to its
controller, as shown in Figure 1: With add events, the controller adds pulled events to
the event repository. Next, with process events, the controller activates the condition-
action evaluation and creates events and actions if necessary. Finally, with get actions
and events, the actions resulting from the condition-action statements are pushed to
the respective action executor and the newly generated complex events are stored for
being pulled subsequently by other processors.

Action Executor. An action executor processes actions, supplied and pushed by event
processors. Actions received by an action executor must be of the same class but may
originate from different event processors. An action executor features an OXPATH ac-
tion wrapper and a controller. The controller buffers received actions before it pro-
cesses these actions sequentially. Alike event detectors, an action executor’s wrapper
and its controller may be deployed on different nodes.

2.2. Event Classes in the Running Example
We describe this scenario with the schemata of the subscribed event classes, forming
the input to the system, and the corresponding action classes, representing the out-
put. For completeness, we also specify the schema of complex event classes. Figure 2
presents these classes in UML notation. Note, for layout reasons, we display some
associations as foreign keys.

Subscribed Event Classes. In our scenario, PEACE extracts flight arrival and de-
parture events from web sites, such as www.flightarrivals.com (Figure 3), and gathers
business trip information from internal information systems, all represented with the
following event classes (Figure 2). (1) For each aircraft arrival, an event of the sub-
scribed class FlightArrival is issued, with attributes flightDay and flightNo as key,
and with attributes fromLocation and toLocation to describe the departure and des-
tination locations. (2) An aircraft’s take off is represented by an event of subscribed
class FlightDeparture with the same attributes as FlightArrival. (3) A business
meeting is represented by subscribed event class BusinessMeeting, with meetingId
as key. (4) If flights are booked for a meeting, then a FlightBooking event is issued

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:9

Su
bs
cr
ib
ed
Ev
en
tC
la
ss

C
om

pl
ex
Ev
en
tC
la
ss

A
ct
io
nC
la
ss

<<
P

K
>>

 fl
ig

ht
N

o
<<

P
K

>>
 fl

ig
ht

D
ay

fro
m

Lo
ca

tio
n

to
Lo

ca
tio

n

Fl
ig
ht
A
rr
iv
al

<<
P

K
>>

 fl
ig

ht
N

o
<<

P
K

>>
 fl

ig
ht

D
ay

fro
m

Lo
ca

tio
n

to
Lo

ca
tio

n

Fl
ig
ht
D
ep
ar
tu
re

<<
P

K
>>

 fl
ig

ht
N

o
<<

P
K

>>
 fl

ig
ht

D
ay

<<
P

K
>>

 <
<F

K
>>

 b
oo

ki
ng

Id
 :

Fl
ig

ht
B

oo
ki

ng
<<

FK
>>

 c
on

nF
lg

tD
ay

 :
Fl

ig
ht

<<
FK

>>
 c

on
nF

lg
tN

o
: F

lig
ht

Fl
ig
ht

<<
P

K
>>

 b
oo

ki
ng

Id
<<

FK
>>

 m
ee

tin
gI

d
: B

us
in

es
sM

ee
tin

g
co

m
pa

ny

Fl
ig
ht
B
oo
ki
ng

<<
P

K
>>

 m
ee

tin
gI

d
du

ra
tio

n
lo

ca
tio

n
co

nt
ac

t

B
us
in
es
sM
ee
tin
g

<<
P

K
>>

 <
<F

K
>>

 fl
ig

ht
N

o
: F

lig
ht

A
rr

iv
al

<<
P

K
>>

 <
<F

K
>>

 fl
ig

ht
D

ay
 :

Fl
ig

ht
A

rr
iv

al
<<

P
K

>>
 <

<F
K

>>
 b

oo
ki

ng
Id

 :
Fl

ig
ht

B
oo

ki
ng

<<
FK

>>
 m

ee
tin

gI
d

: B
us

in
es

sM
ee

tin
g

fro
m

Lo
ca

tio
n

to
Lo

ca
tio

n
tim

eT
oC

ha
ng

e

M
is
se
dC
on
ne
ct
in
gF
lig
ht

<<
P

K
>>

 <
<F

K
>>

 fl
ig

ht
N

o
: F

lig
ht

A
rr

iv
al

<<
P

K
>>

 <
<F

K
>>

 fl
ig

ht
D

ay
 :

Fl
ig

ht
A

rr
iv

al
<<

P
K

>>
 <

<F
K

>>
 b

oo
ki

ng
Id

 :
Fl

ig
ht

B
oo

ki
ng

<<
FK

>>
 m

ee
tin

gI
d

: B
us

in
es

sM
ee

tin
g

lo
ca

tio
n

A
rr
iv
ed
A
tD
es
tin
at
io
n

m
es

sa
ge

pu
bl
is
hO
nT
w
itt
er

<<
FK

>>
 m

ee
tin

gI
d:

 B
us

in
es

sM
ee

tin
g

ca
nc
el
M
ee
tin
g

<<
FK

>>
 m

ee
tin

gI
d

: B
us

in
es

sM
ee

tin
g

bo
ok
N
ew
Fl
ig
ht
s

0.
.1

0.
.1

1

0.
.1

in
fo

rm
ed

 in
 ti

m
e

0.
.1

1

in
fo

rm
ed

 la
te

0.
.1

1

in
fo

rm
ed

 in
 ti

m
e

1 0.
.1

in
fo

rm
ed

 la
te

1

0.
.1

di
ve

rte
d

1 0.
.1

re
tro

ac
tiv

el
y

ch
an

ge
d

0.
.1

1

po
st

po
ne

d

Fi
g.

2:
U

M
L

R
ep

re
se

nt
at

io
n

of
E

ve
nt

C
la

ss
es

an
d

A
ct

io
n

C
la

ss
es

of
ou

r
R

un
ni

ng
E

xa
m

pl
e

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 T. Furche et al.

Fig. 3: Event Source for FlightArrival events: www.flightarrivals.com

with a bookingId as key. (5) Scheduled flights are described by subscribed event class
Flight, with attributes flightDay, flightNo, and bookingId (refering to the flight
booking) as key, and connFlgtDay and connFlgtNo to link this flight to its connecting
flight Flight, if any.

Since PEACE deals with bitemporal events, all extracted event classes (and the com-
plex event classes following below) have two additional, implicit attributes, namely occ
for the occurrence time of the event and det for its detection time.

Action Classes. In response to missed flights, PEACE advices to book new flights or
cancels business meetings. (1) If PEACE learns about an unavailable flight at least a
day in advance, it advises to book a new flight with an action of class bookNewFlights.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:11

(2) If the flight becomes unavailable less than a day in advance, then PEACE can-
cels the corresponding meeting with a cancelMeeting action. (3) On status changes
of the business trip, PEACE also tweets notifications, represented by action class
publishOnTwitter: (a) Within one hour delay after arrival, PEACE tweets the arrival
at our final location. (b) If PEACE learns about an arrival more than one hour late,
e.g., due to a downtime of the airport’s web site, then it also includes the arrival time
in the tweet. (c) If a flight is diverted, PEACE tweets the new destination. If PEACE
has sent out notifications too early, e.g., learning only after the scheduled arrival time,
that a flight has been delayed, then PEACE corrects the wrong tweet, distinguishing
the case (d) when a traveler is still in the air and (e) when the traveler has arrived
already.

Complex Event Classes. The actions above relate to two kinds of events, namely
missed flights and arrivals at the final trip destinations. Both event types are
represented by corresponding complex event classes: (1) Missed flights are rep-
resented by complex event class MissedConnectingFlight which is defined upon
its constituent subscribed event classes, FlightArrival, FlightDeparture, Flight,
BusinessMeeting, and FlightBooking. It holds attributes flightNo, flightDay,
bookingId, meetingId, fromLocation, toLocation, and calculates the time for catch-
ing the connecting flight timeToChange from its constituent event classes. A flight is
considered to be missed if the business traveler has less than 30 minutes between
his/her connecting flights (timeToChange < 30 minutes). (2) The arrival at the trip
destination is represented by the complex event class ArrivedAtDestination hold-
ing attributes from its constituent subscribed event classes FlightArrival, Flight,
BusinessMeeting, FlightBooking, and complex event class MissedConnectingFlight.
The business traveler is considered to have arrived at his destination if all of his
booked connecting flights took place and he did not miss any of them.

In our example the occurrence time of an ArrivedAtDestination event of a
FlightBooking is the occurrence time of the FlightArrival event at the trip des-
tination (not shown in Figure 2, but explained later in Example 4.3). In general,
the occurrence time of a complex event is defined upon the occurrence times of its
constituent events. The syntax of BICEPL, explained detailed in Subsection 4.1,
provides for choosing (i) the occurrence time of a particular constituent event,
or (ii) the maximum or minimum of the occurrence times of several constituent
events. BICEPL allows also for defining a temporal offset relative to the occurrence
time of a constituent event (such that one can define relative temporal events like
30MinutesBeforeFlightArrival).

2.3. Application Setup
Taking the components described in Subsection 2.1, the setup of a PEACE application
involves only the following four tasks:

(T1) Event wrappers in OXPATH, specifying web interactions leading to the events
and the location of the attributes to be extracted per event. For sources outside
the web, we use database triggers, e.g., to retrieve background information on a
business meeting.

(T2) Action wrappers in OXPATH, performing some web interaction, such as posting
a Twitter message. For actions beyond the web, service invocations and remote
procedure calls are possible.

(T3) Subscribed event classes in BICEPL, specifying the schema of their events, cap-
turing the event attributes extracted by the event wrappers, optionally with
condition-action statements.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 T. Furche et al.

� : RETROACTIVECHANGE

event occurrence e in new event history

event occurrence e’ in old event history
(e.key = e’.key)

NOW

ONTIME

FUTUREANNOUNCEMENT

CANCELLATION

CHANGE

LATE

REVOCATION

POSTPONE

LATE

ONTIME

]

]

]

[

[

[

[

[

]

[

[

[

FUTURE CANCEL

FUTURE

‐

ONTIMENO CHANGE

event previously reacted upon ONTIME or LATE

event not yet reacted upon ONTIME or LATE

�

¬�

¬� : LATE

¬� : LATE

[

Fig. 4: Timing primitives

(T4) Complex event classes in BICEPL, specifying queries to aggregate subscribed
events into complex events and condition-action statements applied on the aris-
ing events.

We discuss tasks (T1-2) in Section 3 on OXPATH, and tasks (T3-4) in Section 4
on BICEPL. In the respective sections, we give examples for all four tasks, all part
of our running example on business travelers. In particular, we define (T1) the OX-
PATH event wrapper for flight arrivals in Example 3.1, discuss (T2) an OXPATH action
wrapper for Twitter in Example 3.2, specify (T3) the subscribed event class for flight
arrivals in Example 4.1, and define (T4) complex event classes for missing connecting
flights and successful arrivals in Examples 4.2 and 4.3.

2.4. Specifying Conditional Actions with PEACE
In its core, PEACE allows to specify actions on how to react to events under the perfect
system assumption. Events are immutable and known before or at the time they occur.
The action is fired at the time the wall clock has advanced to the occurrence time of the
event. The event may be simple, i.e., correspond to a subscribed event or be a complex
event such that the action can be conditional on a single subscribed event or several
subscribed events. This behavior is defined by an ONTIME statement.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:13

Additional statements handle various deviations from a perfect world or system,
e.g., the event processor may have been down when it should have reacted to an event
and can be late in processing it, the event may have been delivered late (i.e., only some
time after it has occurred), or the event may be mutable from a business perspective
such that event attributes or the occurrence time of an event changes after it has been
announced or the event is retracted. This may happen pro- or retro-actively.

PEACE conceptually splits at any time its event repository into two event collec-
tions, one reflecting the last or old state of processing before new events (including
cancellations) have been collected, the other one being the current or new state of pro-
cessing. Each scenario can be characterized according to (1) whether the event is in
the new collection, the old collection, or in both, (2) whether the occurrence time of the
new event is in the past or future, (3) whether the occurrence time of the old event is
in the past or future, and (4) whether the old and new event version are different or
not.

Figure 4 gives an overview of the different constellations and the event publishing
cases identified with them. Figure 4 classifies the possible event constellations on the
left side according to whether the event is only in the new collection (ANNOUNCEMENT),
only in the old collection (CANCELLATION), or in both collections but different (CHANGE),
or in both collections and the same (NOCHANGE).

This classification can be further discriminated along the positions of the occurrence
times of the old and new event version relative to NOW, the current reading of the
wall-clock. Some of the cases give natural rise to handle them the same way and are
thus collected under a common timing primitive for use as condition in condition-action
statements, e.g., it is irrelevant if an event announced originally for the future is moved
into the past or if the event is originally announced in the past; in both cases the point
in time when the event occurred was missed (LATE).

We define the conditions of the different cases formally in Subsection 4.3, where we
also explain how to avoid acting to some constellation multiple times by use of toggle
fired.

EXAMPLE 2.1 (SPECIFYING CONDITIONAL ACTIONS). Following up on our run-
ning example (Section 2), let us assume that the arrival of your flight is published for the
first time at 10am with an expected arrival time of 2pm. This case would be matched by
ANNOUNCEMENT and FUTURE, possibly triggering a notification informing your business
partners. Later, at 1pm, when the arrival time is updated to 2:15pm, CHANGE is satis-
fied, triggering again a notification. At 2:15pm, ONTIME is satisfied and it is assumed
the flight has finally arrived. In contrast, if the flight did actually not arrive at 2:15pm
but is rescheduled thereafter for 3pm, then POSTPONE matches, since the event has al-
ready triggered some actions before and the occurrence time moves from the past into
the future.

3. EXTRACTING EVENT ANNOUNCEMENTS & EXECUTING ACTIONS IN OXPATH
For detecting events announcements and executing actions on the web, PEACE inte-
grates OXPATH, a recent state-of-the-art language for highly efficient web automation
and data extraction [Furche et al. 2013a]. OXPATH’s main strengths lie in its abil-
ity to deal with modern scripted websites, supporting the interaction with complex
AJAX-enabled forms, and its high scalability in handling even millions of pages and
extracted results at ease. While a full description of OXPATH can be found in [Furche
et al. 2013a], we only discuss the most relevant features of OXPATH, which boils down
to a four-fold extension of XPATH, which is executed over a live DOM taken from a
browser:
(1) Actions, such as mouse events or typing, to simulate user interactions.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 T. Furche et al.

Fig. 5: Form and result page on www.flightarrivals.com.

(2) Kleene stars to iterate, e.g., to access multiple pages within a paginated result.
(3) Style axis to query visual attributes to select, e.g., all elements colored green.
(4) Extraction markers to extract data from the DOM into (nested) records and at-

tributes.

Aside its aptness for web automation, we have chosen OXPATH for integration
within PEACE for a number of reasons: First, OXPATH provides a single language
to facilitate both, event extraction and action execution. And since OXPATH is only
slightly extending XPATH, many web developers are easily capable of manually writing
new expressions or fixing inadequately generated expressions. The necessary XPATH
expressions are quickly obtained with standard web developer tools, such as Firebug.
Beyond manual editing, OXPATH provides an entire ecosystem, encompassing a visual
IDE to obtain a wrapper from recorded web interactions and manually marked data
to be extracted, an automated expression generator to induce XPATH expressions for
matching a single node or a set of nodes from a given start node, as well as a scalable
execution environment for distributed and parallel extraction and action execution.
We have integrated these building blocks into PEACE, employing the visual IDE in
the PEACE’s client, and running the expression generator and execution environment
within PEACE’s server systems. We have reported about an early version of the visual
IDE in [Kranzdorf et al. 2012]. Finally, the loose coupling between OXPATH and BI-
CEPL allows for an independent execution of individual OXPATH queries arising in
event extraction or action execution. Thus, PEACE exploits OXPATH’s scalability well,
offloading its most resource dependent tasks to background services, thereby also en-
abling mobile applications of PEACE. This is particularly important, as an overwhelm-
ing fraction of runtime is spent in accessing the web (>97%, see Section 6).

3.1. Detecting Events
To illustrate OXPATH’s capabilities, we derive a wrapper for our running example.
There are two steps in the construction of a wrapper for a specific event class: First, we
define the navigation to the event announcements, and second, we specify how to map
each of the event class attributes to HTML fragments of the event announcements. The
resulting wrapper is employed by PEACE in polling the website repeatedly to extract
the subscribed events fed to the complex event processor.

EXAMPLE 3.1 (OXPATH EVENT DETECTOR FOR FLIGHTARRIVAL EVENTS). We
extract flight arrivals from http://www.flightarrivals.com, shown in Figure 5. The left
hand side shows the form reached after selecting the “By airport” tab, while the right
hand side shows some of the results obtained after filling and submitting this form.
Below we show the OXPATH wrapper extracting for a given airport all arrival times
accessible on this site.

1 doc("http://www.flightarrivals.com")
2 //a#panel0/{click /}//form#qbaForm/descendant::field()[1]/{$airport }
3 /following::field()[3]//option/{select }/following::field()[1]/{click

/}

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:15

4 /(/descendant::a[string(.)=’Next >’][1]/{click /})*
5 //table#flifo//tr[position()>1]/self():<FlightArrival>
6 [./td[1]:<fromLoc=string(.)>]

[./td[2]:<flightNo=string(.)>]
7 [./td[3]/div:<flightDay=string(.)>] [.:<toLoc=$airport>]
8 [./td[3]/text()[1]:<occ=toUnixTime(.)>]

The wrapper consists of two parts, first navigating to the relevant data (Lines 1–
4) and then extracting this data (Lines 5–8). After loading http://www.flightarrivals.
com (Line 1), the wrapper clicks on the tab “Airport” and fills in the airport.
This is done with OXPATH’s actions, more specifically, a click action and a
fill action taking variable airport as input (Line 2). Then, with the expression
/following::field()[3]//option, the wrapper matches all possible arrival times and
performs a select action on all of them – which means that the wrapper selects the cor-
responding options iteratively and executes the remaining part of the wrapper for each
of them individually (Line 3). After form submission, the wrapper iterates through all
paginated results with a Kleene star expression (Line 4), clicking zero or more times on
the next button, before extracting data.

Each result page reached contains a table with flight arrival entries in its rows.
We turn all table rows, except the first one containing header information only, into
FlightArrival records, relying on OXPATH’s extraction markers. The first marker
:<FlightArrival> creates a record for each table row except the first one (Line 5), which
is then filled with attributes for departure location, flight number, flight day, and des-
tination location. For example, :<fromLoc=string(.)> is the extraction marker for the
departure location which is taken from the entire contents of the first column (Line 6).

The construction of such a wrapper requires, except the schema for the data to be ex-
tracted, only the XPATH expressions for matching the form elements and the data to be
extracted. These XPATH expressions are easily produced with standard web developer
tools or the OXPATH IDE, as described above.

If a web site changes its structure, a new wrapper must be induced to update the
old one. The new wrapper is typically generated with the OXPATH IDE again. How-
ever, using, e.g., DIADEM [Furche et al. 2014] and a suitable domain description, the
wrapper is induced fully unsupervised. This enables PEACE to update its wrappers
automatically once they stop delivering correct data.

3.2. Executing Actions
PEACE uses OXPATH wrappers not only for event detection but also for action execu-
tion: Such action wrappers fill forms and click buttons without extracting information,
except for information such as confirmation or booking codes. An action wrapper is
guaranteed to be executed from left to right and allows the execution of OXPATH ac-
tions only on single nodes. This contrasts with standard OXPATH [Furche et al. 2013a],
which also performs actions on multiple nodes. We introduce this restriction to ensure
that the OXPATH wrapper performs a single user interaction – clicking on multiple
nodes with a single click-action would cause the execution to branch.

EXAMPLE 3.2 (OXPATH ACTION WRAPPER FOR POSTING ON TWITTER). We con-
tinue our running example with the OXPATH action wrapper for posting Twitter mes-
sages.

1 doc("https://mobile.twitter.com/session/new")
2 //input#username/{"user@example.com"}
3 /following::input#password/{"passme"}
4 //a[@title="Tweet"]/{click /}

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 T. Furche et al.

5 //textarea[@class="tweetbox"]/{$p1}
6 /following::input[@value="Tweet"]/{click /}

The OXPATH action wrapper loads the target web site (Line 1), fills in username and
password (Lines 2-3), and submits the login form (Line 4). For Submitting the message,
the wrapper fills in the message text (Line 5) and submits the message form (Line 6).

Besides actions defined with OXPATH, PEACE allows for the integration of other
actions by providing a plugin which implements the action executor interface.

4. EVENT PROCESSING WITH BICEPL
A PEACE systems works essentially in rounds consisting of three steps: First, new
subscribed events are collected, second, these events are processed into complex events
to determine the set of triggered actions, and third, these actions are executed. In this
section, we focus on the second step, which is controlled by a BICEPL program defining
subscribed and complex events, along with their condition-action statements. More
specifically, BICEPL associates subscribed and complex event classes with a schema
and optional condition-action statements, as discussed in the previous chapter. While
subscribed events are produced by OXPATH wrappers, thus requiring in BICEPL only
a schema declaration, complex events are defined with a query to compute the event
instances from constituent events. Such queries are formulated as extended SQL select
statements which aggregate constituent events into complex events.

To react on different changes of the observed events, BICEPL not only provides
the current revision of a particular event, but also retains the preceding revision of
each event (if any) for comparison. In BICEPL, condition-action statements may ac-
cess these via keywords NEW and OLD and select relevant events with abbreviations for
the timing predicates introduced in Subsection 2.4. However, provisioning preceding
event revisions for comparison with all possible future updates requires PEACE to
buffer events indefinitely. While such an approach leads to a most natural BICEPL
semantics, the buffering semantics, it becomes quickly infeasible on systems with high
event throughput. Thus, we provide a slightly weaker semantics, the sliding window
semantics, which purges events when they have exceeded their life span, determined
from a freezing time indicated with subscribed event classes and an observation span
with complex event classes (which is explained later).

We give an informal high-level illustration of complex event detection in PEACE in
the following, before we formally introduce syntax and semantics of PEACE in detail
throughout this section.

Figure 6 illustrates the semantics of complex event processing based on the buffering
semantics in which events are never purged. The illustration consists of events of three
subscribed event classes s, c, and g, depicted by different shapes: square, circle, and
triangle. Event instances of an event class are identified by the frame color, which
is immutable and constitutes the key attribute of an event. Events are described by
event attributes filling color and filling pattern. Two versions of a mutable event have
the same frame color (denoting the value of the key attribute) and shape (denoting
the class) but carry different detection time stamps. For simple reference to an event
in textual representation, we use a unique event number, denoted as subscript to the
event class name, as alternative key. Note: In our simple illustration, all event classes
have the same key and descriptive attributes; this need not be so in general. The event
number identifies a mutable event, but not a particular version of it (which would
be identified by the event number and its detection time). To improve readability on
black and white printouts, events with the same frame color are depicted with a frame
of the same line type (e.g., dotted, dashed). A complex event of complex event class
h, depicted as hexagon, occurs if there are constituent events of event classes s, c,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:17

event repository at time point t‐1

su
b
sc
ri
b
ed

ev
en

ts
co
m
p
le
x
ev
en

ts

newly arrived events
at time point t

s1

s2

s3

c1

c2

c3

g1

g3

h1

h3

c2

g3

s1

X g2

s1

s2

s3

c1

c3

g1

g3

h1

g2

X revoked event
1 2 3 4

occ time

s4 g4 c4

1 2 3 4

occ time

c4

event repository at time point t

su
b
sc
ri
b
ed

ev
en

ts
co
m
p
le
x
ev
en

ts

h4
1 2 3 4

occ time

s4 c4 g4

Fig. 6: Illustration of Complex Event Detection

and g that strictly occur in this order and have the same frame color and same filling
color. The composite event takes on the common frame and filling color; it receives its
filling pattern from the event occurrence of s and its occurrence time from the event
occurrence of c.

With the advancement of time, new subscribed events arrive, previously notified
events are retracted, or event attributes or occurrence times of mutable events are
updated. For each time chronon t we consider the event repository at time t. Relating
to bi-temporal database systems, the event repository at transaction time t represents
the valid time view of events as of transaction time t; the event repository at time t
contains for each mutable event its current version at time t. The event repository at
time t is split into the event repository of subscribed (or simple) events and the event
repository for complex events. The event repository of complex events at time t can be
derived from the event repository of subscribed events at time t. The event repository of
subscribed events at chronon 0 is empty. For a time point t > 0, the event repository of
subscribed events at time t can be built from the event repository of subscribed events
at some previous point in time t� 1 and the arrivals of subscribed events between t� 1

and t. These time points are ideally two successive chronons, but need not be, if the
event processor has been down (imperfect system).

Figure 6 shows event repositories at times t� 1 and t. The event repository consists
of subscribed events and of complex events. In event repository at time t, events s1,
c1, and g1 appear in that order and have the same frame color (blue, unbroken line)
and the same filling color (blue). They are constituent events for complex event h1 that
takes its occurrence time from c1 and its filling pattern from s1. Likewise, events s3,
c3, and g3 are constituent events for complex event h3. Note that complex events may
be defined upon subscribed events and other complex events (as long as complex event
definitions are not recursive), but this is not shown in the figure for simplicity.

At time point t, the following events arrive new, are updated or revoked: event g2
arrives new, event c2 is retracted, the filling patterns of mutable events s1 and g3 are
updated to stripes, and the occurrence time of mutable event c4 is updated such that
it occurs now between s4 and g4. These updates are depicted in the event repository
named “newly arrived events at time point t”, where an event retraction is denoted by
showing a cross over the retracted event. The event repository of subscribed events at
time t reflects these changes relative to event repository at time t�1. Complex events at

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 T. Furche et al.

time t are re-derived from the event repository of subscribed events at time t: Complex
event h1 receives a new filling pattern (stripes) as its constituent event s1 changed
its filling pattern to stripes; complex event h3 is retracted since event g3 changed its
filling color to green and, hence, no longer matches with filling color orange of c3 and
g3. Complex event h4 is new to event repository at time t since events s4, c4, and g4
with frame and filling color green appear now in the required sequence of occurrence
times.

Once in a processing round complex events have been derived, for each event (sub-
scribed or complex), found in either one or both repositories, condition-action state-
ments defined for the event are evaluated. Each condition of such a statement is based
on the timing primitives introduced previously in Figure 4.

Before we explain event processing with BICEPL in detail, we relate the use of oc-
currence time stamps of complex events in BICEPL to the use of interval timestamps
by complex event processing languages for determining the ”next” event in event pro-
cessing [White et al. 2007]. Each complex event in BICEPL has a single occurrence
time that indicates the wall-clock time at which the event is defined to occur and should
be reacted upon. The occurrence time of a complex event is user-defined by a time ex-
pression over the occurrence-times of its constituent events (cf. previous Subsection 2.2
and syntax details in subsequent Subsection 4.1). Various event calculi support com-
plex events that represent intervals, e.g., a ’purchase event’ that starts with adding a
first item to a shopping basket and ends with payment at check out. Different ways to
choose a successor (”next”) exist for intervals (cf. [White et al. 2007]). BICEPL does not
provide an explicit ”next” operator or event intervals. However, the semantics of ”next”
can be defined explicitly and, on a case to case bases, differently for each complex event
by comparing (in an SQL query) the timestamps of the subscribed events in the event
history relevant for detecting the complex event. Such an approach requires in general
maintaining a complete event history (cf. [White et al. 2007]). Therefore, we initially
define an idealized buffering semantics of BICEPL assuming a complete history of
subscribed events (Subsection 4.4). As the idealized buffering semantics is impractica-
ble for implementation in terms of memory requirements and performance, we there-
after (Subsection 4.5) introduce the sliding window semantics that purges subscribed
events when their (user-defined) life span has exceeded and show that windowing and
buffering semantics behave identically under certain reasonable conditions (Subsec-
tion 4.6).

4.1. Syntax of BICEPL
BICEPL’s syntax in Figure 7 defines a program hprogrami as sequence of event class
declarations, describing simple and complex event classes via hsclassi and hcclassi,
respectively.

We declare subscribed event classes hsclassi as mutable or immutable, with an event
schema hschemai, a hfreezing timei, and a sequence of condition-action statements
hcond_actioni. The schema hschemai describes with hattributesi its typed attributes
and with hkeyi the attribute subset forming the key of the class. The freezing time ex-
presses how long a mutable event may change relative to the occurrence time given
with its first version. The freezing time is given as htime_literali which consists of a
positive integer with a single character to indicate the time unit, referring to either
seconds, minutes, hours, or days.

Each condition-action statement contains a condition hcondi over the current and
preceding version of an event and an action hactioni to be performed if the condition
holds. A condition is a Boolean combination of predicates where each predicate either
(1) compares two values which may be attributes, belonging to the preceding or current
event version, marked with OLD and NEW, respectively, literals, or the wall-clock time

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:19

hprogrami ::= { hsclassi | hcclassi }

hsclassi ::= ‘CREATE’ (‘MUTABLE’ | ‘IMMUTABLE’) ‘SUBSCRIBED EVENT CLASS’ hschemai
‘FREEZING TIME’ htime_literali [hcond_actioni { ‘,’ hcond_actioni }] ‘;’

hcclassi ::= ‘CREATE’ ‘COMPLEX EVENT CLASS’ hschemai
‘OBSERVATION SPAN’ htime_literali ‘AS’ hselectioni [hcond_actioni { ‘,’
hcond_actioni }] ‘;’

hschemai ::= hnamei ‘(’ hattributesi ‘)’ ‘ID’ ‘(’ hkeyi ‘)’
hattributesi ::= hnamei htypei { ‘,’ hnamei htypei }
hkeyi ::= hnamei { ‘,’ hnamei }

hcond_actioni ::= ‘ON’ hcondi ‘DO’ hactioni
hcondi ::= hatomi | ‘NOT’ hcondi | hcondi ‘AND’ hcondi | hcondi ‘OR’ hcondi
hatomi ::= hvaluei hpredicatei hvaluei

| ‘ANNOUNCEMENT’ | ‘CANCELLATION’ | ‘CHANGE’ | ‘FUTURECANCEL’
| ‘ONTIME’ | ‘LATE’ | ‘LATE(’ hmin_delayi ‘,’ hmax_delayi ‘)’
| ‘FUTURE’ | ‘RETROACTIVECHANGE’ | ‘REVOCATION’ | ‘POSTPONE’

hvaluei ::= (‘OLD.’ | ‘NEW.’) hnamei | hliterali | ‘NOW’
hactioni ::= hnamei ‘(’ hvaluei { ‘,’ hvaluei } ‘)’

hselectioni ::= ‘SELECT’ hselect_clausesi ‘OCCURRING AT’ htimei
htimei ::= htable_refi | htimei [(‘+’ | ‘-’) htime_literali]

| (‘MAX’ | ‘MIN’) ‘(’ htimei { ‘,’ htimei } ‘)’

htime_literali ::= hintegeri (‘s’ | ‘m’ | ‘h’ | ‘d’)

(with hselect_clausesi and htable_ref i taken from an SQL grammar)
Fig. 7: BICEPL Syntax.

NOW; or (2) checks some timing condition, as described in Section 2.4. The new and old
values in (1) only differ, if the event is updated at the current wall clock time, i.e., in
case of a CHANGE. During an ANNOUNCEMENT, the old values, and during a CANCELLATION,
the new values are null.

We declare complex event classes via hcclassi, sharing with subscribed classes the
schema, an hobservation spani, and condition-action statements, but also featuring a
selection statement hselectioni. This hselectioni is an SQL select statement referring to
subscribed and complex classes freely, only avoiding circular dependencies. Our selec-
tion statements are extended with an OCCURRING AT clause to determine the event’s
occurrence time with a time expression htimei. A time expression refers to the occur-
rence time of a constituent class via htable_ref i and may involve recursively min/max
and increment/decrement computations. The observation span indicates how far the
occurrence times of the constituent events of a complex event may be at most apart.

Examples 4.1–4.3 continue our running example and show event declarations
with BICEPL. We declare the subscribed event class FlightArrival (Exam-
ple 4.1), and complex event classes MissedConnectingFlight (Example 4.2), and
ArrivedAtDestination (Example 4.3). The latter declaration builds upon subscribed
and complex event classes.

EXAMPLE 4.1 (SUBSCRIBED EVENT CLASS FLIGHTARRIVAL). The BICEPL
statement below declares the subscribed event class FlightArrival with its ex-
plicit attributes for flight day and number, and departure and destination location.
FlightArrival is defined mutable (Line 1) since departure times or arrival locations

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 T. Furche et al.

may change, with flightDay and flightNo as key (Line 2), and a freezing time of two
days (Line 3).

1 CREATE MUTABLE SUBSCRIBED EVENT CLASS FlightArrival(flightDay TEXT,
flightNo TEXT, fromLoc TEXT, toLoc TEXT)

2 ID (flightDay, flightNo)
3 FREEZING TIME (2d);

Since the running example’s other subscribed event classes are very similar, we omit
them here. Instead, we show two complex event classes, where the first one on missing
connections serves as a constituent class for the second one on successful arrivals at
the final destination.

EXAMPLE 4.2 (COMPLEX EVENT CLASS MISSEDCONNECTINGFLIGHT). We de-
tect connecting flights which are probably missed with the complex event class
MissedConnectingFlight.

1 CREATE COMPLEX EVENT CLASS MissedConnectingFlight(flightDay TEXT,
flightNo TEXT, fromLoc TEXT, toLoc TEXT, bookingId TEXT, meetingId
TEXT, timeToChange NUMBER)

2 ID (flightDay, flightNo, bookingId)
3 OBSERVATION SPAN (2d)
4 AS SELECT fd.flightDay, fd.flightNo, fd.fromLoc, fd.toLoc,

fb.bookingId, bm.meetingId, (fd - fa) AS timeToChange
5 FROM FlightArrival fa, FlightDeparture fd, BusinessMeeting bm,

Flight f, FlightBooking fb
6 WHERE fa.flightNo = f.flightNo AND fa.flightDay = f.flightDay AND

bm.meetingId = fb.meetingId AND f.bookingId = fb.bookingId AND
f.connFlgtNo = fd.flightNo AND f.connFlgtDay = fd.flightDay
AND (fa + 30m) > fd

7 OCCURRING AT fd
8 ON ANNOUNCEMENT AND (NEW - 1d) < NOW DO

bookNewFlights(NEW.meetingId),
9 ON ANNOUNCEMENT AND (NEW - 1d) >= NOW DO

cancelMeeting(NEW.meetingId);

A MissedConnectingFlight event features as attributes some attributes of the missed
flight, the corresponding booking and meeting id, and the expected time available to
reach this flight at the airport. A flight is included in this complex event class if this
(possibly negative) time is below 30 minutes (Line 6). The occurring-at clause defines
the occurrence time of a MissedConnectingFlight event as the missed flight’s departure
time (Line 7). To react appropriately to a missed connection, it is necessary to react
immediately upon its detection: We execute action bookNewFlights with meetingId as
parameter when a MissedConnectingFlight event is detected for the first time and
more than one day in advance (Line 8). If the complex event is detected not more than 1
day in advance, then the meeting is canceled by calling the action cancelMeeting with
parameter meetingId (Line 9).

EXAMPLE 4.3 (COMPLEX EVENT CLASS ARRIVEDATDESTINATION). We also re-
port the successful arrivals at the final destination with the complex event class
ArrivedAtDestination.

1 CREATE COMPLEX EVENT CLASS ArrivedAtDestination(flightDay TEXT,
flightNo TEXT, bookingId TEXT, meetingId TEXT, location TEXT)

2 ID(flightDay, flightNo, bookingId)
3 OBSERVATION SPAN (3d)

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:21

4 AS SELECT fa.flightDay, fa.flightNo, fb.bookingId, bm.meetingId,
fa.toLoc AS location

5 FROM FlightArrival fa, BusinessMeeting bm, Flight f,
FlightBooking fb

6 WHERE f.connFlgtNo = NULL AND fa.flightNo = f.flightNo AND
fa.flightDay = f.flightDay AND bm.meetingId = fb.meetingId AND
f.bookingId = fb.bookingId AND NOT EXISTS (SELECT * FROM
MissedConnectingFlight mcf WHERE mcf.bookingId = f.bookingId)

7 OCCURRING AT fa
8 ON ONTIME OR LATE(0s, 1h) DO publishOnTwitter(

format("Just arrived at %s!", NEW.location)),
9 ON LATE(1h, 1d) DO publishOnTwitter(

format("Have arrived in %s at %t!", NEW.location, NEW.occ)),
10 ON CHANGE AND OLD.location <> NEW.location DO publishOnTwitter(

format("Diverted from %s to %s!", OLD.location, NEW.location)),
11 ON POSTPONE DO publishOnTwitter(

format("Not landed yet, expected to arrive at %t!", NEW.occ)),
12 ON RETROACTIVECHANGE DO publishOnTwitter(

format("Revise, arrived in %s at %t!", NEW.location, NEW.occ));

This complex event class refers to subscribed classes, such as FlightArrival, and the
complex class MissedConnectingFlight, featuring attributes on flight, booking, and
meeting, together with the location of the final arrival. An ArrivedAtDestination event
is defined to occur at the arrival time of the final leg of a trip, which is a flight with-
out further connecting flight, given that no connection of the booking has been missed.
(Lines 4-7). Depending on the specific situation, the five condition-action statements of
the class post different Twitter messages. The message is conveniently produced with
function format, producing the message from a format string, referring to numeric
value with %n, string value with %s, and time stamps with %t.

— On time or within less than 1 hour, we post that the traveler just arrived (Line 8).
— With more than one hour but with less than one day delay, we post that the traveler

has arrived, together with the arrival time (Line 9).
— If the destination location changes, then the flight deviation is reported (Line 10).
— If the arrival is rescheduled from the past to the future, then the new expected arrival

time is posted (Line 11).
— We also report retroactive changes, when an already reported arrival has in fact been

diverted or delayed (Line 12).

4.2. Event-Condition-Action Model underlying BICEPL
The event-condition-action model comes in three parts, first describing the properties
common to both subscribed and complex event classes, then discussing the specifics
of subscribed and complex events, and finishing with actions and their properties. We
identify a point in time t with the number of chronons that passed between a reference
time point and t. The length of a chronon is a system wide parameter that is fixed at
system startup and remains constant until the system shuts down.

Event Classes. We identify a BICEPL program with the event classes E it declares.
Every event e processed by E belongs to one such class e.class = E 2 E. Depending
on the concrete class E, the event features certain attributes e.attr for the attributes
attr 2 E.schema, as specified in the schema E.schema of E. Further, each event schema
contains attributes occ, occurrence time, and det, detection time, accessed via e.occ
and e.det, respectively. Each event schema contains a set of key attributes E.key ✓
(E.schema\{det}). We denote with e.key the values of the key attributes in event e 2 E.
Note that the key of an event identifies the event but not its announcement, i.e., there

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 T. Furche et al.

may coexist announcements e and e0 referring to the same event e.key = e0.key, detected
at different times, i.e., with e.det 6= e0.det. An event class E 2 E has a set of condition-
action statements E.ca. Each concrete condition-action statement s 2 E.ca contains
a condition s.cond and an action s.action which is performed when s.cond holds. This
condition is evaluated as s.cond(t, e, e0), where events e and e0 refer to the event state
at time points t and t0 with t > t0, with t as the current wall clock time. The action is
executed with the very same arguments as s.cond(t, e, e0).

Subscribed and Complex Event Classes. Event classes in E = S [C are partitioned
into subscribed and complex event classes S and C. Subscribed event classes S 2 S are
associated with a wrapper S.wrap or a trigger expression. In our running example, we
use wrappers for flight arrival and departure events, and database triggers for busi-
ness meeting events. In contrast, complex event classes C 2 C have a query function
C.query. For the set of C-events obtained by evaluating C.query, we write C.query(O,D),
where O is the set of observed subscribed events and D is the set of already derived
complex events. To ensure a well-defined order for evaluating the functions C.query
for C 2 C, we require acyclic dependencies between classes (and their functions): We
denote with the constituent event classes of C all classes involved in C.query, i.e., C
depends on its constituent classes. The constituent classes do not only include direct
dependencies but also indirect dependencies via other constituent complex classes. If
E 2 E is a direct constituent class of C 2 C, we write E ⇢ C; we write E ⇢+ C if E
is direct or indirect constituent class of C. ⇢+ is transitive by definition. We denote by
⇢⇤ the transitive and reflexive cover of ⇢. Additionally, we require ⇢+ to be irreflexive
(E 6⇢+ E for all E 2 E) and asymmetric (E ⇢+ E0 implies E0 6⇢+ E for all E,E0 2 E).
Thus, we rule out cyclic dependencies, as we required. We also write e ⇢ c for concrete
event instances e and c, if e.class ⇢ c.class.

Action Classes. Next to event classes, each BICEPL program declares action classes
A. Every action a 2 {p.action | p 2 E.ca and E 2 E} belongs to exactly one action
class a.class = A 2 A. The schema A.schema of an action class A contains a set of
typed attributes, allowing for integers, floats, and strings. Each concrete action a with
a.class = A must match its schema A.schema, i.e., having a correctly typed attribute
a.attr for all a.attr 2 A.schema. Moreover, each action class has an action wrapper
A.exec which is a parameterized OXPATH wrapper with A.schema as invocation signa-
ture.

4.3. Mapping BICEPL into its Event-Condition-Action Model
We map BICEPL class definitions into the event classes of our model from the preced-
ing section. Given a BICEPL event class, we obtain an event class E 2 E with schema
attributes E.schema and key E.key directly from the class declaration and the ID clause
of the event class. It remains to add for general event classes E 2 E = S [C the
condition-action statements in E.ca, and for complex event classes C 2 C, the query
functions C.query.

SQL-Query Rewriting. Given a complex event class in BICEPL, we rewrite its query
into standard SQL and use the resulting query to define C.query. We obtain this query
by rewriting the select clause in the BICEPL class with the following three steps.

(1) We expand all table references in time expressions to access the implicit occurrence
time, e.g., we rewrite OCCURRING AT fa - 1d into OCCURRING AT fa.occ - 84600,
as 1 day equals 84600 seconds.

(2) We rewrite OCCURRING AT clauses into a definition of the implicit occurrence
time attribute occ, e.g., OCCURRING AT fa.occ - 84600 yields SELECT fa.occ -

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:23

84600 as occ ..., defining the occurrence time as first attribute in the newly
created event.

EXAMPLE 4.4 (SQL-QUERY REWRITING). We rewrite the query of Example 4.3, not
showing the unchanged FROM and WHERE clauses. The projection of the original select
statement is extended with occurrence, where the occurrence time refers to the occurrence
of the constituent FlightArrival event.

1 SELECT fa.occ AS occ,
2 fa.flightDay AS flightDay, fa.flightNo AS flightNo, fb.bookingId AS

bookingId, bm.meetingId AS meetingId, fa.toLoc AS location
3 FROM ... WHERE ...

Condition-Action Rewriting. Each BICEPL condition-action statement translates
into one condition-action statement ca 2 E.ca with ca.cond and ca.action. To obtain
ca.cond, we first rewrite the timing primitives in the condition-action statements of
the BICEPL classes as follows. In this rewriting, we express the timing primitives in
terms of OLD and NEW which allow to access the preceding and current revisions of the
event in concern. For simplicity, OLD <> NEW stands for comparison of all attributes of
the new and old event version.
(1) ANNOUNCEMENT (NEW.key IS NOT NULL AND OLD.key IS NULL)

(2) CANCELLATION (NEW.key IS NULL AND OLD.key IS NOT NULL)

(3) CHANGE (NEW <> OLD)

(4) ONTIME (NEW.occ = NOW)

(5a) LATE (NEW.occ < NOW AND NOT FIRED)

(5b) LATE(min,max) (NOW - NEW.occ)> min AND (NOW - NEW.occ)<= max
AND NOT FIRED

(6) FUTURE (NEW.occ > NOW AND OLD.key IS NULL)OR
(NEW <> OLD AND NEW.occ > NOW AND OLD.occ > NOW)

(7) FUTURE CANCEL (NEW.key IS NULL AND OLD.occ > NOW)

(8) RETROACTIVECHANGE (NEW <> OLD AND OLD.occ < NOW
AND NEW.occ < NOW AND FIRED)

(9) POSTPONE (OLD.occ < NOW AND NEW.occ > NOW)

(10) REVOCATION (NEW.key IS NULL AND OLD.occ < NOW)

Then, condition ca.cond(t, e, e0) is evaluated by mapping NOW to t and NEW to e, OLD to e0

and FIRED to e 2 fired. Note: As a side-effect of ONTIME or LATE having been evaluated
to true, the event is entered into a fired list, and as a side effect of the condition for
CANCELLATION or for POSTPONE evaluating to true it is removed from this list. The toggle
fired is used to discriminate between a “late processing” situation (in which an event
was not handled on-time due to the event processor being unavailable at that time)
and a “retro-active change” situation; it is also used to avoid reacting multiple times to
a “late processing” situation, which, different to other situations, may appear as such
in consecutive processing cycles.

Similarly, the action ca.action(t, e, e0) yields a tuple, consisting of the procedure name
and the arguments obtained by evaluating the argument expressions using the same
mapping as for ca.cond.

With these rules, we turn each condition-action statement into an SQL query com-
puting the actions triggered by this statement. Since condition-action statements de-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 T. Furche et al.

pend on the events known at the current and previous processing iteration, accessed
via NEW and OLD, we employ for each event class two corresponding tables.

EXAMPLE 4.5 (CONDITION-ACTION REWRITING). This example shows how the
condition-action statements for ArrivedAtDestination of Example 4.3 are rewritten,
relying on tables new_aad and old_aad for the events known at the current and previ-
ous processing iteration. We obtain new_aad as view with the query of Example 4.4 and
update latter from this view after each processing step. We show the rewriting of the
POSTPONE statement of Example 4.3 below.

1 SELECT new_aad.occ
2 WHERE old_aad.occ < NOW AND new_aad.occ > NOW
3 AND old_aad.flightNo = new_aad.flightNo AND old_aad.flightDay =

new_aad.flightDay AND old_aad.bookingID = new_aad.bookingID;

The occurrence time is the only attribute parameterizing the action publishOnTwitter,
as format strings are dealt with later during wrapper invocation. Thus, the generated
action tuple contains only the occurrence time (Line 1). Following rule (8), we rewrite
the POSTPONE predicate and extended the resulting WHERE clause with join conditions to
match the event keys (Line 3).

4.4. Buffering Semantics
A BICEPL program, identified by its event classes E = S [C, observes a sequence
of pairs (O

i

, t
i

), where O
i

is the set of subscribed events detected up to time stamp t
i

.
Depending on the changing observations and wall clock time, E triggers the execution
of some actions. Hence we define the semantics JE K (O

i

, t
i

, O
i�1, ti�1) of program E over

two pairs (O
i

, t
i

) and (O
i�1, ti�1), resulting in a set of action tuples at each time instant

t
i

.
We set t0 to the system start-up time, and require t

i

> t
i�1 for all i > 0. We start with

O0 = ; and set O
i

= {e 2 O
i�1 | @e0 2 �

i

and e.key = e0.key} [�

+
i

\ �

�
i

for i > 0, where
�

i

= �

+
i

[�

�
i

contains the subscribed events observed (�+
i

) or retracted (��
i

) between
t
i�1 and t

i

. Note, we assume that at each subscription cycle, the event detector of an
event class will provide at most one event version for each mutable event, if an event
version is provided it is the most recent one. The detection time of a subscribed event
is the time the event is collected from the event detector and entered into the event
repository of the bi-temporal event processor (and not the time the event version is
detected by the event detector). Events of complex event classes are defined by queries
upon subscribed event classes, although possible indirectly, like views over views over
base tables in a relational database without recursion. Thus each complex event class
in the end depends in one processing cycle only on subscribed event classes and the
order in which complex events are processed is irrelevant, as long as the queries for
constituent event classes of a complex event class are evaluated before the query of the
complex event class.

To obtain the corresponding complex event, we fix an ordering C = {C1 . . . Cl} with
Ck 6⇢ Cj for all j < k, which must exist, since ⇢ is irreflexive and asymmetric. Then,
we derive the complex events D

i

at time instant t
i

with

D
i

= derive(O
i

, t
i

) = Dl

i

with D0
i

= O
i

and Dj

i

= Dj�1
i

[Cj .query(O
i

, Dj�1
i

) .

Depending on the differences between D
i

and D
i�1, program E triggers a set of ac-

tions, as specified in the condition-action statements of the event classes in E. More
specifically, we check the condition-action statements for each distinct event id found
in D

i

or D
i�1, i.e., the set of relevant ids I is given with I = id(D

i

) [id(D
i�1) for

id(D
i

) = {he.key, e.classi | e 2 D
i

}. To access the unique event e
i

2 D
i

with e
i

.key = x.key

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:25

FlightArrival
at ti�1

flightDay flightNo occ det fromLoc toLoc

10.01. AF1381 10.01.07:00 10.01-07:00 London Paris
10.01. AF1780 10.01.19:00 10.01-18:50 Paris London

FlightArrival
at ti

flightDay flightNo occ det fromLoc toLoc

10.01. AF1381 10.01.07:00 10.01.07:00 London Paris
10.01. AF1780 10.01.19:30 10.01.19:01 Paris London

FlightDeparture
at ti�1 and ti

flightDay flightNo occ det fromLoc toLoc

10.01. AF1381 10.01.05:30 10.01.05:30 London Paris
10.01. AF1780 10.01.17:00 10.01.17:00 Paris London

BusinessMeeting
at ti�1 and ti

meetingID occ det duration location contact

m1 10.01.08:00 08.01.10:15 1h Paris Ms. Martin
m2 10.01.20:00 08.01.10:15 1h London Mr. Smith

Flight
at ti�1 and ti

flightDay flightNo occ det bookingId . . .

10.01. AF1381 10.01.05:30 08.01.10:15 b1 . . .
10.01. AF1780 10.01.17:00 08.01.10:15 b2 . . .

FlightBooking
at ti�1 and ti

bookingId occ det company meetingId

b1 08.01.10:00 08.01.10:15 Travel Star m1
b2 08.01.10:10 08.01.10:15 Travel Planet m2

Table I: Event repositories O
i�1 and O

i

for subscribed event classes at t
i�1 =19:00 and

t
i

=19:01

and e
i

.class = x.class, we write D
i

[x] = e
i

. If no such event exists, we set D
i

[x] = ?.
Then, the condition-action statements for event key x 2 I are found in D

i

[x].class.ca or
D

i�1[x].class.ca (if both exist, the statements agree, as D
i�1[x].class = D

i

[x].class holds),
and thus, the triggered actions at time t

i

are

triggered(D
i

, D
i�1) =

S
x2I

{ ac.action(t
i

, D
i

[x], D
i�1[x]) |

ac 2 (D
i

[x].class.ca [D
i�1[x].class.ca)

and ac.cond(t
i

, D
i

[x], D
i�1[x]) }

At last, triggered(D
i

, D
i�1) has a side effect: For each ac.cond(t

i

, D
i

[x], D
i�1[x]), if ac

= ONTIME or ac = LATE evaluated to true, we set fired = fired [{x}, if ac = CANCELLATION
or ac <> POSTPONE evaluated to true, we set fired = fired \ {x}.

Taking these pieces together, we arrive at an idealized semantics, employing unlim-
ited buffering, as defined next.

Definition 4.6 (Buffering Semantics). Given the sequence of subscribed events
O0, O1, . . . arising at time instants t0, t1, . . . , we define the buffering semantics at in-
stant t

i

JE K (O
i

, t
i

, O
i�1, ti�1) = triggered(derive(O

i

, t
i

), derive(O
i�1, ti�1)) .

EXAMPLE 4.7 (EVENT REPOSITORY AND BUFFERING SEMANTICS). To continue
our running example, we (1) derive from the event histories O

i�1 and O
i

on subscribed

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 T. Furche et al.

ti�1

flightDay flightNo occ det bookingId meetingId location fired

10.01. AF1381 10.01.07:00 10.01.07:00 b1 m1 Paris true
10.01. AF1780 10.01.19:00 10.01.18:50 b2 m2 London true

ti

flightDay flightNo occ det bookingId meetingId location fired

10.01. AF1381 10.01.07:00 10.01.07:00 b1 m1 Paris true
10.01. AF1780 10.01.19:30 10.01.19:01 b2 m2 London true

Table II: Event repositories D
i�1 and D

i

for ArrivedAtDestination at t
i�1 =19:00 and

t
i

=19:01

events (Table I) the corresponding derived histories D
i�1 and D

i

(Table II), and (2) de-
termine the triggered actions.

To compute the complex events, we need to fix an order C = {C1 . . . Cl} of the com-
plex event classes C. In this case, MissedConnectingFlight must be evaluated before
ArrivedAtDestination, since the former is a constituent class of the latter. We initial-
ize D0

i�1 with D0
i�1 = O

i�1 and derive events of class C1
=MissedConnectingFlight by

evaluating C1.query(O
i�1, D

0
i�1), resulting in the empty set, thus D1

i�1 = D0
i�1. Second,

we derive event of class C2
=ArrivedAtDestination, yielding two events (Table II) to

be added to D2
i�1 = D

i�1. D
i

is derived analogously.
Based on D

i�1 and D
i

, the condition-action statements cond of our complex event
classes may trigger actions. In this case, the only triggered statement is the POSTPONE
case of class ArrivedAtDestination, since at 19:00 the ONTIME statement has fired and
needs to be corrected now, as the flight turns out be delayed until 19:30.

Note, the definition of the buffering semantics does not address possible implemen-
tations and potential performance improvements. E.g., it is not necessary to evaluate
action-conditions for events at time points where no event occurs. Temporal indexes
on the occurrence times of events can be introduced to skip chronons for which it is
known that no event occurs. Also, in our implementation, we do not maintain the se-
quence of subscribed event sets O0, . . . , Oi

or derive O
i

from O
i�1. We keep a repository

R of subscribed events, recording different versions of mutable events with different
detection times and, if applicable, retractions of mutable events. For a given chronon i
the set O

i

is given as view over R, where O
i

contains for each mutable event the most
recent version up to and inclusive i (i.e., the version with the most recent detection
time stamp less or equal i, or no event, if the most recent entry up to and inclusive
i denotes a retraction). This approach simplifies coping with system outages or de-
lays and permits to provide a historic AS OF AT TIME i VIEW at any time, a feature
our systems shares with bi-temporal database systems. Further, events can be always
loaded in parallel into the event repository. The event processor, after being down or
having finished a processing cycle late, resumes at time point i that corresponds to
NOW, irrespectively how far back time point i� 1 of its last processing cycle was. Timely
reactions to event occurrence may have been missed in between, but event processing
will properly resume according to the condition-action rules specified, which, e.g., will
lead to apply the LATE action rather than the ONTIME action.

4.5. Sliding Window Semantics
As a more practical semantics, we introduce the sliding window semantics which sets
a life span for subscribed events and purges them when their life span has expired.

The expiration time of an event is derived from its projected occurrence-time at in-
ception inceptOcc, i.e., when its first version is detected, and upon the life span as-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:27

sociated with its class. The occurrence time at inception is passed on for an event e
from O

i�1 to O
i

such that we can simply write e.inceptOcc instead of O
i

[e].inceptOcc,
and we have likewise, e.expiration = e.inceptOcc+ e.class.lifespan. Then we purge events
with purged(O, t) = {e 2 O | e.expiration � t}, keeping only unexpired events. Finally,
we need apply the same time stamp t

i�1 in purging both O
i

and O
i�1. Otherwise, if

we would use t
i

and t
i�1, we would could purge different events from O

i

and O
i�1,

potentially causing cancelation events which only occur because of the purging.

Definition 4.8 (Sliding Window Semantics). Given a sequence of subscribed events
O0, O1, . . . for time instants t0, t1, . . . , we define the sliding window semantics at in-
stant t

i

JE Kpurged (Oi

, t
i

, O
i�1, ti�1) = JE K (purged(O

i

, t
i�1), ti, purged(Oi�1, ti�1), ti�1) .

There are two strategies in setting the lifespan of a subscribed event class: (1) It
may be set by the designer and subscribed events are no longer considered for action
triggering or complex event detection once they have expired. This choice has been
taken by others, e.g., CEDR [Barga et al. 2007; Goldstein et al. 2007] by defining a valid
period for events (after which they are no longer considered for event detection), but
has the drawback that events may be purged prematurely leading to a result different
to the buffering semantics, which keeps an accumulated history of events. (2) It may be
determined and set according to the semantics definition by the event processor based
on system guarantees (e.g., an assertion on the maximum latency of retro-active event
arrivals) and domain guarantees (e.g., an assertion on how much the occurrence time
might differ in later event versions from the initially announced occurrence time or
how much time might pass between the occurrences of constituent events of a complex
event).

We have chosen the second, more user friendly approach and set a freezingTime for
subscribed and an observationSpan for complex event classes. Based on a practical set
of assertions on our queries and the occurrence of subscribed events, we derive the life
span of subscribed event classes.

Under the perfectness assumption, events are not mutable and they are known be-
fore or at the time they occur. We relax the perfectness assumption not freely, but
within boundaries. Events may be detected late due to network or communication de-
lays. The latency represents a system guarantee on the maximal latency of retro-active
event detection: e.det� e.inceptOcc e.class.latency.

Mutable events may change in the future. But there will be eventually some point
in time, when the event no longer changes. The mutabilitySpan represents a ser-
vice guarantee indicating how long, relative to the occurrence time at its inception
(inceptOcc), event attributes or the occurrence time itself may change: O

i�1[e] 6= O
i

[e])
(O

i

[e].det e.inceptOcc + e.class.mutabilitySpan). Mutable events may not only change
their attributes but also their occurrence times. The tempvariabilitySpan represents a
domain guarantee on how far the occurrence time of a mutable event may be moved
forward or backward in the occurrence time dimension with regard to its occurrence
time at inception, e.g., how much earlier or later a flight arrival may occur relative to
its first announcement: |e.inceptOcc� e.occ| e.class.tempvariabilitySpan.

To avoid maintaining three time spans we use only a freezingTime and set
mutabilitySpan = latency = tempvariabilitySpan = freezingTime. We call an event frozen
after it may not mutate any more in the future and we call this point in time freezeTime
of the event: e.freezeTime = e.inceptOcc+ e.class.freezingTime.

For complex events, we introduce a domain guarantee, the observationSpan, indicat-
ing in the occurrence time dimension the maximum spread of the occurrence times
of constituent events that make up the complex event. E.g., for a missed flight con-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 T. Furche et al.

nection, the observationSpan expresses how far the arrival event and the departure
event may be at most apart (otherwise it is a stop over and one would definitely catch
the next flight leg). The observationSpan assertion is satisfied for a complex event c, if
max{e.occ | e ⇢ c}�min{e.occ | e ⇢ c} c.class.observationSpan.

We now explain how the lifespan of subscribed event classes is determined from
the freezingTime of subscribed event classes and the observationSpan of complex event
classes. A complex event changes if one of its subscribed events changes. At the schema
level, we derive the freezing time of a complex event class based on the freezing times
of its direct or indirect constituent event classes: C.freezingTime = max{E.freezingTime |
E ⇢+ C}.

We define the spread of a complex event class C as an upper bound on how far for
a complex event of C, the occurrence times of the subscribed events at the leaves of
the event composition tree and the occurrence time of the complex event are at most
apart. For each subscribed event class E at the bottom of the complex event tree, we
have E.spread = 0. For an event of complex event class C, its direct constituent events
may be at most C.observationSpan apart. Considering the occurrence times of indirect
constituent events, this interval may be extended at its beginning and at its end by
at most the maximum of the spread of its constituent events. Further, the occurrence
time of the complex event may be shifted in the OCCURRING AT clause by an offset
relative to the occurrence time of some its constituent events. Thus we have: C.spread =

2max{E.spread | E ⇢ C}+C.observationSpan+C.o↵set, where o↵set denotes the future or
back shift of events of a complex event relative to some event of its direct constituent
event classes.

Based on spread which is defined on the occurrence time of most recent event
versions, we define inceptSpread as a corresponding upper bound on the occurrence
times inceptOcc when mutable events are first detected that will later form a com-
plex event. If the occurrence time of an event is not updated outside its freezingTime
(|e.inceptOcc � O

i

[e].occ| e.class.freezingTime), the inceptOcc of the subscribed events
of a complex event of C may stretch at most by the maximum freezingTime of its con-
stituent events, C.freezingTime, into the past and into the future of spread. Thus, we
have C.inceptSpread = C.spread+ 2C.freezingTime.

Subscribed events must be kept at least as long as (1) needed to participate in the
formation of any new complex event and (2) once detected, to detect any new versions
of the complex event if one of its constituent events changes. Thus, we set E.lifespan =

E.maxFreezeTime + E.maxInceptSpread, with E.maxFreezeTime = max{C.freezingTime |
E ⇢⇤ C} and E.maxInceptSpread = max({C.inceptSpread | E ⇢+ C} [{0}).

4.6. Semantic Equivalence
While the buffering semantics will always produce intuitive behavior as it maintains
an accumulated event history, the sliding windows semantics may lead to non-intuitive
behavior for cases in which events are purged prematurely.

The buffering and windowing semantics behave identically, if the program E and
the subscribed events O0, O1, . . . fed at time instants t0, t1, . . . to E satisfy the following
sanity conditions:
(P) E is monotone, i.e., (i) D = derive(O, t) ⇢ D0

= derive(O0, t) for all O ✓ O0 and (ii)
e 2 D, e0 2 D0, e.key = e0.key) e = e0.

(E1) Each subscribed event is detected with an occurrence time within its freeze time
(latency guarantee), i.e., e.det� e.inceptOcc e.class.freezingTime.

(E2) Events are not modified or cancelled beyond their freeze time (mutability guar-
antee), i.e., O

i�1[e] 6= O
i

[e]) (t
i

� e.inceptOcc e.class.freezingTime) where t
i

is the
time events of O

i

are fed into ECs.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:29

(E3) Events do not update their occurrence time to values outside their freeze time
(occ-time variability guarantee), i.e, |e.inceptOcc� e.occ| e.class.freezingTime.

(E4) Constituent events of a complex event spread at most across the observation
span of the complex event class (observation span guarantee), i.e., max{e.occ | e ⇢
c}�min{e.occ | e ⇢ c} c.class.observationSpan.
Meeting condition (P) should be easy to achieve in most scenarios. E is monotone if

(i) the composition of event queries does not directly or indirectly include negation (or
all quantification) over events of a subscribed event class and (ii) the value of event at-
tributes of a complex event are calculated only from events whose key is subsumed by
the schema of the complex event. Applications in web-based settings, which we have
in mind, frequently apply the open world assumption and do not support the closed
world semantics of negation as failure (as known for Prolog or Datalog and supported
by BICEPL through using SQL). But we do have examples where negation as failure
is practicable and we show how our approach can be extended to non-monotone pro-
grams. The keys of constituent events can be included into the schema of the complex
event during event class design. Note that a sufficient and easy check for E to not in-
clude negation over subscribed events is that each E contains only monotone queries
(C.query(O,D) ✓ C.query(O0, D0

) for all O ✓ O0, D ✓ D0, and C 2 C.
Conditions (E1) to (E4) can be typically met by identifying proper values for

freezingTime and observationSpan during system design based on service guarantees de-
rived from service level agreements or a domain analysis.

Notice that, while the sliding window semantics and the buffering semantics show
the same observable behavior if the above sanity conditions are met, different devia-
tions from the perfectness assumption can effect the observable behavior of triggered
actions. Different late arrivals of subscribed events or different down times of the event
processor may lead to different actions to be triggered as events may, for example, be
processed according to the LATE statement rather than by the ONTIME statement asso-
ciated with an event. But exactly this is desired!

THEOREM 4.9 (SEMANTIC EQUIVALENCE). If program E and events O0, O1, . . .
satisfy (P, E1-4), then JE Kpurged (Oi

, t
i

, O
i�1, ti�1) = JE K (O

i

, t
i

, O
i�1, ti�1) holds.

PROOF. First, we rewrite the theorem statement: Following the notation in Sec-
tion 4, we have JE K (O

i

, t
i

, O
i�1, ti�1) = triggered(D

i

, D
i�1). Analogously, for the purged

case, with OP

i

= purged(O
i

, t
i�1) and OP

i�1 = purged(O
i�1, ti�1), and DP

i

= derive(OP

i

, t
i

)

and DP

i�1 = derive(OP

i

, t
i�1), we obtain JE Kpurged (Oi

, t
i

, O
i�1, ti�1) = triggered(DP

i

, DP

i�1).
Thus, we rewrite the theorem claim as

triggered(DP

i

, DP

i�1) = triggered(D
i

, D
i�1) .

To show the theorem, we show (I) triggered(DP

i

, DP

i�1) ⇢ triggered(D
i

, D
i�1) and (II)

triggered(D
i

, D
i�1) ⇢ triggered(DP

i

, DP

i�1).
(I): Since (P) is monotone, the deletion of any subscribed event e in O does (i) not

introduce any new complex event c in DP that is not already in D and (ii) does not alter
in DP any complex event c existing in D. Thus, for any event pair (c, c0) 2 (DP

i

, DP

i�1)

we also have (c, c0) 2 (D
i

, D
i�1) such that JE Kpurged ✓ JE K holds.

(II): We distinguish newly announced, revoked, changing, and unchanging events.
In the first three cases, we show that the relevant complex events are not purged. In
case of unchanging events, we show that PEACE purges the complex event only after
the event has been fired by ONTIME or LATE (cf. Figure 4).

Announcing events. A complex event c0 2 D
i

is announced, if there exists no c 2 D
i�1

with c.key = c0.key. Thus, at least one constituent event e0 ⇢ c0 has been announced or

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 T. Furche et al.

updated at t
i

, now forming with other events a constituent set for c0. To detect c0 all
other constituent events must still be alive:

f.expiration = f.inceptOcc+ f.class.maxFreezeTime+ f.class.maxInceptSpread �1

f.inceptOcc+ c0.class.freezingTime+ c0.class.inceptSpread �2

f.inceptOcc+ e.class.freezingTime+ c0.class.inceptSpread �3

f.inceptOcc+ e.det� e.inceptOcc+ c0.class.inceptSpread �4

e.det.

Inequality (1) holds by definition of maxFreezeTime and maxInceptSpread, inequality (2)
by definition of freezeTime for C; inequality (3) holds because of (E1), requiring event
e0 being detected within its freezing time e.classfreezingTime. Inequality (4) holds, since
conditions (E3) and (E4) guarantee |f.inceptOcc� e.inceptOcc| c0.class.inceptSpread, as
(E4) limits |f.occ � e.occ| and (E3) limits |e.inceptOcc � e.occ|. Thus for all f 0 ⇢ c0, we
find f 0 2 OP

i

and hence c0 2 DP

i

.
Revoking events. A complex event c 2 D

i�1 is revoked, if there exists no c0 2 D
i

with c.key = c0.key. Since c is revoked, there must be a constituent event e ⇢ c which
has been revoked or updated at t

i

such that c has no constituent set anymore. We use
the same argumentation as above for announcing events that all constituent events
of c are still alive when the deletion of e is detected, with the difference that with
c.class = c0.class and that inequality (3) holds because of (E2).

Changing events. A complex event c changes into c0, if c 2 D
i�1 and c0 2 D

i

with
c 6= c0 but c.key = c0.key. We use the same argumentation as above for announcing
events that all constituent events of c0 are still alive when e0 is detected, with the
difference that inequality (3) holds because of (E2).

Unchanging events. If an event c remains unchanged with c 2 D
i�1 and c 2 D

i

, we
first show that either one of the following two cases holds.
— For c 2 DP

i�1, we have c 2 DP

i

: Then f.expiration � t
i�1 for all constituent events

f ⇢ c. Since we compute OP

i

with OP

i

= purged(O
i

, t
i�1), we obtain f 2 OP

i

, implying
c 2 DP

i

.
— For c 62 DP

i�1, we have c0 62 DP

i�1 and c0 62 DP

i

for any c0 with c0.key = c.key: Then,
at least one constituent event f ⇢ c has been purged already at t

i�1 with f 62 OP

i�1.
This constituent event f remains purged at t

i

, hence f 62 OP

i

and thus c 62 DP

i

.
In the first case the same actions are triggered for ONTIME and LATE as in the buffering
semantics. In the second case no action is triggered, as c is missing in both sets DP

i�1

and DP

i

. It remains to be shown that the second case does not occur before, due to ad-
vancement of time, a complex event is fired ONTIME or LATE in case the event processor
was inactive at that time.

We obtain for all constituent events f ⇢+ c:

f.expiration = f.inceptOcc+ f.class.maxFreezeTime+ f.class.maxInceptSpread �1

f.inceptOcc+ c.class.freezingTime+ c.class.inceptSpread �2

c.inceptOcc+ c.class.freezingTime �3

c.occ �4

t
i�1.

Inequality (1) holds by definition of maxFreezeTime and maxInceptSpread, inequality (2)
holds by the construction of inceptSpread, inequality holds (3) by (E3) and the complex
event being defined relative to some subscribed constituent event. Inequality (4) holds

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:31

as the last processing cycle has been at time t
i�1 < c.occ = NOW. Complex event c is

fired ONTIME if the processing time of the current cycle t = NOW, it is fired LATE, if NOW
< t.

Thus, triggered(D
i

, D
i�1) ⇢ triggered(DP

i

, DP

i�1) such that JE K ✓ JE Kpurged.

We now define a revised sliding window semantics supporting also non-monotone
programs, by purging “spurious” actions potentially arising out of non-monotonicity.

Definition 4.10 (Sliding Window Semantics for Non-Monotone Programs)). Given
a sequence of subscribed events O0, O1, . . . for time instants t0, t1, . . . , we define the
sliding window semantics for a non-monotone program at instant t

i

JE Knmpurged (Oi

, t
i

, O
i�1, ti�1) = actionsPurged(JE Kpurged (Oi

, t
i

, O
i�1, ti�1)).

where actionsPurged(X) = {a(t, c, c0) 2 X | c = c0 _ (max(c.occ, c0.occ) +

2 c.class.freezingTime � t)}, with max(c.occ, c0.occ) = c.occ for c0 = ?.

THEOREM 4.11 (SEMANTIC EQUIVALENCE FOR NON-MONOTONE PROGRAMS).
If program E and events O0, O1, . . . satisfy (E1-4), then JE Knmpurged (Oi

, t
i

, O
i�1, ti�1) =

JE K (O
i

, t
i

, O
i�1, ti�1)

PROOF. We show (I) JE Knmpurged ✓ JE K and (II) JE K ✓ JE Knmpurged.
(I): Given a(t, c, c0), we show, each event f that is potentially used in a query for c or

c0 is alive at time instant t:
t 1

c.occ+ 2 c.class.freezingTime 2

f.occ+ 2 c.class.freezingTime+ c.spread =3

f.occ+ c.inceptSpread 4

f.occ+ f.maxInceptSpread 5

f.inceptOcc+ f.freezingTime+ f.maxInceptSpread 6

f.inceptOcc+ f.maxFreezeTime+ f.maxInceptSpread = f.expiration

Inequality (1) holds by definition of actionsPurged and (2) by definition of spread. Equa-
tion (3) is the definition of inceptSpread, inequalities (4, 5, 6) hold because of definitions
of maxInceptSpread, conditions (E1, E2, E3), and definition of maxFreezeTime.

Thus, although E may not be monotone in general, it is so with respect to the query-
ing of c and c0 since no event relevant for querying c or c0 has been purged from O

i

or
O

i�1 and we have actionsPurged(triggered(DP

i

, DP

i�1)) ⇢ triggered(D
i

, D
i�1)

(II): Because of (E1, E2, E3), for a(t, c, c0), t c.inceptOcc + c.class.freezingTime
c.occ + 2 c.class.freezingTime (if c 6= ?; and likewise for c0). Thus, by Definition 4.10,
triggered(D,D0

) = actionsPurged(triggered(D,D0
)). The result triggered(D

i

, D
i�1) ⇢

triggered(DP

i

, DP

i�1) = actionsPurged(triggered(DP

i

, DP

i�1)) follows from Theorem 4.9.

5. PEACE’S IMPLEMENTATION AND DEPLOYMENT
PEACE’s flexible architecture serves simple as well as complex, performance critical
cases. In the simplest setup, a PEACE system consists of three components: one event
detector, one event processor, and one action executor. More complex cases employ sev-
eral instances of each component. When subscribed events are extracted from multi-
ple sources, one event detector per source must be deployed. Likewise, for each type
of action to be executed, one action executor must be deployed. These extractors and
executors can be distributed over multiple machines to scale the system. Finally, dif-
ferent complex event classes can be processed by individual event processors to scale
and distribute the processing load.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 T. Furche et al.

Event detectors, event processors, and action executors run in parallel, where event
detectors and event processors run in configurable intervals. Event processors must
run even if no new events have been detected since the result of their queries may de-
pend on the wall-clock time. Event sources can forward their events to one or more
event processors, and each processor can subscribe to several sources. In contrast,
action executors wait for actions tuples originating from one or several sources and
execute the actions described therein sequentially in arrival order.

Running event detectors, event processors, and action executors in parallel usually
achieves a significant amount of performance improvement. As our performance eval-
uation has shown (see next section), the typical bottleneck is not the event processor
but the detection of subscribed events based on web-event extraction and the execu-
tion of actions. Event detection can be significantly sped up by running different event
detectors, one for each class of subscribed events, in parallel. In our bi-temporal set-
ting, events will be processed as they arrive according to the conditional actions set for
each detected simple or complex event. Event processing works with the knowledge at
hand at a particular point in time and if an action has to be taken at some point in
time, it is taken based on the knowledge available then. Speeding up event detection
by using parallel event detectors improves the quality of event processing in so far
as it increases the likelyhood of processing events properly on time according to the
perfectness assumption.

The complex events produced by a previous processing step do not directly influence
the next processing step. Only new subscribed events do. There may be indirect effects
though, but with some external delay. Actions triggered by detected events may lead
to processing or human actions resulting in other subscribed web-events.

EXAMPLE 5.1 (IMPLEMENTATION OF RUNNING EXAMPLE). In Figure 8, we
present the implementation and deployment of the running example. For each sub-
scribed event class, we employ one event detector, namely extracting FlightArrival
(Example 3.1) and FlightDeparture events from websites, while obtaining the remain-
ing BusinessMeeting, FlightBooking, and Flight events from internal information
systems. For the purpose of this showcase only, we distribute the event processing:
MissedConnectingFlight (Example 4.2) events are detected in one event processor
and forwarded to the other event processor which detects ArrivedAtDestination
complex events (Example 4.3). Further, our running example necessitates three action
executors – one action executor per action type: The publishOnTwitter action is
performed by an OXPATH action wrapper (Example 3.2), the bookNewFlights action is
also an OXPATH action (not shown in this paper) whereas cancelMeeting is a remote
procedure call on our internal server.

Mobile Deployment. PEACE not only supports server systems but also applications
on small mobile devices and has been tested successfully on Android and Ubuntu. Our
implementation is designed to be lightweight and portable, implemented with Java
and SQLite, an in-memory database. PEACE features a very flexible architecture and
can be deployed either in a one-tier manner where all event detectors, event proces-
sors, and action executors run on the same device, or as a 2-tier system where event
detectors and/or action executors can run on remote servers and are called as web
services. The 2-tier architecture is tailored for mobile devices, typically offering less
processing power, since event detection from multiple web sites can consume signifi-
cant processing resources.

Visual Editor. The Development of a PEACE program requires not much effort due
to our visual editor for Eclipse (Figure 9). In the editor, the user can arrange event
detectors, complex event processors, and action executors, and define the event flow

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:33

Bitemporal Complex Event
Event Detector Processing Network Action Executor

FlightArrival bookNewFlights
Missed‐

FlightDeparture

ServercancelMeeting

Missed‐
Connecting‐

Flight

Server

BusinessMeeting

FlightBooking

ServercancelMeeting

Arrived‐
A

Flight
publishOnTwitter

At‐
Destination

Fig. 8: Implementation of our Running Example with PEACE.

via connections. We offer a set of different predefined event detectors, a generic one,
e.g., parameterized with an OXPATH event detection wrapper, as well as specific ones,
e.g., for detecting flight arrivals parameterized with the arrival airport and the flight
number. An event detector must specify its unique name, the interval between indi-
vidual detection runs, a subscribed event class definition, and in case of an OXPATH
wrapper, the wrapper and its parametrization. A complex event processor must be de-
clared with a unique name, chronon size, and complex event definitions. For subscribed
and complex classes alike, one can choose between different buffer implementations,
currently offering an SQLite and H2 implementation. As for action executors we offer
different generic and specific implementations, similarly to event detectors. An action
executor is specified with a unique name, and specific parameters for the OXPATH ac-
tion wrapper. The architecture of the editor is designed to be easily extended with new
components, e.g., new specific event detectors or action executors.

Simulation and Visualization. PEACE offers a simulation environment to trace
events through their extraction to arising complex events and the actions thus taken.
Within the simulation environment the entire system may be run at different speeds,
skimming over uneventful phases and carefully analyzing more turbulent phases. Fig-
ure 10 shows a screenshot of our simulation environment. The simulation start time
and simulation speed are set in the control panel. Play, pause, and stop buttons allow
to run and control the simulation. The step button runs the system for the number of
seconds specified in the text field next to it and pauses it afterwards. When the system
is paused or stopped the simulation speed may be changed. The event source panel dis-
plays all observed events originating from the selected event source and shows a screen
shot (if extracted from the web) of the selected event at the right side of the window.
As a subset of these events, the event detector panel shows only those events which
are going to be processed in the next run by of one the complex event processors. The
complex event processor panel shows all events belonging to the selected complex event
class after purging. Similarly, the action executor panel displays all actions awaiting
processing by the selected action executor.

Database Backends. PEACE requires an SQL database backend to store subscribed
events and actions in tables and to implement complex events as views. We imple-
mented PEACE with two database management systems, namely SQLite and H2,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 T. Furche et al.

Fig. 9: PEACE Editor.

Fig. 10: PEACE Simulator.

since they are examples of lightweight database management systems fitting our ap-
plication scenarios. SQLite is chosen as it is the standard database on Android sys-
tems, also supported on various other platforms. Additionally, the complex event pro-
cessor is implemented atop of H2 database which is promoted to have performance
advantages over SQLite.

6. PERFORMANCE EVALUATION
This evaluation comes in two parts, first considering the entire PEACE system with
all its components, and second focusing on the event processor and its scalability for
various scenarios.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:35

For the first part, we profile the components of PEACE, i.e., event detectors, event
processors, and action executors, on varying platforms and with different workloads.
(Subsection 6.1). Our evaluation shows that PEACE is dominated by OXPATH which
is in turn dominated by the browser overhead to load and render all visited web pages.
Thus, PEACE spends only 0.6% of its runtime in the event processor – at least if most
subscribed events and actions are web based.

In the second part of the evaluation, we consider the performance of the event pro-
cessor in stress tests, exceeding typical requirements by an order of magnitude (Sub-
section 6.2). Our experiments show that the event processor’s performance is more
sensitive to the event class size, i.e., the number of events belonging to the same event
class, than to the event rate, i.e., the number of events added per clock tick. Therefore,
the sliding window semantics is beneficial to run PEACE at scale. The overhead for
purging expired events in sliding window semantics pays off quickly, leading to con-
stant performance, as opposed to the polynomial performance in case of the buffering
semantics. Our implementations based on H2 and SQLite databases show advantages
in different situations: H2 is faster in small settings while SQLite performs better in
more complex setups.

Lacking comparable systems, we cannot directly compare with other systems. Most
existing systems are heavy-weight centralized server solutions, while we aim for a
light-weight and decentralized solution. In particular, our event processor runs on mo-
bile devices with limited resources.

6.1. PEACE Components
We evaluate the relative runtime of the individual components of the PEACE system
which implements our running example based on an SQLite database. To this end, we
process a single cycle of the entire system, where we run the event detectors and action
executors either locally or remotely, and where we vary the number of extracted and
processed events.

Results. PEACE (1) spends approximately 97.4% of its runtime with problem inher-
ent and thus unavoidable web accesses, (2) spends at most only 0.6% on event process-
ing, and (3) scales well: With a 10 times higher system load, the event extraction only
increases at most 7 times, event processing at most 4 times, and local action execution
8.5 times.

Experimental Setup. We perform 20 process cycles on an initially empty database
and take the average running times. First, in each cycle we extract 100 FlightArrival
and FlightDeparture events at once, buffer and process these events, and perform a
single action execution. Second, we perform the same experiment with 1000 event
extractions and 10 action executions. The very first cycle inserts extracted events into
the database while all other cycles update these events. We evaluate PEACE on two
platforms, namely a Windows 7 PC with an Intel i7 at 2.7 GHz and 8 GB RAM, and an
Android 4.4.3 tablet with a Qualcomm S4 at 1.5 GHz and 2 GB RAM.

Details. As already mentioned afore, the most important result is that PEACE is
dominated by OXPATH, spending more than 99.4% with OXPATH evaluations. These
evaluations are in turn dominated by page loading and rendering times, consuming
98% of OXPATH’s runtime [Furche et al. 2013a]. Therefore, PEACE spends approxi-
mately 97.4% of its runtime with problem inherent and thus unavoidable web accesses.
In Table III we show the individual runtimes for event extraction, buffering, process-
ing, and action execution, running PEACE either locally or remotely.

Extracting 1000 events instead of 100 takes only a 7 times longer, since all events are
extracted with a single wrapper invocation where the initial browser startup proves

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 T. Furche et al.

System #Events Event Extraction Buffering Processing Action Execution
OXPATH local remote local remote

PC 100 103.7 59.1 sec 14 ms 85 ms 19.6 17.3 sec
PC 1,000 740.8 400.3 sec 44 ms 96 ms 165.9 184.6 sec
Tablet 100 - 56.3 sec 64 ms 367 ms - 17.1 sec
Tablet 1,000 - 383.6 sec 321 ms 1,495 ms - 182.3 sec

Table III: Average time spent in different PEACE components over 20 executions

to be very costly. Also event processing increases only marginally by less than 15%, as
the query invocation overhead dominates the actual query processing. Only the action
execution takes roughly 10 times longer, because each triggered action is executed with
its own wrapper invocation. Switching to remote evaluation of OXPATH wrappers, we
observe a consistent behavior: Event extraction is sped up by 40%, since the server
maintains a pool of initialized browsers ready for use. In contrast, the speedup for
running the action execution on the server is offset by the overhead of the remote
invocation.

On the tablet, PEACE runs OXPATH only remotely because of libraries which are
required but unavailable on Android. Event extraction and action execution behave
similarly to the PC. Only buffering and processing react much more sensitive to the
number of extracted events. Curiously, the tablet consistently executes remote OX-
PATH queries slightly faster than the PC.

The results of our benchmarks that event handling creates low overhead in compar-
ison to extracting events from web sites may not be surprising. The business use cases
we have in mind come with a very manageable amount of data (which we have over-
estimated in a order of magnitude for our benchmarks) and at the event processing
consists of checking simple conditions. However, these results cannot be assumed to
be given a priori. We have developed a novel approach for bi-temporal event process-
ing that was inspired by and meets the requirements of a web-based setting. A time-
centric and event-oriented approach that treats events as mutable best addresses the
perspective of handling web announcements, whereas current event processing sys-
tems are typically not time-centric and based on non-mutable events. Since our ap-
proach is declarative and inspired by bi-temporal database work, we have developed
a corresponding prototype using on-the-shelf relational database technology and SQL
for bi-temporal complex event processing. The performance tests demonstrate that our
theoretical work can be put easily into practice. We had initially investigated different
performance optimization strategies, such as using temporal indices per event class
on chronons at which events of the class occur and need to be acted upon once time
advance to that chronon. The benchmark results have been obtained without such op-
timizations. We used, however, available index structure to index the key of events and
maintained auxiliary tables for complex events detected so far. At the same time we
note that their is still room for performance improvement, if this is considered neces-
sary in the future. As long as we have applications for which event handling causes
only low overhead, developing further performance improvements is not worth-while.

Furthermore, the results of our benchmarks demonstrate that our approach and
complex event processor is also suitable for mobile environments with limited re-
sources, such as a tablet, using light-weight database engines such as H2 or SQLite
for implementation.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:37

6.2. Evaluation of the Bitemporal Complex Event Processor
We evaluate the performance of BICEPL’s event processor in a stress test with event
rates and event class sizes that are an order of magnitude higher than in typical set-
tings. More specifically, we performed experiments in two modes: In both modes the
complex event processor starts a new processing cycle, consisting of (a) subscribed
event registration, (b) complex event detection and condition-action evaluation, and
(c) action notification every 3 seconds, or immediately after the processor has finished
a processing cycle if it has lasted more than 3 seconds. In (1) round-based experi-
ments at the begin of each processing cycle (round), all available incoming subscribed
events are collected from even detectors and loaded into the event repository. We plot
processing time against the number of events in the event repository with these ex-
periments. Round-based experiments are natural to consider for studying the effect
of the size of the repository (buffer) on performance when using the buffering seman-
tics in event processing. In (2) time-triggered experiments, we feed a fixed amount of
subscribed events to the event repository at each chronon, regardless whether the BI-
CEPL processor is idle (it has finished its previous processing round) or not. We plot
processing time against running time of the event processor with these experiments.
Time-triggered experiments are more natural to consider when benchmarking the per-
formance according to the sliding window semantics in which events are purged after
having reached their expiration time. We also use time-triggered experiments to relate
the performance of the buffering semantics and the sliding window semantics and to
determine the break-even point when event processing according to the sliding win-
dow semantics outperforms event processing according to the buffering semantics. We
present four different evaluations:

— Buffering Semantics Scalability. In a round-based experiment, we evaluate the per-
formance of processing subscribed events. In the buffering semantics, events are
kept forever and are never purged. We are interested here in the change of perfor-
mance based on the size of the buffer (event repository) relative to the event rate,
number of event classes, and number of condition-action statements.

— Buffering versus Sliding Window Semantics. We compare buffering semantics
against sliding window semantics in a time-triggered experiment and evaluate the
break-even point when the sliding window semantics outperforms the buffering se-
mantics. We are interested here in the change of performance based on the accu-
mulated running time of the system relative to event rate, number of event classes,
and number of condition-action statements.

— SQLite Implementation versus H2. We compare our database backends with a
round based experiment running buffering and sliding window semantics.

— Mobile Performance. We evaluate the performance of the buffering and sliding win-
dow semantics on a tablet with a time-triggered and a round-based experiment.

These evaluations are done with SQLite, except for comparing our SQLite and H2
implementations.

Results. Aside platform differences, we have identified two main factors that affect
the performance of the BICEPL event processor. Interestingly, the event rate, i.e., the
number of events handled each clock tick, has only marginal influence on the process-
ing time, given event classes of similar size and structure.

— Event class size. The class size, i.e., the number of events belonging to the same
class, is the main performance driver. The more events belong already to a class,
the lower is its performance.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 T. Furche et al.

— Condition-action statements. For each of these statements, PEACE needs to evalu-
ate its own query during each processing round.

The sliding window semantics outperforms the buffering semantics after reaching a
certain event class size. The point, when the overhead of identifying and purging stale
events is amortized by the smaller event class size, depends on the BICEPL program
and the employed technical infrastructure. H2 performs better than SQLite on smaller
instances with up to 150,000-200,000 events per event class, while SQLite outperforms
H2 on larger instances. On mobile devices with less processing power the event proces-
sor is much more sensitive to the event class size, rendering the buffering semantics
infeasible, while the sliding window semantics is perfectly working.

We did run our stress tests up to event repositories of several hundred thousand
events, which is magnitudes beyond events to be encountered in web-based business
applications, or event detectors could reasonable provide (we simulated higher rates
in benchmarks) or the owner of a mobile device would collect for him- or herself. Many
applications frequently have simple events to be immediately reacted upon (such that
a direct flight, shipment or appointment is late), next to a few complex events with
a couple of associated condition-action statements. Complex events are usually cen-
tered around a main event (such as a flight, a shipment, or an appointment) connected
to other events by a one-to-one or one-to-many combination. We have not encoun-
tered so far a meaningful business example with many-to-many event combinations.
Our benchmarks reflect realistic scenarios, apart from the number of events gener-
ated. The number of events maintained is unrealistically high, but we repeatedly and
intentionally increased this number to see what our non-optimized implementation
could already reasonably handled within 5-30 seconds. Reducing the unrealistical high
number of events gives enough room to handle situations having a higher number of
condition-action statements with a performance that is still a fraction of the time re-
quired for web event extraction and action execution.

Our architecture provides for a network of event detectors and event processors (see
Section 5) such that event processing can be partitioned between multiple, decentral-
ized devices reflecting event and data distribution among members of an organization.
Such as a single person usually needs to handle a couple of hundred of personal emails
per day supported by some dozen email handling rules (if any), we expect the personal
mobile device will need to handle at most several thousand personal events per day
(some expiring within a few days, others kept a week or a month) with one or two
dozens of condition-action rules.

Experimental Setup. Table IV summarizes our workloads (W1-3) defining the num-
ber of event classes (#EC), number of condition-action statements (#CA-Stmt), event
rate (#Events), and the distribution of subscribed events triggering certain condition-
action statements (Distribution). The lifespan defines the minimum period an event
stays in its event class. All workloads use a chronon size and event detection interval
of 3 seconds. With OXPATH event detectors, this event detection frequency can only
be reached by employing multiple event detector instances running in parallel. Since
we are only interested in the event processing performance, we simulated these event
detectors.

In workload (W1) we have one subscribed and one complex event class. Each sub-
scribed event gives rise to a complex event with one condition-action statement firing
ONTIME. Since all complex events fire ONTIME, the database contains three times the
subscribed events. Running for 2,400 chronons, each time adding 100, 300, or 500
events, we obtain with buffering semantics (never deleting events) up to 3,600,000
events per event class. For the sliding window semantics we fix a window size of 3,600
seconds (1,200 chronons), leading to at most 1,800,000 events. In workload (W2) we

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:39

Workload #EC #CA-Stmt #Events Distribution Lifespan
(W1) 2 1 100/300/500 1.0 OnTime -/3600
(W2) 8 4 100/500 1.0 OnTime -/3600
(W3) 8 28 100/500 0.5 OnTime -/3600

0.25 Late
0.25 Future

Table IV: Definition of Stress Test’s Workloads (W1-3).

increase the number of event classes to 4 subscribed and 4 complex event classes,
each of the complex event classes defining one ONTIME condition-action statement, fir-
ing for each complex event. Resulting event class sizes are equal to workload (W1).
Workload (W3) has 4 complex classes, each with 7 condition-action statements, namely
an ONTIME, LATE, RETROACTIVECHANGE, REVOCATION, ANNOUNCEMENT, CANCELLATION, and
CHANGE condition-action statement. 50% of the subscribed events arrive on time (15%
are postponed, retroactively changed, and revoked, respectively, while 55% stay un-
changed), 25% late (all unchanged), and 25% are future events occurring one chronon
later (15% are changed and canceled, respectively, while 70% stay unchanged). Adding
100 subscribed events in (W3) leads to 455 events in the database, whereas (W1-2)

require only 300 new events. This is case, since specific condition-action statements
require additional internal events and each action is internally stored as individual
event.

These workloads are evaluated on different platforms and on SQLite and H2
databases. The test PCs feature Intel Pentium Dual Core E6700 (3.2 GHz) and 4 GB
RAM. The mobile device is a Nexus 7 (2013) running an Android 4.4.3. The question
has been raised how much more expensive it was to move from mono-temporal to bi-
temporal event processing. While we did not develop a mono-temporal event processor
and run similar benchmarks, the answer to this question can be given in the con-
text of a bi-temporal complex event processor by considering a benchmark case using
only condition statements firing ONTIME, against a benchmark case using additionally
other condition statements that require bi-temporal support. Workload W2 uses only
ONTIME condition statements, while workload W3 uses additional condition statements.
Although both workloads come with a different number of condition statements it is
meaningful to compare them to answer the question on how much more expensive it
was to move from mono-temporal to bi-temporal event processing. Bi-temporal event
processing comes with additional functionality, the possibility to cope with imperfect-
ness in a simple and natural way. To address the different kinds of deviations from a
perfect world and system, additional condition-action statements are necessary. This
additional functionality comes with some cost (see the benchmark results presented
in the subsequent paragraphs) but these may be neglected considering the overall
PEACE system with its components as presented above. If one wishes to know the
difference in performance of evaluating a mono-temporal condition-action statement
versus a bi-temporal condition-action statement, we can state that we have encoun-
tered hardly any difference when performing workload W2 with different timing prim-
itives. This is easy to see, as in order to check whether a condition-action statement
triggers an action, a query is to be performed on the database (for query-rewriting see
Subsection 4.3).

Buffering Semantics. Figure 11 presents the results of our stress tests performed on
our test PC with SQLite. It shows charts for workloads (W1-3) at different event rates
(ER), determining the number of newly arriving events per chronon. Each chart plots
the average processing time needed for dealing with the arriving events against the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 T. Furche et al.

#subscribed events [1000]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200

W1, ER=100

W1, ER=300

W1, ER=500

(a) Impact of Event Rate
#subscribed events [1000]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200

W2, ER=100

W1, ER=100

W2, ER=500

W1, ER=500

(b) Impact of Event Classes
#subscribed events [1000]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

W3, ER=100

W2, ER=100

W3, ER=500

W2, ER=500

(c) Impact of CA. Stmts.

Fig. 11: Buffering Semantics

number of subscribed events, i.e., the summed sizes of all subscribed event classes at
the given moment. We plot against the number of subscribed events, since different
workloads cause the event classes to grow at different rates. Figure 11a on running
workload (W1) shows that the event rate influences the processing time only slightly:
Adding 500 events takes nearly independently of the event class size only about 1
second longer than adding 100 events to an event class of similar size and structure.
Figure 11b on comparing workload (W2) with (W1) shows that smaller event classes
are processed more efficiently, since (W2) disperses its subscribed events over 8 classes,
while (W1) splits them between 2 classes. This is not surprising, as the event class
size directly translates into database table sizes. In Figure 11c, we compare workloads
(W3) and (W2). In (W3) the number of internally maintained events increases much
faster than in (W2), which leads together with the 28 condition-action statements and
the higher number of actions to a much higher workload.

Sliding Window versus Buffering Semantics. Figure 12 compares sliding window
with buffering semantics performing workloads (W1-3) at event rates of 100 and 300
within a time-triggered experiment.

The charts visualize how long it takes to add 100 or 300 subscribed events, after run-
ning for a certain time period while subscribed events have been created continuously
every 3 seconds. Figure 12a illustrates for workload (W1) that the overhead for purg-
ing expired events increases with higher event rates, yielding larger event classes, and
the break-even point for the window semantics shifts backwards. The reason for this
is the higher sensitivity of the sliding window semantics to the event class size due to
expiration time calculations for purging events. Figure 12b on workload (W2) shows
that the event class size has a much more pronounced impact on sliding window se-
mantics than buffering semantics: With sliding window semantics, the processing time
is not only lower, but also the break-even point is reached much earlier with smaller
event class sizes. In Figure 12c we compare workload (W2) with (W3) running with an
event rate of 100. The higher number of condition-action statements of workload (W3)

affects the performance significantly, for both, the sliding window and the buffering
semantics. Though, while (W2) runs with the buffering semantics at least for 12 hours
(36,000 seconds) with reasonable performance, (W3) can only run reasonable with the
sliding window semantics. The spikes of the curves for the workloads executing un-
der windowing semantics, e.g., W1 ER=300, Win in Figures 12a and 12b, indicate the
point in time when purging of subscribed events from the event history sets in for the
first time. Processing time increases as long as the event buffer grows. At the time

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:41

when event purging sets in, the event buffer shrinks, with processing times remaining
basically constant as well.

time [seconds]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

5

10

15

20

25

30

35

40

45

0 7200 14400 21600 28800 36000

W1, ER=100, Win

W1, ER=100, Buf
W1, ER=300, Win

W1, ER=300, Buf

(a) Impact of Event Rate
time [seconds]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

5

10

15

20

25

30

35

40

45

0 7200 14400 21600 28800 36000

W2, ER=300, Buf

W2, ER=300, Win

W1, ER=300, Buf

W1, ER=300, Win

(b) Impact of Event Classes
time [seconds]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

5

10

15

20

25

30

0 7200 14400 21600 28800 36000

W3, ER=100, Buf

W3, ER=100, Win

W2, ER=100, Buf

W2, ER=100, Win

(c) Impact of CA. Stmts.

Fig. 12: Sliding Window versus Buffering Semantics

SQLite versus H2 Implementation. We evaluate the H2 against the SQLite imple-
mentation with a round-based and time-triggered experiment for workloads (W1-3)

(Figure 13). In the round-based experiment, the H2 implementation is quicker up to
180,000 events per event class for workloads (W1) and (W2) (Figure 13a). In contrast,
SQLite outperforms H2 with larger event classes, and in heavier settings with more
condition-action statements, such as (W3) (Figure 13b). This is the case, since H2’s
performance on our queries is much more sensitive to the event class size, i.e., table
size, than SQLite. As the table size dominates H2’s performance, it is only slightly
influenced by the event rate: The performance in adding 100 and 500 events differs
only marginally, and is lower than for SQLite (Figure 13a). Finally, we compare the
performance of sliding window semantics and buffering semantics. H2 is slower than
SQLite in all cases. Because of its weaker performance, the break-even point, when the
window semantics outperforms the buffering semantics, comes earlier than for SQLite
(Figures 13c).

#subscribed events [1000]

pr
oc
es
sin

g
tim

e
[s
ec
on

ds
]

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

W2, ER=100, H2
W2, ER=100, SQLite
W2, ER=500, H2
W2, ER=500, SQLite

(a) Round-based Experiment (W2)

#subscribed events [1000]

pr
oc
es
sin

g
tim

e
[s
ec
on

ds
]

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

W3, ER=100, H2
W3, ER=100, SQLite
W3, ER=500, H2
W3, ER=500, SQLite

(b) Round-based Experiment (W3)

time [seconds]

pr
oc
es
sin

g
tim

e
[s
ec
on

ds
]

0

2

4

6

8

10

0 7200 14400 21600 28800

W1, ER=100, H2, Buf
W1, ER=100, H2, Win
W1, ER=100, SQLite, Buf
W1, ER=100, SQLite, Win

(c) Time-triggered Experiment
(W1)

Fig. 13: SQLite versus H2 Implementation

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 T. Furche et al.

Mobile Performance. On the tablet, we evaluate the buffering semantics with a
round-based experiment (Figure 14a) and the sliding window semantics with a time-
triggered experiment (Figure 14b). These experiments evidence that our event pro-
cessor is very light-weight and hence runs with good performance on mobile devices.
Unsurprisingly, in contrast to a PC, the tablet can only handle smaller event classes,
however, still exceeding typical requirements. So for example, the tablet handles in
buffering semantics event class sizes up to 100,000 subscribed events within 3 seconds
at a rate of 100 events per second for workloads (W1-2) (Figure 14a). Aside from scale,
the characteristics of the plots do not differ from the ones on the PC: The event class
size dominates, while the event rate influences the performance only marginally. The
buffering semantics becomes infeasible even more quickly than on the PC, but the slid-
ing window semantics runs with good performance (Figure 14b): Running workloads
(W1-3), the sliding window semantics reaches quickly the break even, outperforming
the buffering semantics thereafter.

#subscribed events [1000]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

5

10

15

20

25

30

0 50 100 150 200 250 300

W1, ER=100
W1, ER=300
W2, ER=100
W3, ER=100

(a) Round-based Experiment (W1-

3)

time [seconds]

p
ro
ce
ss
in
g
ti
m
e
[s
ec
o
n
d
s]

0

5

10

15

20

25

30

35

40

45

50

0 7200 14400 21600 28800

W1, ER=100, Win

W1, ER=100, Buf

W2, ER=100, Win

W3, ER=100, EC=2, CA=7, Win

W3, ER=100, EC=2, CA=7, Buf

(b) Time-triggered Experiment
(W1-3)

Fig. 14: Mobile Performance

7. RELATED WORK
To the best of our knowledge, PEACE is the first system that addresses complex event
processing for event announcements from the Web. This differs from mining events
from Twitter or other sources [Boettcher and Lee 2012; Ilina et al. 2012] but is related
to typical complex event processing where many event sources are integrated to detect
complex events and react upon them. Therefore, we focus on the difference of PEACE
and its complex event processor and language BICEPL with existing event processing
systems.

We classify event processing approaches into four different general approaches: Ac-
tive Database Management Systems (ADMS), Data Stream Management Systems
(DSMS), Event Stream Processing (ESP) and Complex Event Processing (CEP) sys-
tems, and Event Calculi (EC). In the following, we examine systems of all four ap-
proaches focusing on their time model and ability to handle mutable events, as these
features are essential for web events.

7.1. Active Database Management Systems (ADMS)
An ADMS is a database with human-passive database-active interaction pattern in
extension of traditional Database Management Systems (DBMS) with human-active

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:43

database-passive interaction pattern. This extension is typically implemented in terms
of event condition action (ECA) rules. Such rules consider internal events, e.g., tuple
insertion or updating, and in some systems also external events [Paton and Díaz 1999],
e.g., events coming from sensors. Events are defined to be instantaneous, i.e., they
occur at a specific point in time and are known instantaneously (in zero time) after
they occurred.

To the best of our knowledge, events in ADMS [Dayal et al. 1988; McCarthy and
Dayal 1989; Lieuwen et al. 1996; Gehani and Jagadish 1991; Gatziu and Dittrich 1993;
Chakravarthy and Mishra 1994; Adaikkalavan and Chakravarthy 2006; Buchmann
et al. 1995] are limited to one time dimension, if time is considered at all, and most
importantly, non of these approaches considers mutable events – which are pervasive
on the web.

Limited to complex event detection, [Galton and Augusto 2002; Adaikkalavan and
Chakravarthy 2006] distinguish between detection- and occurrence-based semantics
leading to different semantics of complex event operators, such as a sequence operator.
The detection-based semantics does not distinguished between an event’s occurrence
and its detection, whereas the occurrence-based semantics does. But neither mutable
events nor comparisons between occurrence and detection times are possible, render-
ing this approach unsuitable for our ends.

7.2. Data Stream Management Systems (DSMS)
High performance DSMS [Abadi et al. 2003; Arasu et al. 2003; Abadi et al. 2005; Arasu
et al. 2003; Bai et al. 2006; Chandrasekaran et al. 2003] are general purpose systems
which do not support the concept of events but of general data tuples and therefore do
not come with event specific operators. These systems apply a data stream transforma-
tion function but do not directly support a publish-on-occurrence function, as required
for our event processing purpose. However, in some cases, a DSMS can act as event
processing system.

DSMS have been created to overcome the weak performance of ADMS, resulting
from the great effort of querying a persistent memory (the database) when working
with high data volumes and/or many rules. Most DSMS systems are targeted at high
performance real time data analysis, where performance is more significant than func-
tionality. They transform input data streams (subscribed data streams) to output data
streams by applying, e.g., join or filter operators. In contrast to an ADMS, a DSMS
typically keeps only a set of events over subscribed data streams, i.e., an unbounded
sequence of data ordered by their occurrence, that fit into a specified time window in
the memory to perform continuous queries [Babu and Widom 2001] on them. There
are systems able to manage unordered data streams to a certain extent, or stand out
with other time related features.

[Srivastava and Widom 2004] propose an application timestamp as an ordering cri-
terion and buffer arriving data (tuples) for a certain amount of time before the stream
is ordered and forwarded to the query processor. After the stream is forwarded it is as-
sumed to be append-only, i.e., tuples in the stream are immutable and tuples arriving
late are ignored. Further, on arrival of a tuple, a timestamp is assigned to it, the sys-
tem timestamp, which is referred to for windowing. Though this approach supports two
time dimensions for tuples (possibly representing events), the semantics of the system
is very different from our event processing system. Inherently, deferred event publi-
cation at their actual occurrence time is not supported, nor are temporal comparisons
between events, e.g., sequences, provided. Also the inherent processing delay because
of the entrance buffer is unfitting for our purpose.

Borealis Stream Processing Engine [Abadi et al. 2005; Ryvkina et al. 2006] is an-
other general purpose DSMS system offering a novel feature, namely a revision func-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 T. Furche et al.

tionality of query results. It is able to revise tuples in an output stream due to revisions
in the input stream which abolishes the append only (immutability) policy [Terry et al.
1992] of other DSMS. While Borealis only distinguishes between update and delete
revisions, our system offers a finer granular approach and can quantify the revision by
allowing to compare the attributes of the revised and revising event. Due to its gen-
eral purpose approach, Borealis does not include specific event processing primitives,
as needed for our ends, such as the sequence operator to determine the occurrence
order of events.

7.3. Complex Event Processing (CEP) and Event Stream Processing (ESP) Systems
There is no CEP or ESP system supporting bitemporal, mutable events suitable for
web events. Since research literature and especially industrial reports blur the differ-
ence between ESP and CEP systems, and since both approaches are expected to merge
[Luckham 2006], we treat them at once. CEPs were created in the 90ies, rooted in
event-driven simulations which did not produce event streams, but event clouds, i.e.,
(unordered) sets of events originating from different sources. To analyze these event
clouds, event processing principles were developed, later decoupled and applied to
middleware systems where similar characteristics were found, namely multiple event
streams from different sources to be integrated into a single event cloud. As PEACE
needs to handle sequences of unordered and potentially outdated events produced by
various sources, we develop the core event processor of PEACE as CEP system. In
contrast, ESPs, also developed in the 90ies, have their sources in DSMS operating
with event streams, i.e., time-ordered event sequences. However, ESPs can handle un-
ordered event streams with buffering approaches, as mentioned with DSMS. While in
the past ESP systems focused on performance over functionality, nowadays they can
detect rich complex event patterns, including temporal and causality relations, like
CEP systems do.

Mapping our complex event declarations to existing complex event processing ap-
proaches is only partly possible: The ontime case, defining the reaction if there are
no delays, changes, or errors in the event announcement, is the standard scenario as-
sumed by all approaches. This is the only directly supported case. The late case is
not supported at all by existing approaches, since the second time dimension is miss-
ing completelty or programmatically inaccessible with standard event operators. Thus,
while the occurrence time is event inherent and implicitly given, it may not be com-
pared with user defined (explicit) time attributes. Mapping the retroactive change and
revoke case to existing languages is possible, although often requiring the subscription
to multiple event types and the introduction of auxiliary event types to signify updates
and revocations.

CEPs with Normalized Event Model. There is a mass of CEP systems, hardly covered
by a survey article on CEPs [Cugola and Margara 2012]. Most CEP systems [Luck-
ham 1998; Luckham and Vera 1995; Wu et al. 2006; Li and Jacobsen 2005; Jacobsen
et al. 2010; Demers et al. 2007; Schultz-Møller et al. 2009; Cugola and Margara 2009;
2010; Sybase 2012] follow the perfect technology assumption, i.e., an event is known
by the event processing system instantaneously after it occurred [Wieringa 2003] and
remains immutable thereafter. This restrictive event model disables reasoning over
events in an imperfect world, as for this task the occurrence time and detection time
are essential and mutable events are ubiquitous.

CEPs with Unexposed Noisy Event Models. Some CEP systems deal with noisy
events without exposing a multi-dimensional time model to the system user.
[Mansouri-Samani and Sloman 1997] highlight the importance of differentiating oc-
currence and detection time for monitoring distributed systems with inherent commu-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:45

nication delays, but only approach the issue with delayed event emissions instead of
immediate emissions and subsequent corrective events. However, the detection and
occurrence times are inaccessible in complex event specifications. [Li et al. 2007] ad-
dress out-of-order arriving events and the consequent late detection of complex events
within event streams. They only examine the sequence operator and do not distinguish
between on time and late detection of a given sequence. [Pietzuch et al. 2003] consider
event delays (assuming no unordered arrivals) in their publish-subscribe system and
implement strategies where they either ignore delays or wait until a delay is impossi-
ble. They do not handle unordered event arrivals nor mutable events,

CEPs with (Partially) Exposed Noisy Event Models. The remaining two systems do
not only deal with noisy events but also expose multiple times associated with an
event. However, they do not involve all these times into the definition of complex events
or fail to support mutable events. CEDR [Barga et al. 2007; Goldstein et al. 2007] pro-
poses a tritemporal time model for events, consisting of an occurrence time interval,
i.e., the occurrence (period) of the event (equivalent to our occurrence time), a valid
time interval, i.e., the period over which the event is valid for complex event detection
(equivalent to the lifespan in BICEPL), and a CEDR time interval, i.e., the time when
it arrived at the system (equivalent to our detection time). The valid and occurrence
times are provided by the event source, while the CEDR time is set by the event proces-
sor. Albeit having a very powerful time model, CEDR does only allow for updating the
valid time interval, thus it does not support fully mutable events. Further, the time
dimensions are not provided for complex event detection, but only for event retrac-
tions due to valid time updates. Note, the successor of CEDR is a commercial product
described in [Ali et al. 2009; Ali et al. 2010; Ali et al. 2011] but with only a restricted
time model compared to CEDR. To the best of our knowledge, AMIT [Adi and Etzion
2004] is the only CEP system considering two time dimensions similar to ours: Their
event’s eventTime corresponds to our occurrence time, and their detectionTime to our
detection time. Yet, these time dimensions are not supported for temporal comparisons
in complex event processing. Complex events (called situations), are defined by their
highly expressive, imperative complex event language, but only involving the event
time. Moreover, events in AMIT are immutable.

Commercial Systems. Commercial CEP systems [Sybase 2012; TIBCO 2013b; Oracle
2013; EsperTech 2013; TIBCO 2013a; IBM 2013] mainly focus on realtime processing
and emphasize performance criteria but hardly incorporate features to deal with noise
events. All these systems are general purpose event processing systems assuming in-
stantaneous event notifications from high volume streams without bitemporality or
mutable events.

7.4. Event Calculi (EC)
Besides the above mentioned event processing approaches, knowledge representation
also deals with events, as in Event Calculi (EC) [Kowalski and Sergot 1986; Mareco
and Bertossi 1999; Sripada 1988], representing knowledge about events for reason-
ing purposes. Originally unitemporal, though, there exist EC extensions [Mareco and
Bertossi 1999; Sripada 1988] to implement bitemporal deductive database systems. EC
rules are expressive enough to model complex events, but would require a number of
low-level rules to represent a single complex event declaration of BICEPL. While EC
provides a general model to reason about events, BICEPL is a practical and succinct
yet expressive language tailored for web event processing.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 T. Furche et al.

8. CONCLUSION
We have presented PEACE as an integrated framework to extract events, to process
these events into complex ones, and to perform actions triggered by these events.
PEACE relies on a bitemporal event model which supports BICEPL, a compact and
declarative language for complex event processing. This language comes not only
with a buffered semantics, not purging any events, but also with an efficiently im-
plementable semantics that purges stale events eventually – while maintaining se-
mantics equivalence. BICEPL is an SQL-based language supporting subscribed and
complex event definitions with bitemporal predicates to react upon deviations of the
occurrence and detection time of events. Next to BICEPL, we employ highly efficient
OXPATH wrappers for event extraction and action execution on the web. Both lan-
guages are easy to learn and yield compact and maintainable PEACE applications. We
implement our approach with different databases, namely SQLite and H2, in support
of different platforms. We also provide an editor and a simulation environment to in-
crease the usability of our framework. At last, we have evaluated our implementation
on a PC and a tablet, showing that PEACE requires almost no overhead over the web
access itself. Future research concentrates on location-based event processing, espe-
cially relevant for mobile devices, and on the Internet of Things which needs to allow
its devices to react on a multitude of events.

REFERENCES
Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cherniack, Jeong-Hyon

Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing,
and Stanley B. Zdonik. 2005. The Design of the Borealis Stream Processing Engine. In Second Biennial
Conference on Innovative Data Systems Research (CIDR 2005). 277–289.

Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. 2003. Aurora: a new model and archi-
tecture for data stream management. The VLDB Journal 12, 2 (2003), 120–139.

Raman Adaikkalavan and Sharma Chakravarthy. 2006. SnoopIB: Interval-based event specification and
detection for active databases. Data & Knowledge Engineering 59, 1 (2006), 139–165.

Asaf Adi and Opher Etzion. 2004. Amit - the situation manager. The VLDB Journal 13, 2 (2004), 177–203.
Mohamed H. Ali, Badrish Chandramouli, Jonathan Goldstein, and Roman Schindlauer. 2011. The exten-

sibility framework in Microsoft StreamInsight. In Proceedings of the 27th International Conference on
Data Engineering (ICDE 2011). 1242–1253.

Mohamed H. Ali, Badrish Chandramouli, Balan Sethu Raman, and Ed Katibah. 2010. Spatio-Temporal
Stream Processing in Microsoft StreamInsight. IEEE Data Engineering Bulletin 33, 2 (2010), 69–74.

Mohamed H. Ali, Ciprian Gerea, Balan Sethu Raman, Beysim Sezgin, Tiho Tarnavski, Tomer Verona, Ping
Wang, Peter Zabback, Anton Kirilov, Asvin Ananthanarayan, Ming Lu, Alex Raizman, Ramkumar Kr-
ishnan, Roman Schindlauer, Torsten Grabs, Sharon Bjeletich, Badrish Chandramouli, Jonathan Gold-
stein, Sudin Bhat, Ying Li, Vincenzo Di Nicola, Xianfang Wang, David Maier, Ivo Santos, Olivier Nano,
and Stephan Grell. 2009. Microsoft CEP Server and Online Behavioral Targeting. Proceedings of the
VLDB Endowment (PVLDB) 2, 2 (2009), 1558–1561.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Rajeev Motwani, Itaru Nishizawa,
Utkarsh Srivastava, Dilys Thomas, Rohit Varma, and Jennifer Widom. 2003. STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering Bulletin 26, 1 (2003), 19–26.

Shivnath Babu and Jennifer Widom. 2001. Continuous Queries over Data Streams. SIGMOD Record 30, 3
(2001), 109–120.

Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zaniolo. 2006. A data stream language
and system designed for power and extensibility. In Proceedings of the 2006 ACM CIKM International
Conference on Information and Knowledge Management (CIKM 2006). 337–346.

Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng Hong. 2007. Consistent Streaming
Through Time: A Vision for Event Stream Processing. In Third Biennial Conference on Innovative Data
Systems Research (CIDR 2007). 363–374.

Alexander Boettcher and Dongman Lee. 2012. EventRadar: A Real-Time Local Event Detection Scheme Us-
ing Twitter Stream. In 2012 IEEE International Conference on Green Computing and Communications
(GreenCom 2012). 358–367.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

PEACE-ful Web Event Extraction and Processingas Bi-Temporal Mutable Events A:47

Alejandro P. Buchmann, Jürgen Zimmermann, José A. Blakeley, and David L. Wells. 1995. Building an
Integrated Active OODBMS: Requirements, Architecture, and Design Decisions. In Proceedings of the
Eleventh International Conference on Data Engineering (ICDE 1995). 117–128.

Sharma Chakravarthy and D. Mishra. 1994. Snoop: An Expressive Event Specification Language for Active
Databases. Data & Knowledge Engineering 14, 1 (1994), 1–26.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei
Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman, Frederick Reiss, and Mehul A.
Shah. 2003. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In First Biennial
Conference on Innovative Data Systems Research (CIDR 2003).

Gianpaolo Cugola and Alessandro Margara. 2009. RACED: an adaptive middleware for complex event de-
tection. In Proceedings of the 8th Workshop on Adaptive and Reflective Middleware (ARM 2009). 5.

Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: a formally defined event specification language.
In DEBS. 50–61.

Gianpaolo Cugola and Alessandro Margara. 2012. Processing flows of information: From data stream to
complex event processing. Comput. Surveys 44, 3 (2012), 15.

Umeshwar Dayal, Barbara T. Blaustein, Alejandro P. Buchmann, Upen S. Chakravarthy, Meichun Hsu, R.
Ledin, Dennis R. McCarthy, Arnon Rosenthal, Sunil K. Sarin, Michael J. Carey, Miron Livny, and Rajiv
Jauhari. 1988. The HiPAC Project: Combining Active Databases and Timing Constraints. SIGMOD
Record 17, 1 (1988), 51–70.

Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun Sharma, and Walker M.
White. 2007. Cayuga: A General Purpose Event Monitoring System. In Third Biennial Conference on
Innovative Data Systems Research (CIDR 2007). 412–422.

EsperTech. 2013. Event Processing with Esper and NEsper. (2013). http://esper.codehaus.org/ Last accessed
11/2013.

Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio Orsi, Christian Schallhart, and Cheng
Wang. 2014. DIADEM: Thousands of Websites to a Single Database. Proceedings of the VLDB Endow-
ment/International Conference on Very Large Databases (PVLDB’14) 7, 14 (2014), 1845–1856.

Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart, and Andrew Jon Sellers. 2013a. OXPath:
A language for scalable data extraction, automation, and crawling on the deep web. The VLDB Journal
22, 1 (2013), 47–72.

Tim Furche, Giovanni Grasso, Michael Huemer, Christian Schallhart, and Michael Schrefl. 2013b. Bitempo-
ral Complex Event Processing of Web Event Advertisements. In 14th International Conference on Web
Information Systems Engineering (WISE 2013). 333–346.

Antony Galton and Juan Carlos Augusto. 2002. Two Approaches to Event Definition. In 13th International
Conference on Database and Expert Systems Applications (DEXA 2002). 547–556.

Stella Gatziu and Klaus R. Dittrich. 1993. Events in an Active Object-Oriented Database System. In Pro-
ceedings of the 1st International Workshop on Rules in Database Systems (RIDS 1993). 23–39.

Narain H. Gehani and H. V. Jagadish. 1991. Ode as an Active Database: Constraints and Triggers. In
Proceedings of the 17th International Conference on Very Large Data Bases (VLDB 1991). 327–336.

Jonathan Goldstein, Mingsheng Hong, Mohamed Ali, and Roger Barga. 2007. Consistency Sensitive Stream-
ing Operators in CEDR. (2007). http://research.microsoft.com/pubs/70517/tr-2007-158.pdf Technical Re-
port, MSR-TR-2007-158, Microsoft Research, Dec 2007.

IBM. 2013. InfoSphere Streams. (2013). http://www-03.ibm.com/software/products/en/infosphere-streams/
Elena Ilina, Claudia Hauff, Ilknur Celik, Fabian Abel, and Geert-Jan Houben. 2012. Social Event Detection

on Twitter. In Proceedings of the 12th International Conference on Web Engineering (ICWE 2012). 169–
176.

Hans-Arno Jacobsen, Alex King Yeung Cheung, Guoli Li, Balasubramaneyam Maniymaran, Vinod
Muthusamy, and Reza Sherafat Kazemzadeh. 2010. The PADRES Publish/Subscribe System. In Prin-
ciples and Applications of Distributed Event-Based Systems. 164–205.

Robert A. Kowalski and Marek J. Sergot. 1986. A Logic-based Calculus of Events. New Generation Comput-
ing 4, 1 (1986), 67–95.

Jochen Kranzdorf, Andrew Jon Sellers, Giovanni Grasso, Christian Schallhart, and Tim Furche. 2012. Vi-
sual OXPath: robust wrapping by example. In Proceedings of the 21st World Wide Web Conference (WWW
2012). 369–372.

Guoli Li and Hans-Arno Jacobsen. 2005. Composite Subscriptions in Content-Based Publish/Subscribe Sys-
tems. In Proceedings of the 6th International Middleware Conference (Middleware 2006). 249–269.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 T. Furche et al.

Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner, and Murali Mani. 2007. Event Stream Processing
with Out-of-Order Data Arrival. In 27th International Conference on Distributed Computing Systems
Workshops (ICDCS 2007 Workshops). 67.

Daniel F. Lieuwen, Narain H. Gehani, and Robert M. Arlein. 1996. The Ode Active Database: Trigger Seman-
tics and Implementation. In Proceedings of the Twelfth International Conference on Data Engineering
(ICDE 1996). 412–420.

David C. Luckham. 1998. Rapide: A Language and Toolset for Causal Event Modeling of Distributed System
Architectures. In Proceedings of the Second International Conference on Worldwide Computing and Its
Applications (WWCA 1998). 88–96.

David C. Luckham. 2006. What’s the Difference Between ESP and CEP? (2006). http://www.complexevents.
com/2006/08/01/whatE28099s-the-difference-between-esp-and-cep/

David C. Luckham and James Vera. 1995. An Event-Based Architecture Definition Language. IEEE Trans-
actions on Software Engineering 21, 9 (1995), 717–734.

Masoud Mansouri-Samani and Morris Sloman. 1997. GEM: a generalized event monitoring language for
distributed systems. Distributed Systems Engineering 4, 2 (1997), 96–108.

Carlos A. Mareco and Leopoldo E. Bertossi. 1999. Specification and Implementation of Temporal Databases
in a Bitemporal Event Calculus. In Proceedings of the First International Workshop on Evolution and
Change in Data Management (ECDM 1999). 74–85.

Dennis R. McCarthy and Umeshwar Dayal. 1989. The Architecture Of An Active Data Base Management
System. In Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data
(ACM SIGMOD Conference 1989). 215–224.

Oracle. 2013. Oracle CEP. (2013). http://docs.oracle.com/cd/E16764_01/doc.1111/e14476/overview.htm
Norman W. Paton and Oscar Díaz. 1999. Active Database Systems. Comput. Surveys 31, 1 (1999), 63–103.
Peter R. Pietzuch, Brian Shand, and Jean Bacon. 2003. A Framework for Event Composition in Distributed

Systems. In Proceedings of the International Middleware Conference (Middleware 2003). 62–82.
Esther Ryvkina, Anurag Maskey, Mitch Cherniack, and Stanley B. Zdonik. 2006. Revision Processing in a

Stream Processing Engine: A High-Level Design. In Proceedings of the 22nd International Conference
on Data Engineering (ICDE 2006). 141.

Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter R. Pietzuch. 2009. Distributed complex event
processing with query rewriting. In Proceedings of the Third ACM International Conference on Dis-
tributed Event-Based Systems (DEBS 2009).

Richard T. Snodgrass and Ilsoo Ahn. 1986. Temporal Databases. IEEE Computer 19, 9 (1986), 35–42.
DOI:http://dx.doi.org/10.1109/MC.1986.1663327

Suryanarayana M. Sripada. 1988. A logical framework for temporal deductive databases. In Proceedings of
the Fourteenth International Conference on Very Large Data Bases (VLDB 1988). 171–182.

Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Management in Data Stream Systems. In
Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS 2004). 263–274.

Sybase. 2012. Sybase Event Stream Processor 5.0. (2012). http://infocenter.sybase.com/help/topic/com.
sybase.infocenter.dc01612.0500/doc/pdf/ccl_programmers.pdf

Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki. 1992. Continuous Queries over
Append-Only Databases. In Proceedings of the 1992 ACM SIGMOD International Conference on Man-
agement of Data (ACM SIGMOD Conference 1992). 321–330.

TIBCO. 2013a. BusinessEvents. (2013). http://www.tibco.com/products/event-processing/
complex-event-processing/businessevents/default.jsp

TIBCO. 2013b. Tibco StreamBase. (2013). http://www.streambase.com
Walker M. White, Mirek Riedewald, Johannes Gehrke, and Alan J. Demers. 2007. What is "next" in event

processing?. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 11-13, 2007, Beijing, China. 263–272.

Roel Wieringa. 2003. Design methods for reactive systems - Yourdon, Statemate, and the UML. Morgan Kauf-
mann. I–XXV, 1–456 pages.

Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex event processing over streams.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (ACM SIGMOD
Conference 2006). 407–418.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

