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Abstract

The test specification language FQL describes relevant test goals as regular
expressions over program locations, such that each matching test case has
an execution path matching this expression. To specify not only test goals
but entire suites, FQL describes families of related test goals by regular
expressions over extended alphabets: Herein, each symbol corresponds to
a regular expression over program locations, and thus, a word in an FQL
expression corresponds to a regular expression describing a single test goal.
In this paper we provide a systematic foundation for FQL test specifications,
which are in fact rational sets of regular languages (RSRLs). To address
practically relevant problems like query optimization, we tackle open questions
about RSRLs: We settle closure properties of general and finite RSRLs
under common set theoretic operations. We also prove complexity results
for checking equivalence and inclusion of star-free RSRLs, and for deciding
whether a regular language is a member of a general or star-free RSRL.
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1. Introduction

Despite the success of model checking and theorem proving, software
testing retains a dominant role in industrial practice. In fact, state-of-the-art
development guidelines such as the avionic standard DO-178B [1] are heavily
dependent on test coverage criteria. It is therefore quite surprising that the
formal specification of coverage criteria has been a blind spot in the formal
methods and software engineering communities for a long time.

In a recent thread of papers [2, 3, 4, 5, 6, 7], we have addressed this
situation and introduced the Fshell Query Language (FQL). FQL allows to
specify and tailor coverage criteria, and has been implemented in Fshell [6]
and CPA/Tiger [7], tools to generate matching test suites for ANSI C
programs. At the semantic core of FQL, test goals are described as regular
expressions the alphabet of which are the edges of the program’s control-flow
graph (CFG). For example, to cover a particular CFG edge c, one can use
the regular expression Σ? c Σ?. Importantly, however, a coverage criterion
usually induces not just a single test goal, but a (possibly large) number of
test goals, e.g., all basic blocks of a program. FQL therefore employs regular
languages which can express sets of regular expressions.

To this end, the alphabet contains not only the CFG edges but also
postponed regular expressions over these edges, delimited by quotes. For
example, “Σ?” (a + b + c + d) “Σ?” describes the language {“Σ?” a “Σ?”,
“Σ?” b “Σ?”, “Σ?” c “Σ?”, “Σ?” d “Σ?”}. Each of these words yields a regular
expression, e.g., Σ? a Σ?, that will in turn serve as test goal. Following [8],
we call such languages rational sets of regular languages (RSRLs).

The goal of this paper is to initiate a systematic theoretical study of
RSRLs, considering closure properties and complexity of common set-theoretic
operations. Thus, this paper is a first step towards a systematic foundation
of FQL. In particular, a good understanding of set-theoretic operations is
necessary for systematic algorithmic optimization and manipulation of test
specifications. First results on query optimization for FQL have been obtained
in [7].

Contributions and Organization. Our results on RSRLs encompass closure
properties for set theoretic operations and variants thereof as well as com-
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plexity results on decision problems, justifying the design of FQL, as detailed
in Section 3. Our paper is organized as follows:

- We formally introduce RSRLs in Section 2, then, sketch FQL and clarify
the questions leading to the presented research in Section 3, and, then,
survey related work in Section 4.

- Closure properties (Section 5). We consider general and finite RSRLs
together with the operators Kleene star, product, complement, union,
intersection, set difference, and symmetric difference. We also consider the
case of finite RSRLs with a fixed language substitution ϕ, as this case is of
particular interest for testing applications (cf. Section 3).

- Complexity results (Section 6). We discuss the complexity to decide equiv-
alence, inclusion, and membership for Kleene-star free RSRLs. To prove
an upper bound on the complexity of the membership problem for general
RSRLs, we expand the decidability proof in [8] and give a first complete
and explicit algorithm for the problem.

- Justification of FQL Design (Section 7). We conclude in discussing how
our results reflect back on the design of FQL. In particular, our theoretical
results confirm the decision to allow only Kleene-star free RSRLs in FQL.

A preliminary version of this work has been published in [9]; however, this
older version was lacking almost all proofs. In contrast, the current paper
contains full proof details on all results presented in Sections 5 and 6.

2. Rational Sets of Regular Languages

One of the most fundamental concepts in this paper are regular language
substitutions, which map symbols in one alphabet to regular languages over
another alphabet.

Definition 1 (Regular Language Substitution). Given a finite alphabet Σ,
let Reg(Σ) denote the set of regular languages over Σ. Then, given al-
phabets ∆ and Σ, a regular language substitution ϕ : ∆ → Reg(Σ) maps
each symbol δ ∈ ∆ to a regular language ϕ(δ) ∈ Reg(Σ). We extend ϕ
to words w ∈ ∆+ with ϕ(δ · w) = ϕ(δ) · ϕ(w), and set ϕ(L) =

⋃
w∈L ϕ(w)

for L ⊆ ∆+.
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Please note that the extension of a regular language substitution to words
yields regular languages again. Before we define rational sets of regular
languages, we define rational sets of a monoid in general.

Definition 2 (Rational Sets of a Monoid). The class of rational sets of a
monoid (M, ·, e) is the smallest subclass of M such that (i) ∅ is a rational set,
(ii) each singleton set {m} for m ∈ M is a rational set, and if N1 and N2

are rational sets (iii) then N1 ·N2 is a rational set where · on rational sets is
defined by the point-wise application of the monoid’s · operation, (iv) N1 ∪N2

is a rational set, and (v) N?
1 is a rational set [10, 11].

Definition 3 (Rational Sets of Regular Languages, RSRLs [8]). Given a
finite alphabet Σ, the rational sets of regular languages are the rational sets
over the monoid (Reg(Σ), ·, {ε}), where ε denotes the empty word.

Definition 4 (Representation of RSRLs [8]). We represent an RSRL R as a
tuple (K,ϕ), where K ⊆ ∆+ is a regular language over a finite alphabet ∆,
and ϕ is a regular language substitution ϕ : ∆ → Reg(Σ), such that R =
{ϕ(w) | w ∈ K}. We say that the RSRL R is Kleene-star free, if R is finite.
That means that there exists a tuple (K,ϕ) such that (K,ϕ) = R where K is
finite (and hence Kleene-star free).

Note that we require a regular language K ⊆ ∆+ to exclude the empty
word as the extension of regular language substitutions from symbols to words
is not defined for the empty word. In the next two lemmas, we show that
each RSRL can be represented by a tuple (K,ϕ) and that each tuple (K,ϕ)
represents an RSRL.

Lemma 5 (Representation of RSRLs (part 1)). Any RSRL R can be repre-
sented as a tuple (K,ϕ).

Proof. Based on the structure of an RSRL R, we define in Table 1 a rep-
resentation of RSRLs as tuples of regular languages and regular language
substitutions. In particular, given an alphabet Σ and an RSRL R ⊆ Reg(Σ),
we define an alphabet ∆R, a regular language KR ⊆ ∆+

R, and a regular
language substitution ϕR : ∆R → Reg(Σ) such that R = (KR, ϕR). We
prove that R = (KR, ϕR) by induction over the structure of R. The first
two cases in Table 1 are immediate. In the third case, we have to deal with
the potential overlap in the domains of ϕR1 and ϕR2 . Since we cannot be
sure that the overlapping symbols map to the same regular languages in both
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RSRL R ⊆ Reg(Σ) Representation (KR, ϕR)

∅ (∅, [])

{L} where L ∈ Reg(Σ) ({δ}, [δ 7→ L])

R1 · R2 (K ′, ϕ′) where

K ′ = {w1 · v2 | w ∈ KR1 , v ∈ KR2},
∆′ = {δ1 | δ ∈ ∆R1} ∪ {δ2 | δ ∈ ∆R2}, and

ϕ′ = [δ1 7→ ϕR1(δ)] ∪ [δ2 7→ ϕR2(δ)]

R1 ∪R2 (K ′, ϕ′) where

K ′ = {w1 | w ∈ KR1} ∪ {v2 | v ∈ KR2},
∆′ = {δ1 | δ ∈ ∆R1} ∪ {δ2 | δ ∈ ∆R2}, and

ϕ′ = [δ1 7→ ϕR1(δ)] ∪ [δ2 7→ ϕR2(δ)]

R∗1 (K ′, ϕR1) where K ′ = K∗R1

Table 1: Mapping of an RSRL R to a tuple (KR, ϕR) (cf. Lemma 5)

language substitutions, we introduce a new alphabet ∆′ and a new regular
language substitution ϕ′. The alphabet ∆′ contains for each symbol σ ∈ ∆R1

a new symbol σ1 and for each symbol δ ∈ ∆R2 a new symbol δ2, i.e., a
symbol σ ∈ ∆R1 ∩∆R2 results in distinct symbols σ1 and σ2. The language
substitution ϕ′ then maps a symbol σi to the regular language ϕRi

(σ), for
i ∈ {1, 2}.

Let L ∈ ϕ′(K ′). Then, by construction, there must be a word w1v2 ∈ K ′
such that L = ϕ′(w1v2) = ϕR1(w) · ϕR2(v). From the induction hypothesis
we have ϕR1(w) ∈ R1 and ϕR2(v) ∈ R2 and, hence, ϕ′(w1v2) ∈ R1 · R2. On
the other hand, let L ∈ R1 · R2. Then, there are languages L1 ∈ R1 and
L2 ∈ R2 such that L = L1 · L2. From the induction hypothesis we have that
there are words w and v such that ϕR1(w) = L1 and ϕR2(v) = L2. Then,
w1v2 ∈ K ′ and, furthermore, ϕ′(w1v2) = ϕR1(w) · ϕR2(v) = L1 · L2 = L. The
union case is analogous. Finally, let L ∈ R∗1, i.e., L ∈

⋃
i≥0Ri

1. That means
that there exists an i ≥ 0 such that L ∈ Ri

1. This, in turn, means that we
can decompose L into a sequence of compositions: L = L0 ·L1 · . . . Li−1 where
Lj ∈ R1 for 0 ≤ j < i. By induction hypothesis, for each Lj there must be
a word wj ∈ KR1 such that Lj = ϕR1(wj). Therefore, w0w1 . . . wi−1 ∈ Ki

R1
.

And since L = L0 ·L1 · . . . ·Li−1 = ϕR1(w0) ·ϕR1(w1) · . . . ·ϕR1(wi−1) we have
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Regular Language K ⊆ ∆+ RSRL R(K,ϕ)

∅ ∅
{δ} {ϕ(δ)}
K1 ·K2 R(K1,ϕ) · R(K2,ϕ)

K1 ∪K2 R(K1,ϕ) ∪R(K2,ϕ)

K∗1 R∗(K1,ϕ)

Table 2: Mapping of a tuple (K,ϕ) to an RSRL R (cf. Lemma 6).

that L = ϕR1(w0w1 . . . wi−1). The other direction follows in an analogous
way from the induction hypothesis.

Lemma 6 (Representation of RSRLs (part 2)). Any tuple (K,ϕ), where
K ⊆ ∆+ is a regular language over ∆ and ϕ : ∆ → Reg(Σ) is a regular
language substitution, represents an RSRL.

Proof. Let (K,ϕ) be a tuple of a regular language K ⊆ ∆+ and a regular
language substitution ϕ : ∆ → Reg(Σ). In Table 2 we give the correspon-
dence of (K,ϕ) to an RSRL R(K,ϕ). The proof of this correspondence is by
induction over the structure of L: The first two cases are immediate. The
remaining three cases follow from the induction hypothesis and the definition
of RSRLs.

The following proposition summarizes the results of Lemma 5 and 6:

Proposition 7. Any RSRL can be represented as a tuple (K,ϕ) and any
tuple (K,ϕ) represents an RSRL.

Depending on context, we refer to R as a set of languages or as a
pair (K,ϕ), and we always write L ∈ R iff ∃w ∈ K : L = ϕ(w). Re-
consider the specification “Σ?” (a + b + c + d) “Σ?” of Section 1 over base
alphabet Σ = {a, b, c, d}. To represent this specification as RSRL R = (K,ϕ),
we set ∆ = {δΣ?} ∪ Σ, containing a fresh symbol δΣ? for the quoted ex-
pression “Σ?”. We set K = L(δΣ? (a + b + c + d) δΣ?) with ϕ(δΣ?) = Σ?

and ϕ(σ) = {σ} for σ ∈ Σ. Thus K contains the words δΣ? a δΣ? , . . . with
ϕ(δΣ? a δΣ?) = L(Σ? a Σ?) ∈ R, as desired.

Note that the RSRL above is finite with exactly four elements. This is
not atypical: in concrete testing applications, FQL generates finite sets of
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test goals, since it relies on Kleene-star free RSRLs only. In this paper, we
are therefore considering the general, finite, and Kleene-star free case. For
future applications, however, it is well possible to consider infinite sets of test
goals, e.g., for unbounded variables or path coverage criteria, which are either
matched partially or by abstract executions.

Example 8. Consider the alphabets ∆ = {δ1, δ2} and Σ = {a, b}. Then,

(1) with ϕ(δ1) = L(a?), ϕ(δ2) = {ab}, and K = L(δ1δ
?
2δ1), we obtain the

rational set of regular languages {L(a?(ab)ia?) | i ∈ N};

(2) with ϕ(δ1) = L(a?), ϕ(δ2) = {a}, and K = L(δ1δ
?
2), we obtain ϕ(w1) ⊃

ϕ(w2) for all w1, w2 ∈ K with |w1| < |w2|;

(3) with ϕ(δ1) = {ε, a}, ϕ(δ2) = {aa}, and K = L(δ1δ
?
2), we have |ϕ(w)| = 2

and ϕ(w) ∩ ϕ(w′) = ∅ for all w 6= w′ ∈ K.

In the finite case we make an additional distinction for the subcase where
the regular expressions in ∆, i.e., the set of postponed regular expressions,
are fixed. This has practical relevance, because in the context of FQL, the
results of the operations on RSRL will be better readable by engineers if ∆ is
unchanged.

3. FQL from an RSRL Point of View

To motivate our research results of Sections 5 and 6 we first provide a
short introduction to the coverage specification language FQL from an RSRL
point of view. The design and study of FQL leads to a number of research
questions on the properties of RSRLs, since RSRLs underly FQL as theoretical
framework.

FQL is rooted in the query-driven program testing paradigm [5] that
provides test cases that follow an engineer’s specification instead of randomly
walking the code. FQL queries are declarative specifications of test suites
which are then interpreted by suitable automatic test case generation backends
like Fshell3 [12, 6] or CPA/Tiger [7]4. For ease of presentation, we will
focus on the core concepts of FQL and omit aspects of FQL irrelevant to this
paper. For a comprehensive discussion of please see [2, 4].

3http://www.forsyte.at/software/fshell/
4http://www.forsyte.at/software/cpatiger/
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int cmp(int x, int y) {
int value = 0;
if (x > y)

value = 1;
else if (x < y)

value = −1;
return value;
}
Listing 1: C Source Code
of Function cmp

2 3 4

5

6

7 8

value := 0 [x > y]

value := 1

[x ≤ y] [x ≥ y]

[x < y] value := -1

return
value

Figure 1: Control-Flow Automaton for Listing 1

A Short Introduction to FQL

In its simplest form, an FQL query can be directly mapped to an
RSRL (K,ϕ) where K ⊆ ∆+ is a regular language over an alphabet ∆
and ϕ : ∆→ Reg(Σ) is a regular language substitution that maps a symbol
δ ∈ ∆ to a regular language Lδ ⊆ Σ∗ over another alphabet Σ. We will start
our discussion of FQL by introducing how FQL defines the alphabet Σ.

Programs as Control-Flow Automata. Syntactically, FQL uses control-flow
automata (CFA) [13] to represent programs. For example, Figure 1 shows
the CFA for the code in Listing 1. A node in the graph represents a program
counter value and an edge is labeled with an operation which is either a skip
statement, an assignment, an assumption (modeling conditional statements),
a function call, or a function return. Furthermore, edges are also annotated
with parsing information, for example, line numbers, file names, function
names, code labels, etc. (for simplicity, we omit such parsing information in
Figure 1). The edges of a CFA form the alphabet Σ of an RSRL that results
from an FQL query. A regular language over Σ represents a set of program
executions and FQL identifies test goals with such regular languages.

Regular Language Substitutions in FQL. Each symbol σ ∈ Σ is also a symbol
in the alphabet ∆ and is mapped to the singleton set {σ} via the language
substitution ϕ, i.e., ϕ(σ) = {σ}. Furthermore, FQL features a quotation
operator that turns a regular expression over Σ into a symbol in ∆. For
example, FQL considers the quoted regular expression “σ1 + σ2” as a symbol
in ∆ and defines its language substitution as ϕ(“σ1 + σ2”) = L(σ1 + σ2) =
{σ1, σ2}. In general, a quoted regular expression “e” is mapped to its regular
language L(e) ∈ Reg(Σ) via the language substitution ϕ, i.e., ϕ(“e”) = L(e).
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Filter Functions. CFAs and thus the alphabet Σ are an internal representation
of the source code under investigation. FQL does not grant direct access to it
but instead provides so called filter functions that identify sets of CFA edges.
For example, the filter function @BASICBLOCKENTRY identifies the edges of a
CFA that correspond to the respectively first statement in a basic block. As
the CFA is finite these sets are also finite and therefore regular languages
over Σ. Hence, filter functions serve as placeholders for regular expressions
that are internally generated when source code is parsed. Filter functions
provide the link to the individual programming language and the program
under investigation. FQL also provides set operations like union, intersection,
or complement, to further manipulate regular expressions that result from
filter functions.

Question 9 (Fixed Language Substitution). Language substitutions directly
map to evaluated filter functions. Any automatic/tool-internal manipulation
of FQL queries whose result is presented to the user might suffer from a lack
of proper language substitutions, i.e., filter functions, to express the result.
We thus ask for operations on FQL query expressions that result in query
expressions which are based on the same language substitution as the input.

In order to express regular expressions over filter functions, FQL features
the standard regular expression operators ‘+’, ‘∗’, ‘.’ for alternative, Kleene
star and concatenation. However, in order to prevent an infinite number of
test goals, no Kleene star is allowed outside of quotes.

Question 10 (Finite Case for Decision Problems and Closure Properties).
FQL is limited to the finite case of RSRLs and we therefore ask which
operations on FQL query expressions are closed under finite RSRLs.

FQL Queries. FQL queries have the form cover (K,ϕ) passing LP where
(K,ϕ) is an RSRL constructed as described above and LP ∈ Reg(Σ). As
mentioned earlier, each regular language L ∈ {ϕ(w) | w ∈ K} constitutes
a test goal and FQL requires a test-generation backend to provide for each
such test goal L a program execution that traverses the CFA along edges
that match a word in L. The passing clause LP further restricts the test
goals, i.e., for each test goal L, a program execution is required that matches
a word in L ∩ LP . In the rest of this paper, we will refer to the intersection
of all regular languages in an RSRL with another given regular language as
point-wise intersection.
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Question 11 (Closure Properties for Point-wise Set Operations). The passing
clause helps writing concise queries, however, it remains to establish whether
the passing clause is increasing the expressibility of FQL or whether it is
merely syntactic sugar.

Beyond closure properties, we would like to know the complexity of decision
problems arising in the processing of FQL queries. For example, we would like
to decide equivalence and inclusion over finite RSRLs to determine whether
additional test cases need to be generated to cover the goals specified by a
new FQL query (assuming we have test cases to cover the goals of an already
given query). Inclusion and equivalence are also important to optimize FQL
queries, e.g., to run on different test case generation backends. As another
example, during the analysis of a program we might build a test suite by
constructing a suitable FQL query iteratively and by generating a test suite
from the query. If we want to include further test goals, we have to decide
whether they are already covered by the query constructed so far or whether
a query update is necessary, resulting in an additional run of the test case
generator.

Question 12 (Complexity of Decision Problems). What is the complexity
of equivalence, inclusion, and membership for FQL queries, i.e., on finite
RSRLs.

4. Related Work

Afonin et al. [8] introduced RSRLs and studied the decidability of whether
a regular language is contained in an RSRL and the decidability of whether an
RSRL is finite. Although Afonin et al. briefly discuss possible upper bounds
for the membership decision problem, their analysis is incomplete due to
gaps in their algorithmic presentation (see also a more detailed discussion in
Section 6.5). Closely connected to the membership problem is the question,
whether a regular language L is expressible via a combination of a given set
of regular languages Li. Motivated by query rewriting for graph databases,
Calvanese et al. [14] show the complexity of determining the maximal rewrit-
ing of a regular language L with given regular languages Li. In earlier work,
Hashiguchi [15] shows that it is decidable whether a regular language L is
expressible via a finite application of a subset of the regular operators con-
catenation, union, and star to regular languages Li. Afonin et al. [8] realized
that distance automata [16] enable a decision algorithm for the membership
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problem for RSRL. Although their construction relies on distance automata,
the properties analyzed by Krob [17] and Colcombet and Daviaud [18] are not
applicable in our context. Kirsten [19, 20] generalizes distance automata to
distance desert automata and uses these automata to show the first complexity
result for determining whether a regular language is of a certain star height.
Berstel [21] surveys closure properties of rational and recognizable subsets of
monoids and thereby also the relationship between rational and recognizable
subsets. Yet, most stated results do not apply to RSRLs, hence we investigate
closure properties of RSRLs. Pin [22] introduced the term extended automata
for RSRLs as an example of recognizable languages that can be characterized
by constraint systems over symbols and substrings occurring in words of the
language, but he did not further investigate any of their properties. In our
own related work on FQL [2, 12, 3, 4, 5, 6, 7], we deal with practical issues
arising in test case generation. Beyond RSRLs, FQL provides an additional
language layer to extract suitable alphabets from the programs e.g., referring
with a single symbol to all basic blocks of the program under scrutiny.

Let us finally discuss other work the terminology of which is similar
to RSRLs without direct technical relation. Barceló et al. define rational
relations, which are relations between words over a common alphabet, whereas
we consider sets of regular languages [23]. Barceló et al. also investigate
parameterized regular languages [24], where words are obtained by replacing
variables in expressions with alphabet symbols. Metaregular languages deal
with languages recognized by automata with a time-variant structure [25, 26].
Lattice Automata [27] only consider lattices that have a unique complement
element, whereas RSRLs are not closed under complement (no RSRL has an
RSRL as complement).

5. Closure Properties

We investigate the closure properties of RSRLs, considering standard set
theoretic operators, such as union, intersection, and complement, and variants
thereof, fitting RSRLs. In particular, we apply those operators also to pairs
in the Cartesian product of RSRLs, and point-wise to each element in an
RSRL and another given regular language.

Definition 13 (Operations on RSRL). Let R1 and R2 be RSRLs and let R
be a regular language. Then, we define the following operations on RSRLs:
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Operation Definition

Product R1 · R2 = {L1 · L2 | L1 ∈ R1, L2 ∈ R2}
Kleene Star R?

1 =
⋃
i∈NRi

1

Point-wise Ṙ?
1 = {L? | L ∈ R1}

Complement R1 = {L ⊆ 2Σ? | L /∈ R1}
Point-wise Ṙ1 = {L | L ∈ R1}

Binary R1 ∩R2, R1 ∪R2, R1 −R2 (standard def.)
Operators

Point-wise R1 ·∪ / ·∩ / ·− R = {L ∪ / ∩ /−R | L ∈ R1}
Cartesian R1 ×∪ / ×∩ / ×−R2 = {L1∪/∩/−L2 | L1 ∈ R1, L2 ∈ R2}

Symmetric R1∆R2 = {L | L ∈ ((R1 ∪R2)− (R1 ∩R2))}
Difference

We analyze three different classes of RSRLs for being closed under these
operators:

(1) General RSRLs,

(2) finite RSRLs, and

(3) finite RSRLs with a fixed language substitution ϕ.

For closure properties, we do not distinguish between Kleene-star free and
finite RSRLs, since every finite RSRL is expressible as Kleene-star free RSRL
(however, given an RSRL with Kleene star, it is non-trivial to decide whether
the given RSRL is finite or not [8]). Therefore, all closure properties for finite
RSRLs apply to Kleene-star free RSRLs as well.

Observe that cases (2-3) correspond to FQL. As stated in Question 9, case
(3) is relevant for usability in practice, allowing to apply the corresponding
operators without constructing a new language substitution. This does not
only significantly reduce the search space but also provides more intuitive
results to users.

Theorem 14 (Closure Properties of RSRL). Table 3 summarizes the closure
properties for RSRLs.

We first state general observations on alphabet normalization and car-
dinality properties to subsequently exploit them in our proofs. Let R1 and
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Operation Closure Property

General Finite RSRLs

(+ closed - not closed ? unknown) General Fixed Subst.

Product (Sec. 5.1) + + +
Kleene Star (Sec. 5.1) + - -

Point-wise - + -
Complement (Sec. 5.2) - - -

Point-wise - + -
Union (Sec. 5.3) + + +

Point-wise - + -
Cartesian - + -

Intersection (Sec. 5.4 and 5.6) ? + +
Point-wise - + -
Cartesian - + -

Difference (Sec. 5.5 and 5.6) ? + +
Point-wise - + -
Cartesian - + -
Symmetric ? + +

Table 3: Closure Properties of RSRL

R2 be RSRLs over a common alphabet Σ with Ri = (Ki, ϕi), Ki ⊆ ∆+
i ,

and ϕi : ∆i → 2Σ?
. Then we create a unified alphabet ∆ = {〈i, δ〉 | δ ∈

∆i with i = 1, 2} and a unified language substitution ϕ : ∆ → 2Σ?
with

ϕ(〈i, δ〉) = ϕi(δ). We obtain Ri = (K ′i, ϕ) where K ′i is derived from Ki by
substituting each symbol δ ∈ ∆i with 〈i, δ〉 ∈ ∆. Hence without loss of
generality, we fix the alphabets ∆ and Σ with language substitution ϕ,
allowing our RSRLs only to differ in the generating languages Ki. When we
discuss binary operators, we freely refer to RSRLs Ri = (Ki, ϕ) for i = 1, 2,
in case of unary operators to R = (K,ϕ), and in case of point-wise operators
to the regular language R ⊆ Σ?.

Fact 15 (Finite Sets of Regular Languages are Rational). Every finite set of
regular languages is rational.

Proof. For a finite set of regular languages R, we set ϕ(δL) = L for all
L ∈ R, taking fresh symbols δL. With ∆R = {δL | L ∈ R} we obtain
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R = (∆R, ϕ).

Fact 16 (Cardinality of RSRL). An RSRL contains at most countably many
languages. In particular, 2Σ?

is not an RSRL.

Proof. An RSRL R = (K,ϕ) is countable, as K contains countably many
words, and |K| ≥ |R| holds, because ϕ is a function. Since 2Σ?

is uncountable,
it is not an RSRL.

5.1. Product and Kleene Star

Proposition 17 (Closure of Product and Kleene Star). (1) R1 · R2 is an
RSRL, defined over the same language substitution ϕ. If R1 and R2 are finite,
then R1 · R2 is also finite. (2) R? is an RSRL. It is in general infinite even
if R is finite.

Proof. We prove each statement individually:

(1) We construct R′ = (K ′, ϕ) with K ′ = K1 ·K2 and obtain R1 · R2 = R′.

(2) We constructR′ = (K ′, ϕ′) with K ′ = K?−{ε}∪{δε} setting ϕ′(δε) = {ε}
and ϕ′(δ) = ϕ(δ) otherwise, and obtain R? = R′. Consider the finite
RSRL R = {{a}}, then, R? is the infinite RSRL {{ai} | i ≥ 0}.

In the following we consider the set S(L) of shortest words of a language L,
disregarding ε, defined with S(L) = {w ∈ L | |w| = minlen(L − {ε})}. We
also refer to the shortest words S(R) of an RSRL R with S(R) =

⋃
L∈R S(L).

Lemma 18. Let ε ∈ ϕ(δ) hold for all δ ∈ ∆. Then, for each w ∈ ∆+ and
shortest word v ∈ S(ϕ(w)), there exists a δ ∈ ∆ such that v ∈ S(ϕ(δ)).

Proof. We start with a corollary: Because of ε ∈ ϕ(δ) for all δ ∈ ∆, we have
ϕ(δi) ⊆ ϕ(w) for w = δ1 . . . δk and all 1 ≤ i ≤ k.

Assume v ∈ S(ϕ(w)) with v 6∈ ϕ(δ) for all δ ∈ ∆. Then v = v1 . . . vk with
vi ∈ ϕ(δi), and since v 6= ε, vp 6= ε for some 1 ≤ p ≤ k. We fix such a p. From
the corollary above, we get vp ∈ ϕ(δp) ⊆ ϕ(w), leading to a contradiction:
If v 6= vp, then v is not a shortest word in ϕ(w) − {ε}, as vp is shorter. If
v = vp, we contradict our assumption with v = vp ∈ ϕ(δp).

Thus, we have shown that there exists a δ with v ∈ ϕ(δ). It remains
to show v ∈ S(ϕ(δ)). Assuming that v′ ∈ ϕ(δ) − {ε} is shorter than v, we
quickly arrive at a contradiction: v′ ∈ ϕ(δ) ⊆ ϕ(w) from the corollary above,
implies that v would not be a shortest word in ϕ(w)− {ε} in the first place,
i.e., v 6∈ S(ϕ(w)).
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Corollary 19. Let ε ∈ ϕ(δ) hold for all δ ∈ ∆. Then the set of shortest
words S(R) is finite.

Proof. Lemma 18 states for each word v ∈ S(R), we have v ∈ S(ϕ(δ))
for some δ ∈ ∆. But there are only finitely many symbols δ ∈ ∆, each
generating only finitely many shortest words in ϕ(δ)−{ε}. Hence S(R) must
be finite.

Proposition 20 (Closure of Point-wise Kleene Star). (1) In general, Ṙ? is
not an RSRL. (2) If R is finite, Ṙ? is a finite RSRL. (3) In the latter case,
expressing Ṙ? requires a new language substitution ϕ.

Proof. We prove each statement individually:

(1) Consider the RSRL R = {{ai} | i ≥ 1} with Ṙ? = {Li | i ≥ 1}
with Li = {aj·i | j ≥ 0}. Every language Li ∈ Ṙ? contains the empty
word ε = a0·i, and hence, ε ∈ ϕ(δ) for all δ ∈ ∆ (disregarding symbols
δ not occurring in K). Thus, Corollary 19 applies, requiring that the
set of shortest words S(Ṙ?) is finite. This leads to a contradiction, since
S(Ṙ?) = {ai | i ≥ 1} is infinite.

(2) Since R is finite, also Ṙ? has to be finite and the statement follows from
Fact 15.

(3) Consider the RSRL R = {{a}}, produced from (K,ϕ) with K = {δa}
and ϕ(δa) = a. Then, Ṙ? = {{ai | i ≥ 0}}, and since {a} 6= {ai | i ≥ 0}
we have to introduce a new symbol.

5.2. Complement

Proposition 21 (Non-closure under Complement). Let R be a rational set
of regular languages. Then R is not a rational set of regular languages.

Proof. Fact 16 states that R is countable while 2Σ?
is uncountable. Hence,

2Σ? − R is uncountable and is therefore inexpressible as RSRL.

Proposition 22 (Closure of Point-wise Complement). (1) Ṙ is in general

not an RSRL. (2) If R is finite, Ṙ is a finite RSRL as well, (3) requiring,
in general, a modified language substitution.

Proof. We prove each statement individually:
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(1) Consider the RSRL R = (K,ϕ) with K = L(δδ?) and ϕ(δ) = {a, b} = Σ.
Then we have R = {Σi | i ≥ 1}. For i 6= j, we have Σi 6⊆ Σj and
Σi 6⊇ Σj since Σj ⊆ Σi and Σi ⊆ Σj. Furthermore, observe ε ∈ Σi for

each i ≥ 1. Assume Ṙ is an RSRL. Then, there are K ′ and ϕ′ such

that Ṙ = (K ′, ϕ′). Since Ṙ is infinite and K ′ is regular, there exists a
word w ∈ K ′ with w = uvz and ϕ(v) 6= {ε} and uviz ∈ K ′ for all i ≥ 1.
Because of ε ∈ Σp = ϕ(uvz) for some p, we obtain ε ∈ ϕ(v) as well. But
then, for all i ≥ 1, ϕ(uvz) ⊆ ϕ(uviz), i.e., ϕ(uvz) = Σp ⊆ Σq = ϕ(uviz).
This contradicts the observation that Σp 6⊆ Σq.

(2) By Fact 15.

(3) Let R = ({δa}, ϕ) with ϕ(δa) = {a}. Then, Ṙ = {Σ? − {a}}. But,
{a} 6= Σ?−{a}. Therefore, we need a new symbol to represent Σ?−{a}.

In contrast to complementation, some RSRLs have a point-wise comple-
ment that is an RSRL as well; first, this is true for all finite RSRLs, as
shown above, but there are also some infinite RSRLs which have point-wise
complement.

Example 23. The RSRL R = (L(δδ?), ϕ) with ϕ(δ) = {a, b, ε} has the point-

wise complement Ṙ = (L(δ1δ1δ
?
1δ2), ϕ

′) with ϕ′(δ1) = {a, b} and ϕ′(δ2) =
L((a+ b)?).

5.3. Union

Proposition 24 (Closure of Union). The set R1 ∪ R2 is a rational set of
regular languages, expressible as (K1 ∪K2, ϕ) without changing the substitu-
tion ϕ.

Proof. Regular languages are closed under union, hence the claim follows.

The following set of regular languages is not an RSRL and we use it to
prove the non-closure of RSRLs under the point-wise union operator.

Example 25. Consider the set M = {{b} ∪ {ai | 1 ≤ i ≤ n + 1} | n ∈
N} ⊆ 2{a,b}

?
. M contains infinitely many languages, therefore, any RSRL

R = (K,ϕ), with M = R, requires a regular language K containing infinitely
many words. By Ln we denote the set {b}∪ {ai | 1 ≤ i ≤ n+ 1}. Then, L0 (
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L1 ( . . . Li−1 ( Li ( Li+1 ( . . .. There must be a word w = uvz ∈ K such
that uviz ∈ K, for all i ≥ 1 (cf. pumping lemma for regular languages [28]).
Furthermore, there must be such a word w = uvz such that ϕ(u) 6= ∅, ϕ(v) 6= ∅,
ϕ(v) 6= {ε}, and ϕ(z) 6= ∅. This is due to the fact that we have to generate
arbitrary long words ai. We can assume that b /∈ ϕ(v) because otherwise
bi ∈ ϕ(vi), for all i ≥ 1. Therefore, ak ∈ ϕ(v) for some k ≥ 1. Since
b ∈ ϕ(uvz) has to be true, we can assume w.l.o.g. that b ∈ ϕ(u). But, then
bak . . . ∈ ϕ(uvz). This is a contradiction to the fact that, for all n ≥ 1,
bak . . . /∈ Ln.

Proposition 26 (Closure of Point-wise Union). (1) The set R1 ·∪ R is, in
general, not an RSRL. (2) The set R ·∪ R is an RSRL for finite R. (3) In
the latter case, the resulting RSRL requires in general a different language
substitution.

Proof. We prove each statement individually:

(1) Let R = (L(δ1δ
?
2), ϕ) with ϕ(δ1) = {a} and ϕ(δ2) = L(a + ε) and let

R = {b}. Then, R ·∪ R = {{b} ∪ {ai | 1 ≤ i ≤ n+ 1} | n ∈ N} which is
not an RSRL, as shown in Example 25.

(2) By Fact 15.

(3) Let R = ({δ}, ϕ) with ∆ = {δ}, Σ = {a, b}, ϕ(δ) = {a} and let R = {b}.
Then, R ·∪ R = {{a, b}}, which is inexpressible with ϕ.

5.4. Intersection

Proposition 27 (Closure of Intersection). Let R1 and R2 be two finite
RSRLs using the same language substitution ϕ. Then, R1 ∩ R2 is a finite
RSRL which can be expressed using the language substitution ϕ.

Proof. We can enumerate each word w1 ∈ K1 and check whether there is
a word w2 ∈ K2 such that ϕ(w1) = ϕ(w2). If so, we keep w1 in a new set
K3 = {w1 ∈ K1 | ∃w2 ∈ K2.ϕ(w1) = ϕ(w2)} and (K3, ϕ) = R1 ∩R2.

In general, RSRLs are not closed under point-wise intersection but they
are closed under point-wise intersection when restricting to finite RSRLs.

Proposition 28 (Closure of Point-wise Intersection). (1) RSRL are not
closed under point-wise intersection. (2) For finite R R ·∩ R is a finite
RSRL, (3) in general requiring a different language substitution.
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Proof. We prove each statement individually:

(1) Let R = (K,ϕ) with K = L(δδ?) and ϕ(δ) = L(a+ b?), and set R =
L(a? + b). Then R ·∩ R = {{b} ∪ {ai | 1 ≤ i ≤ n + 1} | n ∈ N}. In
Example 25, we showed that R ·∩ R is not an RSRL.

(2) By Fact 15.

(3) Let R = (K,ϕ) with K = {δ} and ϕ(δ) = L(a+ b?), and set R =
L(a? + b). Then, R ·∩ R = {L(a+ b)} which in inexpressible via ϕ.

5.5. Set Difference

Proposition 29 (Closure of Difference). For finite R1 and R2, R1 −R2 is
a finite RSRL, expressible as (K3, ϕ), for some K3 ⊆ K1.

Proof. Set K3 = {w ∈ K1 | ϕ(w) ∈ R2} and the claim follows.

Proposition 30 (Closure of Point-wise Difference). (1) In general, R ·− R
is not an RSRL. (2) R ·− R is a finite RSRL for finite R, (3) requiring in
general a different language substitution.

Proof. We prove each statement individually:

(1) Let R = (L(δ1δ
?
2), ϕ) with ϕ(δ1) = L(a + b) and ϕ(δ2) = L(a + b + ε).

Let R = L(bbb? + (a + b)?ab(a + b)? + (a + b)?ba(a + b)?). Then, R ·−
R = {{b} ∪ {ai | 1 ≤ i ≤ n + 1} | n ∈ N}, which is not an RSRL (see
Example 25).

(2) By Fact 15.

(3) Let R = ({δa}, ϕ) with ϕ(δa) = {a} and let R = {a}. Then, R ·− R =
{∅}, requiring a new symbol.

Proposition 31 (Closure of Symmetric Difference). Let R1 and R2 be finite
RSRLs using the same language substitution ϕ. Then, R1∆R2 is a finite
RSRL and can be expressed using the language substitution ϕ.

Proof. The proof follows immediately from the closure properties of union,
intersection, and difference.
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5.6. Cartesian Binary Operators
We deal with Cartesian binary operators generically, by reducing the

point-wise operators to the Cartesian one.

Lemma 32 (Reducing Point-Wise to Cartesian Operators). Let ◦ be an
arbitrary binary operator over sets, let � ∈ { ·∪, ·∩, ·−}, and let ⊗ ∈ {×∪, ×∩, ×− }.
(1) If R1 �R is not closed under rational sets of regular languages, then the
corresponding R1⊗R2 is not closed. (2) If R1�R is not closed under finite
rational sets of regular languages with constant language substitution, even in
presence of a symbol δR with ϕ(δR) = R, then the corresponding R1 ⊗R2 is
also not closed.

Proof. We prove each statement individually:

(1) If R1�R is not closed, we fix a violating pair R1 and R. Then we obtain
R1 ⊗R2 = R1 �R for R2 = ({δR}, ϕ) and ϕ(δR) = R. Since R1 �R is
not an RSRL, neither is R1 ⊗R2, and the claim follows.

(2) If R1 �R is inexpressible as an RSRL without introducing new symbols
in ϕ, even in presence of δR, then R1 ⊗R2 is also inexpressible without
changing ϕ.

Given Lemma 32, it is not surprising that point-wise and Cartesian
operators behave identically for all discussed underlying binary operators, as
shown in Theorem 14.

Corollary 33 (Closure of Cartesian Binary Operators). Let ⊗ ∈ {×∪, ×∩, ×− }.
(1) The set R1 ⊗R2 is, in general, not a rational set of regular languages.
(2) The set R1 ⊗R2 is a rational set of regular languages if R1 and R2 are
finite, (3) requiring in general a new language substitution.

Proof. We prove each statement individually:

(1) By Lemma 32 we reduce the point-wise case to the Cartesian case, covered
by Propositions 26, 28, and 30 for union, intersection, and set difference,
respectively. The claim follows.

(2) Since all considered operators are closed for regular languages, the claim
follows from Fact 15.

(3) Again, with Lemma 32 we reduce the point-wise case to the Cartesian case.
The lemma is applicable, as the examples in the proofs of Propositions 26,
28, and 30 are not jeopardized by a symbol δR with ϕ(δR) = R. Hence
the claim follows.
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5.7. Discussion of Open Closure Properties

As Table 3 shows, our investigation of closure properties of RSRLs does not
answer closure under the operations intersection, difference, and symmetric
difference. Would RSRLs be closed under complement, then, these questions

could be answered immediately since R1∩R2 = R1 ∪R2, R1−R2 = R1∩R2,
and R1∆R2 = (R1 ∪ R2) − (R1 ∩ R2). However, the fact that RSRLs are
not closed under complement does not necessarily imply that RSRLs are
also not closed under any of the above mentioned operations. In particular,
2Σ?

is not an RSRL, which would otherwise imply that RSRLs cannot be
closed under difference as R = 2Σ? −R. Closure under difference seems to
be central, as closure under difference also implies closure under intersection
(R1 ∩R2 = R1 − (R1 −R2)) and closure under symmetric difference (which
is defined via union, intersection, and difference). On the other hand, if
RSRLs are not closed under difference, then, we know that RSRLs are also
either not closed under intersection or under symmetric difference (or both)
as R1 −R2 = (R1∆R2) ∩R1.

To answer the above questions, we do not have to consider arbitrary
RSRLs but one can limit the investigation to special cases based on the fact
that RSRLs are closed under union. For the case of intersection, it is sufficient
to consider RSRLs R1 and R2 such that both sets are infinite and such that
there are tuples (K1, ϕ1) and (K2, ϕ2) where K1 and K2 are both union-free.
The general case follows immediately from closure under union. In case that
R1 ∩R2 is finite (as it is the case if R1 or R2 are finite), then, R1 ∩R2 is an
RSRL. Similarly, if R1 −R2 is finite (as it is the case if R1 is finite), then,
R1 −R2 is an RSRL. Similarly, if R1∆R2 is finite, then, it is also an RSRL.

6. Decision Problems

Given a regular language R ⊆ Σ? and an RSRL R = (K,ϕ) over the
alphabets ∆ and Σ, the membership problem is to decide whether R ∈ R
holds. Given another R′ = (K ′, ϕ′) over the alphabets ∆′ and Σ, the inclusion
problem asks whether R ⊆ R′ holds, and the equivalence problem, whether
R = R′ holds.

Theorem 34 (Equivalence, Inclusion, and Membership for Kleene-star free
RSRLs). Membership, inclusion, and equivalence are PSpace-complete for
Kleene-star free represented RSRLs.
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This holds true, since in case of Kleene-star free represented RSRLs (given
explicitly as (K,ϕ) with K finite), we can enumerate the regular expressions
defining all member languages in PSpace.

Proof of Theorem 34. PSpace-Membership. We exploit for the PSpace-
membership of all three considered problems the same observations: (1) Given
Kleene-star free languages K, we can enumerate in PSpace all words w ∈ K,
and (2) we can check whether L(R) = L(ϕ(w)) holds, in PSpace [29].

Thus, to check membership of R in (K,ϕ), we enumerate all w ∈ K and
check whether L(R) = L(ϕ(w)) holds for some w – if so, R ∈ R is true. For
checking the inclusion R′ ⊆ R, we enumerate all w′ ∈ K ′ and search in a
nested loop for a w ∈ K with L(ϕ(w)) = L(ϕ(w′)). If such a w exists for all
w′, we have established (K ′, ϕ′) ⊆ (K,ϕ). We obtain PSpace-membership
for equivalence (K ′, ϕ′) = (K,ϕ) by checking both, (K ′, ϕ′) ⊆ (K,ϕ) and
(K,ϕ) ⊆ (K ′, ϕ′).

Hardness. For hardness we reduce the PSpace-complete problem whether
a given regular expression X ⊆ Σ? is equivalent to Σ? [29] to all three
considered problems: Given an arbitrary regular expressions X, we set K =
{a}, ϕ(a) = X, K ′ = {b}, ϕ′(b) = Σ?, and R = Σ?. This gives us X = Σ? iff
(K,ϕ) = (K ′, ϕ′) (equivalence) iff (K,ϕ) ⊆ (K ′, ϕ′) (inclusion) iff R ∈ (K,ϕ)
(membership).

This approach does not immediately generalize to finite RSRLs, since
finite RSRLs R = {ϕ(w) | w ∈ K} may be generated from an infinite K
with Kleene stars. And in the general case, the situation is quite different:
Previous work shows that the membership problem is decidable [8], but
without providing a concrete algorithm or determining an upper complexity
bound. Taking this work as starting point, in the remainder of this section,
we give an 2ExpSpace upper bound on the complexity of the problem and
discuss the relationship with [8] at the end of the section. The decidability of
inclusion and equivalence remains open.

6.1. Membership for General RSRLs

By definition, the membership problem is equivalent to asking whether
there exists a w ∈ K with ϕ(w) = R. For checking the existence of such a w,
we have to check possibly infinitely many words in K efficiently. To render this
search feasible, we (A) rule out irrelevant parts of K, and (B) treat subsets
of K at once. This leads to the procedure membership(K,R, ϕ) shown in
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Algorithm 1: membership(R,K, ϕ)

input : regular languages R ⊆ Σ?, K ⊆ ∆?,
regular language substitution ϕ with ϕ(δ) ⊆ Σ? for all δ ∈ ∆

returns : true iff ∃w ∈ K : ϕ(w) = R (i.e., iff R ∈ (K,ϕ))
1 foreach M ′ ∈ enumerate(R,K, ϕ) do
2 if basiccheck(R,M ′, ϕ) then return true

3 return false;

Algorithm 1, which first enumerates with M ′ ∈ enumerate(K,R, ϕ) a sufficient
set of sublanguages (Line 1), and then checks each of those sublanguages
individually (Line 2). More specifically, we employ the following optimizations:
We rule out (A.1) all words w with ϕ(w) 6⊆ R, and (A.2) all words w the
language ϕ(w) of which differs from R in the length of its shortest word.
We subdivide the remaining search space (B) into finitely many suitable
languages M ′ and check the existence of a w ∈M ′ with ϕ(w) = R in a single
step.

Below, we discuss a mutually fitting design of these steps and consider
the resulting complexity.

(A.1) Maximal Rewriting. To rule out all w with ϕ(w) 6⊆ R, we rely on the
notion of a maximal ϕ-rewriting Mϕ(R) of R, taken from [14]. Mϕ(R) consists
of the words w with ϕ(w) ⊆ R, i.e., we set Mϕ(R) = {w ∈ ∆+ | ϕ(w) ⊆ R}.
Furthermore, all subsets M ⊆ Mϕ(R) are called rewritings of R, and if
ϕ(M) = R holds, M is called exact rewriting.

Proposition 35 (Regularity of maximal rewritings [14]5). Let ϕ : ∆→ 2Σ?

be a regular language substitution. Then the maximal ϕ-rewriting Mϕ(R) of
a regular language R ⊆ Σ? is a regular language over ∆.

As all words w with ϕ(w) = R must be element of Mϕ(R), we restrict our
search to M = Mϕ(R) ∩K.

5This proposition is not trivial, as ϕ is not a homomorphism mapping each word to a
single word, but a substitution mapping each word w to a language ϕ(w); if ϕ(w) would

yield only words, we would immediately obtain Mϕ(R) = ϕ−1(R) for ϕ−1(L) = {w |
ϕ(w) ∩ L 6= ∅}.
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(A.2) Minimal Word Length. We restrict the search space further by checking
the minimal word length, i.e., we compare the length of the respectively
shortest word in R and ϕ(w). If R and ϕ(w) have different minimal word
lengths, R 6= ϕ(w) holds, and hence, we rule out w. We define the minimal
word length minlen(L) of a language L with minlen(L) = min{|w| | w ∈ L},
leading to the definition of language strata.

Definition 36 (Language Stratum). Let L be a language over ∆, and ϕ :
∆→ 2Σ?

be a regular language substitution, then the B-stratum of L via ϕ,
denoted as L[B,ϕ], is the set of words in L which generate via ϕ languages
of minimal word length B, i.e., L[B,ϕ] = {w ∈ L | minlen(ϕ(w)) = B}.

Starting with M = Mϕ(R)∩K, we rule out words w with minlen(ϕ(w)) 6=
B and thus restrict our search further to M [minlen(R), ϕ].

(B) 1-Word Summaries. It remains to subdivide M [minlen(R), ϕ] into finitely
many subsets M ′, which are then checked efficiently without enumerating their
words w ∈M ′. Here, we only discuss the property of these subsets M ′ which
enables such an efficient check, and later we will describe an enumeration of
those subsets M ′. When we check a subset M ′, we do not search for a single
word w ∈ M ′ with ϕ(w) = R but for a finite set F ⊆ M ′ with ϕ(F ) = R.
The soundness of this approach will be guaranteed by the existence of 1-word
summaries: A language M ′ ⊆ ∆? has 1-word summaries, if for all finite
subsets F ⊆ M ′ there exists a summary word w ∈ M ′ with ϕ(F ) ⊆ ϕ(w).
The property we exploit is given by the following proposition.

Proposition 37 (Membership Condition for Summarizable Languages, adapt-
ing [8]). Let M ′ ⊆ ∆? be a regular language with 1-word summaries and
ϕ(M ′) ⊆ R. Then there exists a w ∈ M ′ with ϕ(w) = R iff there exists a
finite subset F ⊆M ′ with ϕ(F ) = ϕ(M ′) = R.

Proof. We show the two directions of the proposition statement separately.
(⇒) With w ∈ M ′ and ϕ(w) = R, taking F = {w} ⊆ M ′, we obtain
R = ϕ(w) = ϕ(F ) ⊆ ϕ(M ′) ⊆ R, as required. (⇐) M ′ has 1-word summaries,
hence there exists a w ∈ M ′ with ϕ(F ) ⊆ ϕ(w), leading to R = ϕ(F ) ⊆
ϕ(w) ⊆ ϕ(M ′) ⊆ R, as required.

Putting it together. First, combining (A.2) and (B), we obtain Lemma 39,
to subdivide the search space M [B,ϕ] into a set rep(M,B,ϕ) of languages
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M ′ with 1-word summaries, as described in Definition 38. Second, in Theo-
rem 40, building upon (A.1) and fixing B = minlen(R), we iterate through
these languages M ′ using Lemma 39. We check each of them at once with
our membership condition from Proposition 37. Mapping this approach to
Algorithm 1, Lemma 39 provides the foundation for enumerate(K,R, ϕ) and
Proposition 37 underlies basiccheck(R,M ′, ϕ) which returns true if there exists
a finite F ⊆M ′ with ϕ(F ) = ϕ(M ′) = R

Definition 38 (Summarizable Language Representation, adapting [8]). For
an integer B ≥ 0, the summarisable language representation rep(M,B,ϕ)
of M ⊆ ∆? with ϕ : ∆ → 2Σ?

is a family of union-free regular lan-
guages M ′ ∈ rep(M,B,ϕ) with 1-word summaries, such that M [B,ϕ] ⊆⋃
M ′∈rep(M,B,ϕ) M

′ ⊆M holds.

Lemma 39 (Existence of Summarizable Language Representations, adapt-
ing [8]). For all regular languages M ⊆ ∆?, regular language substitutions
ϕ : ∆→ 2Σ?

, and B ≥ 0, there exists a summarizable language representation
rep(M,B,ϕ).

We show Lemma 39 as a consequence of Algorithm 4 in Section 6.3.

Theorem 40 (Membership Condition, following [8]). Let R = (K,ϕ) be an
RSRL and ϕ : ∆→ 2Σ?

be a regular language substitution. Then, for a regular
language R ⊆ Σ?, we have R ∈ R, iff there exists an M ′ ∈ rep(Mϕ(R) ∩
K,minlen(R), ϕ) with a finite subset F ⊆M ′ with ϕ(F ) = ϕ(M ′) = R.

Proof. Most of the work for this proof is already achieved by the representation
rep(M,minlen(R), ϕ) of Lemma 39: The languages M ′ ∈ rep(M,minlen(R), ϕ)
are constructed to have 1-word summaries, allowing to check whether there
exists w ∈M ′ with ϕ(w) = R relatively easy – this is the case iff there exists
a finite subset F ⊆M ′ with ϕ(F ) = ϕ(M ′) = R. We show both directions of
the theorem statement individually.

(⇒) Assume R ∈ R: By Definition 3, there exists w ∈ K with R = ϕ(w),
by Definition 35, we get w ∈ Mϕ(R), and hence w ∈ Mϕ(R) ∩ K = M .
From R = ϕ(w) and minlen(R) = minlen(ϕ(w)), we get w ∈M [minlen(R), ϕ].
Since the maximal rewriting Mϕ(R) of a regular language R is regular as
well [14], and since regular languages are closed under intersection, we obtain
the regularity of M , and hence, Lemma 39 applies. Thus, there exists an
M ′ ∈ rep(M,minlen(R), ϕ) with w ∈M ′, and via Proposition 37, we obtain
for F = {w} ⊆M ′, R = ϕ(F ) = ϕ(M ′), as required.
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(⇐) Assume that there exists an M ′ ∈ rep(M,minlen(R), ϕ) with a finite
subset F ⊆M ′ with ϕ(F ) = ϕ(M ′) = R. Then, via Proposition 37, we take
the summary word w ∈M ′ for F , yielding R ∈ R, as required.

We obtain the space complexity of membership, depending on the size of
the expressions that represent the involved languages. More specifically, the
complexity depends on the expression sizes ||R|| and ||K|| and the summed
size ||ϕ|| = Σδ∈∆||ϕ(δ)|| of the expressions in the co-domain of ϕ.

Theorem 41 (membership(R,K, ϕ) runs in 2ExpSpace). More precisely, it

runs in DSpace
(
||K||r22(||R||+||ϕ||)

s
)

for some constants r and s.

We prove Theorem 41 in Section 6.4, relying on algorithms presented in
Sections 6.2 and 6.3.

6.2. Implementing basiccheck(R,M ′, ϕ)

Since Lemma 39 guarantees that union-free languages M ′ with 1-word
summaries exist, we restrict our implementation to such languages and
exploit these restrictions subsequently. We assume M ′ to be given in the form
M ′ = N1S

?
1N2 . . . NmS

?
mNm+1 with words Nh ∈ ∆? and union-free languages

Sh ⊆ ∆?. So, given such a language M ′ over ∆, and a regular language
substitution ϕ : ∆→ 2Σ?

, we need to check whether there exists a finite F ⊆
M ′ with ϕ(F ) = ϕ(M ′) = R. We implement this check with the procedure
basiccheck(R,M ′, ϕ), splitting the condition of Proposition 37 into two parts,
namely (1) whether there exists a finite F ⊆ M ′ with ϕ(F ) = ϕ(M ′), and
(2) whether ϕ(M ′) = R holds. While the latter condition amounts to regular
language equivalence, the former requires distance automata as additional
machinery. Before introducing them formally below, we formalise the notation
of a path of an automaton. To this effect, we denote a non-deterministic
finite-state automaton (NFA) as a five tuple (∆, Q, ρ, q0, A), where ∆ is the
alphabet, Q is a finite set of states, ρ ⊆ Q×∆×Q is the transition relation,
q0 ∈ Q is the initial state, and A ⊆ Q is the set of accepting states.

Definition 42 (Path). Given an NFA (∆, Q, ρ, q0, A), a path π is a sequence
r0r1 . . . rk = (q0, δ1, q1)(q1, δ2, q2) . . . (qk, δk+1, qk+1) of state transitions ri taken
from ρ, such that the state qi+1 reached by transition ri is taken as originating
state in the next transition ri+1.

If π ends in an accepting state qk+1 ∈ A, then π is an accepting path for
the word δ1δ2 . . . δk+1.
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To check whether there exists a suitable finite subset F ⊆ M ′, we need
to check whether we can cover ϕ(M ′) while adhering to a finite limit on
the number of specific Kleene-star back-edges taken. If this is the case,
the correspondingly generated language F must be finite as well. Distance
automata associate a distance with each edge. Thereby, each word is generated
at a certain distance which is simply the sum of the individual distances of
the edges taken along the shortest accepting path. Then, we construct an
automaton for ϕ(M ′) and associate with each back-edge that corresponds to
the Kleene star of one of the S?i , for 1 ≤ i ≤ m, a distance of 1. All other
edges are associated with distance 0. In particular, back-edges resulting from
the automata for ϕ(Si) and ϕ(Nj), for 1 ≤ i ≤ m and 1 ≤ j ≤ m + 1, are
also associated with distance 0. If this automaton generates ϕ(M ′) while
obeying a limit on the maximal distance then there is a global bound on the
number of iterations that are applied to any Si and, therefore, it generates
ϕ(M ′) from some finite set F ⊆M ′.

Definition 43 (Distance Automaton [16]). A distance automaton over an
alphabet ∆ is a tuple A = (∆, Q, ρ, q0, A, d) where (∆, Q, ρ, q0, A) is an NFA
and d : ρ→ {0, 1} is a distance function, which can be extended to a function
on words as follows. The distance function d(π) of a path π is the sum of the
distances of all transitions in π, i.e., d(π) = Σk

i=0d(ri) for π = r0 . . . rk and
ri ∈ ρ. The distance µ(w) of a word w ∈ L(A) is the minimum of d(π) for
all paths π accepting w.

A distance automaton A is called limited if there exists a constant U such
that µ(w) < U for all words w ∈ L(A).

In our check for (1), we build a distance automaton that is limited
iff a finite F with ϕ(F ) = ϕ(M ′) exists. Then, we rely on the PSpace-
decidability [30] of the limitedness of distance automata to check whether F
exists or not.

Distance-automaton Construction. Here, we exploit the assumption that M ′

is a union-free language over ∆: Given the regular expression defining M ′,
we construct the distance automaton AM ′ following the form of this regular
expression:

• δ ∈ ∆: We construct the finite automaton Aδ with L(Aδ) = ϕ(δ). We
extend Aδ to a distance automaton by labelling each transition in Aδi
with 0.

26



Algorithm 2: basiccheck(R,M ′, ϕ)

input : regular languages R ⊆ Σ?, M ′ ⊆ ∆?, and
regular language substitution ϕ with ϕ(δ) ⊆ Σ? for all δ ∈ ∆

requires :M ′ is union-free and ϕ(M ′) ⊆ R
returns : true iff ∃ finite F ⊆M ′ : ϕ(F ) = ϕ(M ′) = R

1 build AM ′ ;
2 if AM ′ limited then
3 if ϕ(M ′) = R then return true

4 return false;

• e·f : Given distance automataAe andAf withAe = (Qe,Σ, ρe, q0,e, Fe, de)
and Af = (Qf ,Σ, ρf , q0,f , Ff , df), we set Ae·f = (Qe ] Qf ,Σ, ρe ∪
ρf ∪ ρ, q0,e, Ff , de·f) where ρ = {(q, ε, q0,f) | q ∈ Fe} and de·f =
de ∪ df ∪ {(t, 0) | t ∈ ρ}, i.e., we connect each final state of Ae to
the initial state of Af and assign the distance 0 to these connecting
transitions.

• e?: We construct the distance automaton Ae = (Qe,Σ, ρe, q0,e, Fe, de).
Then, Ae? = (Qe,Σ, ρe ∪ ρ, q0,e, Fe ∪ {q0,e}, de?), where ρ = {(q, ε, q0,e) |
q ∈ Fe} and de? = de∪{((q, ε, p), 1) | (q, ε, p) ∈ ρ}, i.e., we connect each
final state of Ae to the initial states of Ae and assign the corresponding
transitions the distance 1.

If the resulting distance automaton AM ′ is limited, then there exists a finite
subset F ⊆M ′ such that ϕ(F ) = ϕ(M ′). This implies that (1) holds.

So, given M ′ and R together with all languages in the domain of ϕ
as regular expressions, basiccheck(R,M ′, ϕ) in Algorithm 2 first builds AM ′
(Line 1) and checks its limitedness (Line 2), amounting to condition (1). For
condition (2), basiccheck verifies that ϕ(M ′) and R are equivalent (Line 3)
and returns true if both checks succeed.

Lemma 44 (basiccheck(R,M ′, ϕ) has PSpace complexity). The algorithm
basiccheck(R,M ′, ϕ) runs in PSpace which is optimal as it solves a PSpace-
complete problem (assuming that PSpace does not collapse with a lower
class).

Proof. Membership. The construction of the automaton AM ′ (Line 1) runs in
polynomial time and hence produces a polynomially sized distance automaton.
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Thus, the check for limitedness of AM ′ (Line 2) retains its PSpace complex-
ity [30]. Given M ′, R, and all ϕ(δ) for δ ∈ ∆ as regular expressions, we
can build a polynomially sized regular expression for ϕ(M ′) by substituting
ϕ(δ) for each occurrence of δ in M ′. Then we check the equivalence of the
regular expressions for ϕ(M ′) and R (Line 3), again keeping the original
PSpace complexity of regular expression equivalence [29]. This yields an
overall PSpace procedure.

Hardness. We reduce the PSpace-complete problem of deciding whether
a regular expression X over Σ is equivalent to Σ? [29] to a single basiccheck
invocation – proving that basiccheck solves a PSpace complete problem.
Given an arbitrary regular expression X, we set M ′ = {a}, ϕ(a) = X and
R = Σ?. Then basiccheck(R,M ′, ϕ) returns true iff X is equivalent to Σ?.

6.3. Implementing enumerate(K,R, ϕ)

Our enumeration algorithm must produce the languages rep(M,B,ϕ),
guaranteeing that all M ′ ∈ rep(M,B,ϕ) have 1-word summaries, and that
M [B,ϕ] ⊆

⋃
M ′∈rep(M,B,ϕ) M

′ ⊆M holds (as specified by Lemma 39). To this
end, we rely on a sufficient condition for the existence of 1-word summaries.
First we show the sufficiency of this condition with Proposition 45, before
turning to the enumeration algorithm itself.

Proposition 45 (Sufficient Condition for 1-Word Summaries). Let L be a
union-free language over ∆, given as L = N1S

?
1N2 . . . NmS

?
mNm+1, with words

Nh ∈ ∆? and union-free languages Sh ⊆ ∆?. If ε ∈ ϕ(w) for all w ∈ Sh and
all Sh, then L has 1-word summaries.

Proof. We construct the desired word: Choose an arbitrary finite subset
F = {f1, . . . , fp} ⊆ L. Then each word fi ∈ F is of the form

fi = N1s1,iN2 . . . Nmsm,iNm+1

with sh,i ∈ S?h. We set sh,F = sh,1 · sh,2 · · · sh,p, and observe, because of
ε ∈ ϕ(w) for all w ∈ Sh and Sh, we obtain

ϕ(sh,i) = ε · ϕ(sh,i) · ε
⊆ ϕ(sh,1) · · ·ϕ(sh,i−1) · ϕ(sh,i) · ϕ(sh,i+1) · · ·ϕ(sh,p) = ϕ(sh,F ) .

Thus we choose the summary word w = N1s1,FN2 . . . Nmsm,FNm+1 and obtain
ϕ(fi) = ϕ(N1s1,iN2 . . . Nmsm,iNm+1) ⊆ ϕ(w), and hence ϕ(F ) ⊆ ϕ(w) .
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Algorithm 3: enumerate(R,K, ϕ)

input : regular languages R ⊆ Σ?, K ⊆ ∆?, and
regular language substitution ϕ with ϕ(δ) ⊆ Σ? for all δ ∈ ∆

yields :L ∈ rep(M,minlen(R), ϕ) for M = Mϕ(R) ∩K
1 M := Mϕ(R) ∩K;
2 for L ∈ unionfreedecomp(M) do unfold(L, ϕ,minlen(R))

Algorithm 4: unfold(L, ϕ,B)

input : union-free regular language L ⊆ ∆?, written as
L = N1S

?
1N2 . . . NmS

?
mNm+1 ⊆ ∆? with Ni ∈ ∆? and

union-free Sh ⊆ ∆?, regular language substitution ϕ with
ϕ(δ) ⊆ Σ? for all δ ∈ ∆, and bound B

yields :L′ ∈ rep(L,B, ϕ)
1 if ∀Sh∀w ∈ Sh : ε ∈ ϕ(w) then yield Lelse
2 fix Sh arbitrarily with ∃w ∈ Sh : ε 6∈ ϕ(w);
3 E := Sh ∩∆?

ε; // ∆ε = {δ ∈ ∆ | ε ∈ ϕ(δ)}
4 L0 := N1S

?
1N2 . . . NhE

?Nh+1 . . . NmS
?
mNm+1;

5 unfold(L0, ϕ,B);
// Lp := N1S

?
1N2 . . . NhE

?ĒpS
?
hNh+1 . . . NmS

?
mNm+1 (see text)

6 for p ∈ critical(Sh) with minlen(ϕ(Lp)) ≤ B do unfold(Lp, ϕ,B)
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We are ready to design our enumeration algorithm, shown in Algorithm 3,
and its recursive subprocedure in Algorithm 4. These algorithms do not return
a result but yield their result as an enumeration: Upon invocation, these
algorithms run through a sequence of yield statements, each time appending
the argument of yield to the enumerated sequence. Thus, the algorithm
never stores the entire sequence but only the stack of the invoked procedures.

Initializing the recursive enumeration, Algorithm 3 obtains the maximum
rewriting M := Mϕ(R) ∩ K of R (Line 1) and iterates over the languages
L in the union-free decomposition of M (Line 2) to call for each L the
recursive procedure unfold. The union-free decomposition unionfreedecomp
yields possibly exponentially many union-free languages, however, each of
them has linear size, using the recursive rewriting rules, (A+B)C = AC+BC,
A(B + C) = AB + AC, (A + B)(C + D) = AC + AD + BC + BD, and
(A+B)? = (A?B?)?.6

In turn, the procedure unfold in Algorithm 4 takes a union-free lan-
guage L = N1S

?
1N2 . . . NmS

?
mNm+1 and a bound B to unfold the Kleene-

star expressions of L until the precondition of Proposition 45 is satisfied or
minlen(ϕ(L)) > B. More specifically, unfold exploits a rewriting, based on
the following terms: Given a union-free language Sh, let E = Sh ∩∆?

ε with
∆ε = {δ ∈ ∆ | ε ∈ ϕ(δ)} denote all words w in Sh with ε ∈ ϕ(w) and let
Ē = Sh − E.

Proposition 46 (Rewriting for 1-Word Summaries (first step)). For every
union-free language S?h with E = Sh ∩∆?

ε, we have S?h = E? ∪ E?ĒS?h.

Proof. S?h = E?(ĒE?)? = E? ∪ E?ĒE?(ĒE?)? = E? ∪ E?ĒS?h

Since Ē is in general not union free, we need to split Ē further. To this
end, we define ufs(Sh, p) recursively for an integer sequence p = 〈pH | pT 〉
with head element pH and tail sequence pT . Intuitively, a sequence p identifies
a subexpression in Sh by recursively selecting a nested Kleene star expression;
ufs(Sh, p) unfolds Sh such that this selected expression is instantiated at least
once. Formally, for Sh = N1S

?
1N2 . . . NnS

?
nNn+1 we set

ufs(Sh, ε) = Sh
ufs(Sh, p) = N1 . . . NpHS

?
pH
ufs(SpH , pT )S?pHNpH+1 . . . Nn+1 .

6In practical implementations, however, one might prefer to generate less but larger
individual expressions, employing, e.g., [31].
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In the latter case, we replace S?pH with S?pHufs(SpH , pT )S?pH such that there is
at least one instantiation of ufs(SpH , pT ) within the otherwise possibly empty
sequence of SpH instantiations.

Consider Sh = A?(B?C?)?D? (with S1 = A, . . . S4 = D and all Ni = ε),
then we obtain

ufs(Sh, 〈2, 1〉) = A? (B?C?)? ufs(B?C?, 〈1〉) (B?C?)? D?

= A? (B?C?)? (B? ufs(B, ε) B? C?) (B?C?)? D?

= A? (B?C?)? (B? (B) B? C?) (B?C?)? D?

instantiating B at position 〈2, 1〉 at least once in an otherwise equivalent
expression.

Let critical(Sh) be the set of integer sequences that identify all subexpres-
sions of Sh which directly contain a symbol δ with ε 6∈ ϕ(δ) (and not only via
another Kleene-star expression). Since Ē is the subset of Sh of words which
contain at least one such symbol δ, Ē equals the union of sublanguages of
Sh which contain at least one instantiation of a subexpression identified by
critical(Sh). Thus, we have Ē =

⋃
p∈critical(Sh) Ēp with Ēp = ufs(Sh, p).

For example, if we have Sh = A′A?(B′B?C ′C?)?D′D? (with S1 = A, . . . S4 =
D and Ni = A′, . . . N4 = D′), and B and C ′ both contain a symbol δ with
ε 6∈ ϕ(δ), then critical(Sh) = {〈2, 1〉 , 〈2〉}, since

ufs(Sh, 〈2, 1〉) = A′A?(B′B?C ′C?)?(B′B?BB?C ′C?)(B′B?C ′C?)?D′D?

ufs(Sh, 〈2, 1〉) = A′A?(B′B?C ′C?)?(B′B?C ′C?)(B′B?C ′C?)?D′D?

are guaranteed to contain at least one instantiation of B and C ′ respectively.
Thus, we obtain Ē = ufs(Sh, 〈2, 1〉) ∪ ufs(Sh, 〈2〉), as Ē is the subset of Sh
consisting of words that contain at least one symbol δ with ε 6∈ ϕ(δ).

This discussion leads to the following rewriting:

Proposition 47 (Rewriting for 1-Word Summaries (second step)). For every
union-free language S?h with E = Sh ∩∆?

ε for ∆ε = {δ ∈ ∆ | ε ∈ ϕ(δ)} and
Ēp = ufs(Sh, p), we have S?h = E? ∪

⋃
p∈critical(Sh) E

?ĒpS
?
h.

All languages in the rewriting, i.e., E? and E?ĒpS
?
h, are union free, E?

has 1-word summaries, and minlen(S?h) < minlen(E?ĒpS
?
h) holds for all p ∈

critical(Sh).

Proof. Taking Proposition 46 and the discussion before Proposition 47, we
obtain S?h = E? ∪ E?ĒS?h = E? ∪

⋃
p∈critical(Sh) E

?ĒpS
?
h. It remains to

show the desired properties of the sublanguages in the rewriting: (1) Union
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freeness: We construct the regular expression for E? by dropping all Kleene-
stared subexpressions in S?h which contain a symbol δ with ε 6∈ ϕ(δ) (possibly
producing the empty language), preserving union freeness. The construction
of Ēp only unrolls Kleene star expressions, also preserving the union freeness
from Sh. (2) 1-word summaries for E?: For all w ∈ E, we have ε ∈ ϕ(w),
since all symbols δ in E have ε ∈ ϕ(δ). (3) Increasing minimal length in
E?ĒpS

?
h: Since S?h is a subexpression of E?ĒpS

?
h the minimal length can

only increase, and since Ēp instantiates an expression with a symbol δ and
ε 6∈ ϕ(δ), it actually increases.

If L already satisfies the precondition imposed by Proposition 45, Algo-
rithm 4 yields L and terminates (Line 1). Otherwise, it fixes an arbitrary
Sh violating this precondition and rewrites L recursively with Proposition 47
(Lines 2-6). (1) Termination: In each recursive call, unfold either eliminates
in L0 an occurrence of a subexpression Sh violating the precondition of Propo-
sition 45 (Line 5), or increases the minimum length in Lp, eventually running
into the upper bound B (Line 6). (2) Correctness: Setting B =∞, unfold
yields a possibly infinite sequence of union-free languages, which have 1-word
summaries such that their union equals the original language L: As the
generation of these languages is based on the equality of Proposition 47 each
rewriting step is sound and complete, leading to an infinite recursion tree
the leaves of which yield the languages in the sequence. The upper bound
on minimum length only cuts off languages Lp producing words of minimum
length beyond B, i.e., Lp ∩L[B,ϕ] = ∅, and in consequence, it is safe to drop
Lp, since we only need to construct rep(L,B, ϕ) with rep(L,B, ϕ) ⊇ L[B,ϕ].

Algorithm 4 implements a representation, as required by Lemma 39, and
hence is also proving this lemma.

Proof of Lemma 39. unfold(L, ϕ,B) yields rep(L,B, ϕ) for union-free lan-
guages L, hence using a union-free decomposition unionfreedecomp, we obtain
rep(M,B,ϕ) =

⋃
L∈unionfreedecomp(M) unfold(L, ϕ,B).

6.4. Upper Bound of the Complexity

The proof of Theorem 41 is based on the size of the maximum rewriting

M = Mϕ(R) ∩K of ||K||22(||R||+||ϕ||)
l

for some constant l, shown in [14], and
unfold’s complexity: In Proposition 48, we give an upper bound for the
maximum size of the generated expressions ||ufs(L, p)||, where ||L|| denotes
the length of the regular expression representing L. Next, in Proposition 49,
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we show an upper bound on the space complexity of unfold, leading to the
complexity of enumerate in Lemma 50 and the desired proof of Theorem 41.
Recall the definition of ufs for L = N1S

?
1N2 . . . NnS

?
nNn+1 and p = 〈pH | pT 〉

with ufs(L, p) = N1 . . . NpHS
?
pH
ufs(SpH , pT )S?pHNpH+1 . . . Nn+1.

Proposition 48 (Upper Bound for ||ufs(L, p)||). With κ as maximum length
of a Kleene star subexpression in L, ||ufs(L, p)|| = O(κ · ||L||) holds.

Proof. ufs duplicates SpH of L and continues recursively on a third copy
of SpH . Since ufs does not introduce new Kleene star subexpressions but
only duplicates some, all Kleene star expressions occurring during the entire
recursion are at most of length κ. Hence, each recursive step of ufs increases
the length of the current expression at most by 2κ, and because of the Kleene
star nesting depth of at most L, we obtain ||ufs(L, p)|| = O(κ · ||L||).

Proposition 49 (unfold(L, ϕ,B) runs in DSpace(B2||L||4 + ||ϕ||)).

Proof. We denote with Linit the language given in the first call to unfold, while
L denotes the language given to current call of unfold. We show the claim in
four steps.

(1) ||L|| = O(d||Linit||2) holds at any point during the recursion, given d
is the number of recursive calls going through Line 6. First, recursive calls
through Line 5 cannot increase the size of the expression, i.e., ||L0|| ≤ ||L||,
since we obtain L0 by removing from S?h all subexpressions directly containing
a symbol δ with ε ∈ ϕ(δ) (and not only via another Kleene star expression).
Thus, only recursive calls going through Line 6 possibly increase the size of
the expression. Now, in such a call, we unroll a subexpression Sh with S?h =
E?ĒpS

?
h and Ē = ufs(Sh, p) for some integer sequence p. From Proposition 48,

we have ||ufs(Sh, p)|| = O(κ||Sh||). Since ufs and unfold only duplicate already
existing Kleene star subexpressions, we have both ||Sh|| ≤ ||Linit|| and κ ≤
||Linit||, and hence ||ufs(Sh, p)|| = O(||Linit||2). Together with ||E|| ≤ ||Sh||
and ||Sh|| ≤ ||Linit||, this leads to ||E?ĒpS

?
h|| = O(||Linit||2). d recursive calls

through Line 6 substitute d subexpressions Sh with E?ĒpS
?
h to unfold Linit

into L, each time adding O(||Linit||2) to the size of the expression representing
L. Hence ||L|| = O(d||Linit||2).

(2) ||L|| = O(B||Linit||2) holds for all recursive calls to unfold while com-
puting unfold(Linit, ϕ,B). unfold makes at most B recursive steps through
Line 6, since otherwise minlen(ϕ(Lp)) > minlen(ϕ(L)) = B would hold (this
is true, since Ēp in Lp instantiates some δ with ε 6∈ ϕ(δ)). Then this claim
follows from the previous one by setting d = B.

33



(3) The total recursion depth of unfold is at most O(B||Linit||2). In the
previous claim, we saw that there are at most B recursive calls through Line 6.
It remains to give an upper bound for the calls through Line 5: In each such
call, at least one Kleene star subexpression in L is removed in substituting E
for Sh. At any point there are at most ||L|| = O(B||Linit||2) subexpressions
in L, hence we get a maximum recursion depth of O(B||Linit||2).

(4) The space required to compute unfold(Linit, ϕ,B) is bounded by the
depth of the recursion times the stack frame size, which is dominated by
||L||, plus ||ϕ||. This gives O ((B||Linit||2)2 + ||ϕ||) = O(B2||Linit||4 + ||ϕ||) as
desired.

Lemma 50 (enumerate(R,K, ϕ) runs in DSpace
(
||K||422(||R||+||ϕ||)

k
)

).

Proof. The construction of M = Mϕ(R) ∩ K yields an expression in the

size ||K||22(||R||+||ϕ||)
l

for some constant l [14]. The union-free decomposition
yields possibly exponentially many union-free languages, however, each of
them has linear size (see the description of Algorithm 3 for a simple but
fitting decomposition). With Proposition 49, we obtain the overall space
complexity of enumerate with DSpace(B2||L||4 + ||ϕ||) for B = minlen(R) ≤
||R|| and ||L|| = ||K||22(||R||+||ϕ||)

k

. This leads to the desired result with

DSpace
(
||K||42·2

(||R||+||ϕ||)k
)

for some other constant k.

Proof of Theorem 41. The enumeration via enumerate(R,K, ϕ) runs in

DSpace
(
||K||422(||R||+||ϕ||)

k
)

(Lemma 50), producing expressions later fed

into basiccheck at most of the same size. Since basiccheck is in PSpace
(Lemma 44), we obtain the overall complexity DSpace

(
||K||r22(||R||+||ϕ||)

s
)
⊆

2ExpSpace for some constants r and s.

6.5. Differences to Afonin and Hazova [8]

Afonin and Hazova show that the membership problem is decidable. In
determining an upper bound for the complexity of membership the problem,
we had to expand their approach significantly: In general, we follow a top-
down approach to describe the overall algorithm, whereas Afonin and Khazova
go bottom-up, focusing on the building blocks enabling the decision procedure.
More specifically, basiccheck is described in [8], while enumerate is omitted,
as [8] deals with decidability only, deeming the bound on the enumeration
size irrelevant. Hence Algorithms 3 and 4 are new, as well as the construction
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in Section 6.3, leading to Proposition 47. Based on the new algorithms,
we contribute Theorem 41, together with Proposition 49, and Lemma 50.
Moreover, in [8], the overall algorithm and the proof for Theorem 40 are only
described in a brief paragraph. Finally, Section 6.1, albeit technically not
new, provides a much more conceptual and hopefully accessible description
of the algorithm.

7. Conclusion

Motivated by applications in test case specifications with FQL, we have
studied general and finite RSRLs. While we show that general RSRLs are
not closed under most common operators, finite RSRLs are closed under all
operators except Kleene stars and complementation (Theorem 14). This shows
that our restriction to Kleene-star free and hence finite RSRLs in FQL results
in a natural framework with good closure properties. Likewise, the proven
PSpace-completeness results for Kleene-star free RSRLs provide a starting
point to develop practical reasoning procedures for Kleene-star free RSRLs and
FQL. Experience with LTL model checking shows that PSpace-completeness
often leads to algorithms which are feasible in practice. In contrast, for general
and possibly infinite RSRLs, we have described a 2ExpSpace membership
checking algorithm – leaving the question for matching lower bounds open.
Nevertheless, reasoning on general RSRLs seems to be rather infeasible.

Last but not least, RSRLs give rise to new and interesting research
questions, for instance the decidability of inclusion and equivalence for general
RSRLs, and the closure properties left open in this paper. In our future work,
we want to generalize RSRLs to other base formalisms. For example, we want
ϕ to substitute symbols by context-free expressions, thus enabling FQL test
patterns to recognize, e.g., matching of parentheses or emptiness of a stack.
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enbücher, Stuttgart, 1979.

[22] J.-E. Pin, Mathematical foundations of automata theory, Lecture Notes
(2011).
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