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Abstract Forms are our gates to the web. They enable us
to access the deep content of web sites. Automatic form
understanding provides applications, ranging from crawlers
over meta-search engines to service integrators, with a key
to this content. Yet, it has received little attention other than
as component in specific applications such as crawlers or
meta-search engines. No comprehensive approach to form
understanding exists, let alone one that produces rich models
for semantic services or integration with linked open data.

In this paper, we present OPAL, the first comprehensive
approach to form understanding and integration. We identify
form labeling and form interpretation as the two main tasks
involved in form understanding. On both problems OPAL ad-
vances the state of the art: For form labeling, it combines
features from the text, structure, and visual rendering of a
web page. In extensive experiments on the ICQ and TEL-8
benchmarks and a set of 200 modern web forms OPAL out-
performs previous approaches for form labeling by a signif-
icant margin. For form interpretation, OPAL uses a schema
(or ontology) of forms in a given domain. Thanks to this do-
main schema, it is able to produce nearly perfect (> 97% ac-
curacy in the evaluation domains) form interpretations. Yet,
the effort to produce a domain schema is very low, as we pro-
vide a Datalog-based template language that eases the spec-
ification of such schemata and a methodology for deriving
a domain schema largely automatically from an existing do-
main ontology. We demonstrate the value of OPAL’s form in-
terpretations through a light-weight form integration system
that successfully translates and distributes master queries to
hundreds of forms with no error, yet is implemented with
only a handful translation rules.
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1 Introduction

Unlocking the vast amount of data in the deep web for
automatic processing has been a central part of “web as
a database” visions in the past. The web offers unprece-
dented choice and variety of products, but we lack tools
to make this wealth of offers easily manageable. Say you
are looking for a flat. Aren’t you tired of filling registration
forms with your search criteria on the websites of hundreds
of local agencies? You fear to miss the site with the very
best offer? Wouldn’t you wish to automatize these tiresome
tasks? To unlock this data for automatic processing requires
two keys: a key that allows us through the human-centric,
scripted form interfaces of the web and a key to identify
offers among all the other data on the web. In this paper,
we focus on the former: A key to web forms, the gates to
the deep web. Since these gates are designed for human ad-
mission, they pose a plethora of challenges for automatic
processing: Even web forms within a single domain denote
search criteria differently, e.g., “address”, “city”, “town”,
and “neighborhood” all refer to locations, while other terms
denote different criteria ambiguously, e.g., “tenure” might
refer to the choice either between “freehold” vs. “leasehold”
or between “buy” vs. “rent”. Moreover, web forms present
their criteria in different manners, e.g., for a choice among
several options, a form may contain either a drop-down lists
or a set of check boxes. Automatically understanding these
variants to pass through forms is needed by a broad range
of applications: crawling and surfacing the deep web [28,
21,8], interface and service integration [36], matching in-
terfaces across domains [7,33], classifying the domain of
web databases [4] for web site classification, sampling the
contents of web databases [22,2], ontology enrichment and
knowledge-base construction [26], question answering for
the deep web [20]. In web engineering, automated form un-
derstanding contributes, e.g., to web accessibility and us-
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ability [17], web source integration [11], automated testing
on form-related web applications.

The form understanding problem has attracted a number
of approaches [36,33,11,24,18], for a recent survey see [19,
12]. These approaches turn observations on common fea-
tures of web forms (in general, across domains) into specifi-
cally tailored algorithms and heuristics, but generally suffer
from three major limitations:

(1) Most approaches are domain independent and thus
limited to observations that hold for forms across all do-
mains. This limitation is acknowledged in [36,24,18], but
addressed only through domain specific training data, if at
all. Our evaluation supports [18] in that a set of generic de-
sign rules underlies all domains, but that specific domains
parameterise or adapt these in unique ways.

(2) Most approaches are limited in the classes of fea-
tures they use in their heuristics and often based on a single
sophisticated heuristics using one class of features, e.g., only
visual features [11] or textual and field type features [18].

(3) Heuristics are translated into monolithic algorithms
limiting maintainability and adaptability. E.g., [33] and [24]
encode assumptions on the spatial distance and alignment of
fields and labels, [18] employs hard-coded token classes for
certain concepts such as “min”, “from” vs. “max”, “to”.

To overcome these limitations, we present OPAL

(ontology based web pattern analysis with logic), a domain-
aware form understanding system that does not limit its
scope to one class of features, but rather combines visual,
textual, and structural features with a thin layer of domain
knowledge. The visual, textual, and structural features are
combined in a domain-independent multi-scope analysis to
produce a highly accurate form labeling. However, for most
applications a model of the form is needed, where all the
fields are typed consistently with types from a (reference)
schema of the given domain.

In OPAL, this schema is not only used to classify the
fields and segments of the form model, but also to improve
the form model based on a set of constraints that describe
typical fields and their arrangement in forms of the domain,
e.g., how price ranges are presented in forms. To ease the
development of these domain ontologies, OPAL extends Dat-
alog with templates to enable reuse of common form pat-
terns in forms, e.g., how ranges (of any type) are presented
in forms. With this approach, OPAL achieves nearly perfect
analysis results (> 97% accuracy). The combination of these
ontologies with the use of datalog rules throughout OPAL

also ease maintenance and adaptation to new domains or
changing patterns in the web.

In contrast to previous approaches, OPAL produces rich
form models, typed to the given schema: The models contain
not only types and (individual) constraints for form fields,
but also group those fields into semantic segments, possi-
bly with inter-field constraints. These rich models ease the

development of applications that interact with these forms.
To demonstrate this, we have developed a light-weight form
integration system on top of OPAL that fully automatically
translates queries to the reference schema into queries to the
concrete forms.

1.1 Contributions

OPAL’s main contributions are:
(1) Multi-scope domain-independent analysis (Sec-

tion 4) that combines structural, textual, and visual features
to associate labels with fields into a form labeling using
three sequential “scopes” increasing the size of the neigh-
bourhood from a subtree to everything visually to the left
and top of a field. We exploit (i) at field scope the structure
of the page between fields and labels; (ii) at segment scope
observations on fields in groups of similar fields, and (iii) at
layout scope the relative position of fields and texts in the
visual rendering of the page. We impose a strict preference
on these scopes to disambiguate competing labelings and to
reduce the number of fields considered in later scopes.

(2) Domain awareness. (Section 5) OPAL is domain-
aware while being as domain-independent as possible with-
out sacrificing accuracy. This is based on the observation
that generic rules contribute significantly to form under-
standing, but nearly perfect accuracy is only achievable
through an additional layer of domain knowledge. To this
end, we add an optional, domain-dependent classification
and form model repair stage after the domain-independent
analysis. Driven by a domain schema, OPAL classifies form
fields based on textual annotations of their labels and val-
ues assigned in the domain-independent form labeling, as
well as the structure of that form labeling. This classifica-
tion is often imperfect due to missing or misunderstood la-
bels. OPAL addresses this in a repair step, where segment
constraints are used to disambiguate and complete the clas-
sification and reshape the form segmentation.

(3) Template Language OPAL-TL. (Section 5.1) To spec-
ify a domain schema, we introduce OPAL-TL. It extends Dat-
alog to express common patterns as parameterizable tem-
plates, e.g., describing a group consisting of a minimum and
maximum field for some domain type. Together with some
convenience features for querying the field labeling and its
annotations, OPAL-TL allows for very compact, declarative
specification of domain schemata. We also provide a tem-
plate library of common phenomena, such that the adaption
to new domains often requires only instantiating these tem-
plates with domain specific types. OPAL-TL preserves the
complexity of Datalog.

(4) Methodology for Deriving Domain Schemata. (Sec-
tion 6) To ease the derivation of an OPAL domain schema,
we present a simple, step-by-step methodology how to de-
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Fig. 1: Colin Mason with OPAL (see Figure 2 for segment scope)

rive such a schema from a standard domain ontology (hier-
archy of types and properties and a part-of relations), exter-
nal knowledge bases for instances of the types, and observa-
tions on typical form configurations in the domain. OPAL’s
methodology exploits the fact that properties (such as price
or mileage of a car) in the domain ontology often determine
the configuration of the corresponding form fields.

(5) Light-weight Form Integration. (Section 7) To
demonstrate the value of OPAL’s rich form models, we im-
plement a form integration system on top of OPAL that au-
tomatically translates a master query to concrete forms. As
shown in the evaluation on 200 forms in two domains, even
rather simple translation rules achieve accurate form filling.

(6) Extensive Evaluation. (Section 8) In an evaluation
on over 700 forms of four different datasets, we show that
OPAL achieves highly accurate (> 95%) form labeling and,
with a suitable domain schema, near perfect accuracy in
form classification (> 97%). To compare with existing ap-
proaches (which only report form labeling), we show that
OPAL’s domain-independent analysis achieves 94–100% ac-
curacy on the ICQ benchmark and 92–97% on TEL-8. Thus,
even without domain knowledge OPAL outperforms existing
approaches by at least 5%. We also show that the form inte-
gration system developed on top of OPAL is able to fill forms
correctly in nearly all cases (> 93%)

We believe that OPAL offers a comprehensive solution to
form understanding for most applications, but also discuss,
in Section 10, the two major remaining challenges for OPAL

(and form understanding, in general): highly scripted, inter-

active forms, possibly including customised form widgets,
as well as richer integrity constraints and access restrictions,
in particular for applications that aim to extract all of the
data behind a form.

This paper is based on [13], but has been significantly
extended in every part.

1.2 OPAL: A Walkthrough

We present the OPAL approach to form understanding us-
ing the form from the UK real estate agency Colin Mason
(cmea.co.uk/properties.asp). Figure 1a shows the web
page with its simplified CSS box model. The page contains
two forms (center and left): one for detailed search and the
other for quick search. OPAL is able to identify, separate,
label, and classify both forms correctly yielding two (real-
estate) form models. The following discussion focuses on
the search form in the center of Figure 1a, in which each of
the components (1)-(10), each of the fields (3)-(7) and the
two columns of checkboxes in (2) are enclosed in a table,
tr, or td element. Labels for each of the components such
as “Bedrooms:” appear in separate tr’s.

OPAL’s form understanding operates in two parts: Form
labeling and form interpretation. In form labeling fields and
groups of fields (called segments) are arranged in a tree
and assigned text labels. These nodes directly correspond
to fields or other nodes in the DOM tree. In the form inter-
pretation phase the text labels are used to classify the fields
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(a) Segmentation (b) Labeling 2a: Segments (c) Labeling 2b: Fields by Segment

Fig. 2: Colin Mason segment scope

and segments on the page, eventually verifying and repair-
ing the label assignment and producing a form model in line
with the given domain schema. Form labeling itself is split
into field, segment, and layout scope, each assigning succes-
sively labels to more fields and segments of a form.

Field scope. (Section 4.1) OPAL starts by analysing indi-
vidual fields assigning labels in two ways: First, we add la-
bels that explicit reference the field (using the for attribute).
Second, we assign text nodes as labels of a field if the com-
mon ancestor of the text nodes and the field in the DOM
tree has no other fields as descendant. In our example from
Figure 1a, no explicit references occur, but the second ap-
proach correctly labels all fields except the checkboxes in
(2). In Figure 1b we show this initial form labeling using
same color for fields and their labels.

Segment scope. (Section 4.2) In segment scope, we in-
crease the scope of the analysis from form fields to groups of
similar fields (called segments). OPAL constructs these seg-
ments from the HTML structure, but eliminates segments
that likely have no semantic relevance and are only in-
troduced, e.g., for formatting reasons. This elimination is
primarily based on semantic similarity between contained
fields approximated via semantic attributes such as class

and visual similarity. In our example, components (2)-(7)
become segments, with (2) further divided into two seg-
ments for each of the vertical checkbox groups, as shown in

Figure 2a. This rough, approximate segmentation may later
be corrected in the form interpretation.

For each segment as a whole, OPAL associates text nodes
to create segment labels. Segment labels can be useful to re-
pair the form model and to classify fields that have no labels
otherwise. In this example, OPAL assigns the text in bold
face appearing atop each segment as the label, e.g., “Price:”
becomes the label for (4), see Figure 2b. Furthermore, within
each segment, OPAL identifies repeated groups of interleav-
ing fields and texts. In the example, each check box in (2) is
labeled with the text appearing after it, cf. Figure 2c.

Layout scope. (Section 4.3) In the layout scope, OPAL

further enlarges the scope of the analysis to all nodes visu-
ally to the left and above a field. The primary challenge in
this scope is “overshadowing”, i.e., if other fields appear in
the quadrants to the left and above a field. In this example
the layout scope is not needed.

The result of the layout scope is a form labeling. Notice,
that this form labeling is entirely domain independent.

Domain scope. If a form model is required, the final
step in OPAL produces a form model that is consistent with a
given domain schema. How to derive such a domain schema
and the necessary annotators is discussed in Section 6. It
uses domain knowledge to classify and repair the labeling
and segmentation from the form labeling. In the classifi-
cation step, OPAL annotates fields and segments with types
based on annotations of the text labels. The verification step
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repairs and verifies the domain model if needed. For both
steps, OPAL uses constraints specified in OPAL-TL. These
constraints model typical representations of types in a do-
main. E.g., the first field in (4) is classified as MIN_PRICE as
we recognise this segment as an instance of a price range
template. These constraints also disambiguate between mul-
tiple, conflicting annotations, e.g., the first field in (6) is an-
notated with order_by and price, but the price annotation is
disregarded due to the group label. Even without the group
label, price would be disregarded as the domain schema gives
precedence to order_by over price due to the observation that
if they occur together, the field is likely about “order by
price” and not about actual prices. Finally, a single repair is
performed in this case: We collapse the two checkbox seg-
ments in (2) as they are the only children of their parent seg-
ment and both of the same type. Figure 1c shows the final
field classification as produced by OPAL.

Form integration and filling. Using the form interpre-
tation constructed in the preceding stages, OPAL is able to
map a master query formulated on the domain schema into
both of the concrete forms on this page (see Figure 1a). For
location, the values are typed in directly. For price, the range
in the master query can also be directly entered, as the con-
crete forms use text inputs for prices and OPAL’s form inter-
pretation identifies the min and max price field successfully.
For the bedroom number, the value from the master query
is compared with the members of the check box list and the
most similar is selected.

2 Problem Definition

Form understanding constructs a model of a form consis-
tent with a domain schema. A domain schema describes how
forms in a given conceptual domain, such as the UK real es-
tate domain, are structured. Form understanding can be di-
vided into form labeling and form interpretation. The form
labeling identifies forms and their fields, arranges the fields
into a tree, and labels the found fields, segments, and forms
with text nodes from the page. The form interpretation aligns
a form labeling with the given domain schema and thereby
classifies the form fields based on their labels.

Finally, we define the form integration problem where
a query on the domain schema is translated into queries
against the individual forms using the above form interpre-
tation as basis for the translation.

Form Labeling. In general, it is impossible to define which
form labeling is suitable for a given page, as even humans
cannot always unambiguously group form elements into
segments and associate them with labels. Hence, the suit-
ability of a form labeling F for a given page P needs to be
evaluated by human annotators (which our approach aims to

simulate). Our evaluation (Section 8) shows that OPAL pro-
duces form labelings that match the gold standard in nearly
all cases (> 95% without using any domain knowledge).
We define the form labeling problem to produce a labeling
which is consistent with the page structure and a human pro-
vided gold standard.

A web page P =
(
(U)U∈Unary,child,next-sibl,attribute

)
is

a DOM tree where (U)U∈Unary are unary type and label rela-
tions, child is the parent-child, next-sibl the direct next sibling,
and attribute the attribute relation. Further XPath relations
(such as descendant) are derived from these basic relations
as usual [6]. U contains relations for types as in XPath (ele-
ment, text, attribute, etc.) and three kinds of label relations,
namely tagt for tags of elements and attributes, textl for text
nodes containing string l, and boxb for elements with bound-
ing box b in a canonical rendering of the page. For consis-
tency with elements, we represent the value of an attribute
as text child node of the attribute.

A node can be labeled with no, one, or many labels via
La. The form labeling contains a representative (via Re)
for each form. A representative contains all fields (and seg-
ments) of that form. This allows OPAL to distinguish mul-
tiple forms on a single page, even if no form element is
present or multiple forms occur in a single form element.

Definition 1 A form labeling of a web page P is a tree F
with functions Re (representative) and La (label). Re is an
injective function that maps leafs (FIELDSF ) in F to form
fields and inner nodes (SEGMENTSF ) to form segments, each
grouping a set of fields or subsegments. Every node n in F
is also mapped to a set La(n) of text nodes, the labels of n.

We use child (descendant, resp.) for the child (de-
scendant) relation in F and extend document and sib-
ling order from P to F : next(X ,Y ) for X ,Y ∈ F , if
following(Re(X),Re(Y )) and no other node in F occurs
between X and Y in document order; adjacent(X ,Y ), if
next-sibl(Re(X),Re(Y )) or vice versa. Finally, we abbrevi-
ate textl(Re(X)) and tagt(Re(X)) as "l"(X) and t(X).

Definition 2 For a web page P, the form labeling problem
asks for a form labeling F where for each form f in P
(1) there is a node r ∈ F such that Re(r) is a suitable repre-

sentative of f and
(2) for each field e in f , there exists a leaf node ne ∈ F with

Re(ne) = e such that ne is a descendant of r and La(ne)

is a suitable label set for e.
(3) for each segment ns in F , La(ns) is a suitable set of la-

bels for the set of fields contained in ns.

Form Interpretation. We formalize the notion of domain
schema and introduce a form model as a form labeling ex-
tended with type information consistent with a given domain
schema. A domain schema provides types for form elements
and segments and imposes constraints on the assigned types.
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Fig. 12: Fawlowestates segmentation at segment scope

switched between real estate and used car. By changing this
value, the master form changes accordingly to cover the
most popular concepts of the switched domain. Users fill in
the master form with their search requirement. The confirm
button tells the system to store the values provided. During
an actual run, the system (i) loads the web page of a given
URL into the browser, (ii) runs OPAL’s form understanding
analysis, and (iii) fills the form if a form in the domain spec-
ified in the master form is found. With the current imple-
mentation, the filling is based on loaded values for the mas-
ter form (as previously confirmed by users). Newly specified
values are used only in the next run.

In case of free text fields, OPAL fills in the values di-
rectly. In case of drop down menus, or lists of check boxes
or radio buttons, OPAL tries to find the best matching one.
OPAL compares the values occurring on the form with the
values provided with text matching. Particularly, it handles
different formats for price representation, and selects min
max values that cover the specified price range. However,
if no match is found, OPAL highlights the field and allows
users to choose manually.

The interface also allows browsing through OPAL’s form
understanding results (the top panel), i.e., the labeling ob-
tained at each scope and the classification.

PrimeLocationTo further detail the form filling process, we
use the form primelocation.com/uk-property-for-sale,
see Figure 14. Here we show the entire OPAL GUI: The top
panel allows the user to switch on or off the visualization of
the results of OPAL’s scopes. In particular, form fields and
associated labels are highlighted with the same colors. Form
segments are shown as unfilled boxes with their labels in
the same color. The bottom panel shows the master form
(OPAL’s passe-partout), where the user provides her search
requirements. The user can switch between the UK real es-
tate or used car domains and is presented the corresponding
fields. Note, that we use free text fields for the values.

In the middle panel of Figure 14, we show primelocation
with the results of field and segment scope highlighted. For
example, “price range” is assigned as segment label for the

Fig. 14: OPAL Interface

group containing both price fields which are labeled “min-
imum” and “maximum” respectively. The screenshot actu-
ally shows primelocation after OPAL has filled it according
to the values from the master form. Notice, how for the three
select boxes for minimum and maximum price, as well as
bedroom number, OPAL picks the closest value to the one
specified in the master form. OPAL can also easily handle
variations in the value representation such as “3 bedrooms”
(vs. “3” in the master form).

Holbrook Moran Estate AgentsConsider the form taken
from Holbrook Moran Estate Agents (holbrookmoran.co.
uk), Figure 15a. At a first glance, this form appears to be
simpler than the previous one. Nevertheless, all the four la-
beling scopes must be used to complete its analysis.

First, at field scope, OPAL correctly labels fields in area
(d) and (e). Next, at segment scope, we successfully find the
segments for areas (a), (c), and (e). For (a), by recognizing
the interleaving pattern between the radio buttons and texts,
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Fig. 3: OPAL Overview

Definition 3 A domain schema Σ = (S,F ,–�,CS ,CF ) de-
fines sets of segment and field types with (transitive, reflex-
ive) part-of relation –� : S ∪F →S, and a mapping CS (CF )
to the segment (field) constraints for each type t ∈S (t ∈F).

For example, the segment constraint CS(PRICE-RANGE)

for a PRICE-RANGE segment n requires n to contain a MIN-

PRICE and MAX-PRICE field or a PRICE-RANGE field. We write
n |= c for a constraint c, if c holds for n under a fixed τ . For
a set of constraints C, n |=C if there exists a c ∈C such that
n |= c. In particular, n |= c ∈ CS implies that n is a segment,
n |= c ∈ CF that n is a field (no node can satisfy both a seg-
ment and a field constraint). Finally, we abbreviate n |= c for
all c∈ CS(t)∪CF (t) of a type t, as n |= t. –� plays an impor-
tant role in the definition of the constraints, as it prescribes
the structure of the types in the domain. For details on con-
straints and how to define them, see Section 5. Now, a form
interpretation over domain schema Σ consists of a form la-
beling F with a partial type-of relation τ , relating nodes in F
to types in S ∪F . If for all nodes in a form interpretation F
the constraints for the types are satisfied and τ is total, then
F is a form model.

Definition 4 A form model (F,τ) over a domain schema
Σ = (S,F ,–�,CS ,CF ) consists of a form labeling F and a
total mapping τ from F to 2S∪F such that for all nodes n∈F
and all t ∈ τ(n), n |= t.

For example, Figure 1c is a form interpretation that is
also a form model under the real-estate domain schema used
in OPAL. It maps all fields to types (indicated by the red la-
bels), such that all fields satisfy all constraints of the corre-
sponding types. The complete form model additionally con-
tains segments, e.g., for the price range.

To interpret a labeling F , we want to type all form rep-
resentatives, fields, and labels in our interpretation. On the
other hand, it is sometimes necessary to adapt the segmenta-
tion structure of F to fit the constraints induced by the typ-
ing. Similar to the case of form labelings, the suitability of
the types in a form model cannot be defined formally, as
some forms defy even human efforts to type them correctly.

Hence, we refer to human judgment for assessing suitabil-
ity assuming that suitability implies logical consistency (t
suitable for n implies n |= t).

Definition 5 For a domain schema Σ and web page P, the
form interpretation problem asks for a form model (F,τ)
of P under Σ , such that (1) F is a solution for the form la-
beling problem on P, (2) (F,τ) is complete: for each node
n ∈ F , La(n) is the set of all suitable labels and τ(n) the set
of all suitable types.

Form Integration and Filling. In web interface integration
a query against a global domain schema is translated and
executed on concrete forms. The data returned from the
concrete site is translated into the domain schema and re-
turned. We focus here on the first part of the integration
problem, the query translation or form integration problem,
and more specifically on its optimistic variant: Let Σ be a
domain schema. Then a query Q on Σ is a set of unary
constraints on S ∪F , the domain types in Σ . We consider
three types of constraints: (1) Equality constraints such as
POSTCODE = OX1; (2) range constraints such as PRICE ∈
[700,1250]; (3) inclusion constraints such as COLOUR∈ {red,
green, black}.
Definition 6 Given a domain schema Σ , a query Q on Σ ,
and a concrete form F , the form integration problem is the
problem to translate Q into a (single) query Q′ on F such that
(1) Q′ returns all results that match Q and can be retrieved by
F and that (2) there is no other query on F with that property
that returns less results.

We do not require Q′ to return only results that match
Q, but that the result set is minimal among all queries on F
returning all matches for Q, since there may be no query on
F exactly expressing Q.

3 OPAL Architecture

OPAL is divided into three parts. Of those, the first two rep-
resent OPAL’s form understanding: a domain-independent
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part to address the form labeling problem and a domain-
dependent part for form interpretation according to a domain
schema. The remaining part is devoted to form integration
and translates queries to a domain schema into queries to
concrete forms.

OPAL produces form labelings in a novel multi-scope ap-
proach that incrementally constructs a form labeling com-
bining textual, structural, and visual features (Figure 3).
Each of the three labeling scopes considers features not con-
sidered in prior scopes:

(1) In field scope, we consider only fields and their im-
mediate neighbourhood using the DOM tree as only input.

(2) In segment scope, we arrange form segments into a
segment tree to interleave text nodes and fields.

(3) In layout scope, we search for labels in the layout
tree, i.e., the visual rendering of the page, and assign text
nodes to fields, given a strong visual relation.

Each scope builds on the partial form labeling of the pre-
vious scope and uses the information from the additional
features to find labels for previously unlabeled fields (or seg-
ments). Only the segment scope adds nodes, namely form
segments, whereas field and layout scope only add labels.

Finally, in the (4) form interpretation (Section 5) we
turn the form labeling produced by the first three scopes
into a form model consistent with a given domain schema.
(i) The labeling model is extended with (domain-specific) an-
notations on the textual content of proper labels and values.
(ii) Fields and segments of the form labeling are classified ac-
cording to classification constraints in the domain schema.
(iii) Finally, violations of structural schema constraints are
repaired in a top-down fashion.

Types and constraints of the domain schema are speci-
fied using OPAL-TL, an extension of Datalog that combines
easy querying of the form labeling and of annotations with a
rich template system. Datalog rules already ease the reuse of
common types and their constraints, but the template exten-
sion enables the formulation of generic templates for such
types and constraints. These are then instantiated for con-
crete types of a domain. An example of a type template is the
range template, that describes typical ways for specifying
range values in forms. In the real estate domain it is instanti-
ated, e.g., for price and various room ranges. In the used car
domain, we also find ranges for engine size, mileage, etc.
Thus, creating a domain schema is in many cases as easy
as importing common types and instantiating templates, see
Section 6.

The form understanding part of OPAL is complemented
with a form integration to translate a given query on the do-
main schema into queries on concrete forms. To do so, we
construct an OPAL form model to map the constraints of the
given query to fields and fillings on the concrete form. If a
constraint cannot be mapped precisely, we find with stan-
dard similarity techniques the closest, inclusive option (in

Algorithm 1: FieldScopeLabelling(DOM P)
1 foreach field f in P do
2 n← f ;
3 while n has a parent do
4 if n is already coloured then colour n red; break;
5 colour n orange;
6 n← parent of n;

7 F ← empty form labeling ;
8 foreach field f in P do
9 n← new leaf node in F ;

10 Re(n)← f ;
11 if ∃l ∈ P with for attribute referencing f then
12 assign all text node descendants of l as labels to n ;

13 p← parent of f ;
14 while p not coloured red do
15 f ← p; p← parent of f ;

16 assign all text node descendants of f as labels to n ;

case of numerical types) or just the closest option (in case of
categorial types), see Section 7.

4 Form Labeling

In OPAL, form labeling is split into three scopes. Each scope
is focused on a particular class of features (e.g., visual, struc-
tural, textual). The form labeling scopes, field, segment, and
layout scope, use domain-independent labeling techniques
to associate form fields or segments with textual labels,
building a form labeling F . If a domain schema is avail-
able, the form labeling is extended to a form model in the
domain-dependent analysis (Section 5).

The form labeling F is constructed bottom-up, applying
each scope’s technique in sequence to yet unlabelled fields.
Whenever a field is labelled at a certain scope level, further
scopes do not consider this field again. This precedence or-
der reflects higher confidence in earlier scopes and addresses
competing label assignments.

4.1 Field Scope

Based on the DOM tree of the input page, the field scope
assigns text nodes in a unique structural relation to individ-
ual fields as labels to these fields (see Algorithm 1). It relies
on the observation that, if a text node shares a sub-tree of
the DOM with a single field only, then that text node is most
likely related to that field. This simple observation produces
a significant portion of form labels, as shown in Section 8,
and is designed to produce nearly no false positives, as also
verified in Section 8 (Table 1).

Specifically, Algorithm 1 (1) colours (lines 1–6) all
nodes in P that are ancestors of a field and do not have other
form fields as descendants in orange. The least ancestor that
violates that condition is coloured red. (2) It identifies (line
7–10) all form fields and initialises the form labeling F with
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Algorithm 2: SegmentTree(DOM P)
1 P′← P;
2 while ∃n ∈ SEGMENTS′P :

(
6 ∃ field d : descendant(d,n) ∈ P′

)
do

3 delete n and all incident edges from P′;

4 while ∃n ∈ P′ : |{c ∈ P′ : child(c,n) ∈ P′}|= 1 do
5 delete n from P′ and move its child to the parent of n;

6 foreach inner node n in P′ in bottom-up order do
7 C←{ f : child( f ,n) ∈ P′∧ f is a field};
8 C←C∪{Representative(n′) : child(n′,n) ∈ P′}} ;
9 choose r ∈C arbitrarily ;

10 if ∀r′ ∈C : r style-equivalent to r′ then
11 Representative(n)← r;
12 delete n’s segment children moving their children to n;

13 else Representative(n)←⊥ ;

14 return P′;

one leaf node for each such field. (3) It considers (lines 11–
12) explicit HTML label elements with direct reference to
a form field. (4) It labels (lines 13–16) each field f with all
text nodes t whose least common ancestor with f has no
other form field as descendant. This includes all text nodes
t in the content of f such as its values (in case of select,
input, or textarea elements), since the least common an-
cestor of t and f is f itself.

4.2 Segment Scope

At segment scope, the labeling analysis expands from in-
dividual fields to form segments, i.e., groups of consecu-
tive fields with a common parent, forming the segment tree
(Algorithm 2). These segments are then used to distribute
text nodes to unlabeled fields in that segment (Algorithm 3).
At this scope, we approximate form segments through the
DOM structure and the style of the contained fields. This
segmentation is later adjusted to yield only form segments
with a clear semantic. It is worth noting, that on many forms
only very few adjustments are necessary, supporting the ve-
racity of the approximation of semantic segments through
structure and style.

Segmentation tree. We observe that the DOM is often a fair,
but noisy approximation of the semantic form structure, as
it reflects the way the form author grouped fields into seg-
ments. Therefore, we start from the DOM structure to find
the form segments, but we eliminate all nodes that can be
safely identified as superfluous: nodes without field descen-
dants, nodes with only one child, and nodes n where all
fields in n are style-equivalent to the fields in the siblings
of n. Two fields are style-equivalent if they carry the same
class attribute (indicating a formatting or semantic class) or
the same type attribute and CSS style information.

If all field descendants of the parent of an inner node n
are style-equivalent, then n should be eliminated from the
segment tree, as it artificially breaks up the sequence of
style-equivalent fields and is thus equivalence breaking.

Segment TreeDOM Tree

1 2 3 4 5

Fig. 4: Example DOM and Segment Tree

Definition 7 The segment tree P′ of a form page P is the
maximal DOM tree included in P (i.e., obtained by collaps-
ing nodes) such that the leaves of P′ are all fields and, for all
its inner nodes n,
(1)

∣∣{c ∈ P′ : child(c,n)}
∣∣> 1,

(2) n is not equivalence breaking.

As an example, consider the DOM tree on the left of Fig-
ure 4, where diamonds represent fields and style-equivalent
fields carry the same colour. On the right hand side, we show
OPAL’s segment tree for that DOM. Nodes 1 and 3 from the
original DOM are eliminated as they have only one child,
and node 2 as it is equivalence breaking. Nodes 4 and 5 are
retained due to the red field.

Algorithm 2 computes the segment tree P′ for any DOM
tree P. Its leafs are fields (as any non field leafs are elimi-
nated in line 2–3) and any inner node must have more than
one child (due to line 4–5), a field descendant (due to line
2–3), and not be equivalence breaking (due to lines 6–13).
In lines 6–13, we compute a Representative, bearing the style
prevalent among the inner node’s fields, for each inner node
in a bottom-up fashion: If all field children (line 7) and
the representatives of all inner children (line 8) are style-
equivalent (line 9–10), we choose an arbitrary representa-
tive and collapse all inner children of that node. Note, that it
suffices to compare any of the representatives with the fields
in C as style-equivalence is transitive. Otherwise, we assign
⊥ as representative, which is style-equivalent neither to any
node nor to itself. Thus it prevents this node (and its an-
cestors) from ever being collapsed. By construction, these
nodes respect (1) and (2) and this property is retained in all
later steps, as their subtrees are never touched again.

P′ is maximal: Any tree P′′ that includes P′ but is in-
cluded in P must contain at least one node from P that has
been deleted by one of the above conditions. Such a node,
however, violates at least one of the conditions for a segment
tree and thus P′′ is not a segment tree. This holds because the
order of the node deletions does not affect the nodes deleted.

Segment Labeling. We extend the existing form labeling
F of the field scope with form segments according to the
structure of the segment tree and distribute labels in reg-
ular groups, see Algorithm 3. First (lines 2–5), we create
a form segment node s in the form labeling for each inner
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Algorithm 3: SegmentLabeling(DOM P,Form Labeling F)

1 S← SegmentTree(P) ;
2 foreach inner node s in S in bottom-up order do
3 create a new segment ns in F ;
4 Re(ns)← s;
5 create an edge (ns,cs) in F for every Re(cs) child of s;

6 foreach segment n in F do
7 Nodes,Labels← new List();
8 textG← /0 ;
9 foreach c : Rdescendant(c,Re(n)) ∈ P in document order do

10 if ∃ f ∈ F : Re( f ) = c∧La( f ) = /0 then
11 if textG 6= /0 then Labels.add(textG); textG← /0;
12 Nodes.add(c);
13 skip all descendants of c in the iteration ;

14 else if c is a text node ∧ 6 ∃d ∈ F : c ∈ La(d) then
15 textG← textG∪{c};

16 if textG 6= /0 then Labels.add(textG); textG← /0;
17 if Labels.size() = Nodes.size()+1 then
18 add Labels[0] to La(n);
19 delete Labels[0] from Labels;

20 if Labels.size() = Nodes.size() then
21 foreach i do add Labels[i] to La(Nodes[i]);

11

1

2

32

3

4

4

85

5

6

7 876

Fig. 5: Example for Segment Scope Labeling

node ns in the segment tree and choose ns as representative
for s (Re(s) = ns). For each segment with regular interleav-
ing of text nodes with field or segment nodes, we use those
text nodes as labels for these nodes, preserving any already
assigned labels and fields (from field scope). In detail, we
iterate over all descendants c of each segment in document
order, skipping any nodes that are descendants of another
segment or field itself contained in n (line 13). In the itera-
tion, we collect all field or segment nodes in Nodes, and all
sets of text nodes between field or segment nodes in Labels,
except those already assigned in field scope (line 14), as we
assume that these are outliers in the regular structure of the
segment. We assign the i-th text node group to the i-th field,
if the two lists have the same size (possibly using the first
group as labels of the segment, line 17–19).

Figure 5 illustrates the segment scope labeling with tri-
angles standing for text nodes, diamonds for fields, black
circles for segments, and white circles for DOM nodes not
in the segment tree. The numbers indicate which text nodes
are assigned as labels to which segments or fields. E.g., for

the left hand segment, we observe a regular structure of (text
node+, field)+ and thus we assign the i-th group of text
nodes to the i-th field. For the right hand segment (4), we
find a subsegment (5) and field 8 that is already labeled with
text node 8 in the field scope. Thus 8 is ignored and only one
text node remains directly in 4, which becomes the segment
label. In 5, we find one more text node group than fields
and thus consider the first text node group as a segment la-
bel. The remaining nodes have a regular structure (field, text
node+)+ and get assigned accordingly.

4.3 Layout Scope

At layout scope, we further refine the form labeling for each
form field not yet labelled in field or segment scope, by
exploring the visible text nodes in the west, north-west, or
north quadrant, if they are not overshadowed by any other
field. To avoid false positives, we limit this search to the
boundaries of the enclosing form. First, OPAL constructs a
layout tree from the CSS box labels of the DOM nodes:

Definition 8 The layout tree of a given DOM P is a tuple
(NP,C,w,nw,n,ne,e,se,s,sw,aligned) where NP is the set of
DOM nodes from P, C,w,nw,n, . . . the “belongs to” (con-
tainment), west, north-west, north, . . . relations from RCR
[23], and aligned(x,y) holds if x and y have the same height
and are horizontally aligned.

We call w,nw, . . . the neighbour relations. For conve-
nience, we write, e.g., w-nw-n to denote the union of the re-
lations w, nw, and n.

In cultures with left-to-right reading direction, we ob-
serve a strong preference for placing labels in the w-nw-n re-
gion from a field. However, forms often have many fields
interspersed with field labels and segment labels. Thus we
have to carefully consider overshadowing. Intuitively, for a
field f , a visible text node t is overshadowed by another field
f ′ if t is above f ′ or also visible from, but closer to f ′. In the
particular case of aligned fields, the former would prevent
any labeling for these fields and thus we relax the condition.

Definition 9 For a given text node t, a field f ′ overshadows
another field f if
(1) f and f ′ are unaligned, w-nw-n( f ′, f ), and

w-nw-n-ne-e(t, f ′) or
(2) f and f ′ are aligned and (i) w(t, f ′) or (ii) nw-n(t, f ′) and

there is a text node t ′ not overshadowed by another field
with ne-e(t ′, f ′) and w-nw-n(t ′, f ).

To illustrate this overshadowing, consider the example in
Figure 6. For field F1, T2 and T4 are overshadowed by F2 and
T3 by F3, only T1 is not overshadowed, as there is no other
text node that is west, north-west, or north from F1 and not
overshadowed by another field.

The layout scope labeling is then produced as follows:
For each field f , we collect all text nodes t with w-nw-n(t, f )
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Fig. 6: Layout Scope Labeling

and add them as labels to f if they are not overshadowed
by another field and not contained in a segment that is no
ancestor of f . The latter prevents assignment of labels from
unrelated form segments.

4.4 Form labeling complexity

The complexity of the form labelling task is the maximum
among the complexities of field-scope, segment-scope and
layout-scope labelling tasks.

Theorem 1 Given a page P, a form-labeling F for P can be
computed in polynomial time in the size of P.

Proof Given a DOM P with n nodes of depth d, we prove
the complexity of the three domain independent scopes in-
dividually: (1) Field scope: Algorithm 1 runs in timeO(n2),
as both loops in Algorithm 1 iterate over the nodes of P and
the loop bodies are linear in n. (2) Segment scope: In Al-
gorithm 3, OPAL computes the segment tree in Line 1 and
expands the labeling with the found segments in Lines 2–
5, all running in time O(n× d). Then, the propagation of
segment labels (Lines 6–21) iterates over the descendants of
each segment s (potentially all the remaining segments but s
and its ancestors), thus leading to the final segment labelling
after O(n2) steps, as there are at most n segments. OPAL

computes the segment tree with Algorithm 2: Lines 2–3 are
in O(n). Lines 4–5 and Lines 6–13 are both in O(n×d) as
they are dominated by the collapsing of the nodes. At most,
we collapse d− 2 inner nodes and move O(n) leaves d− 2
times. (3) Layout scope: The remaining labels can be com-
puted in O(n2 + t × f 2) = O(n3) with t and f the number
of text nodes and fields respectively in P. OPAL first com-
putes all neighborhood relations and the layout tree in time
O(n2). Second, OPAL computes the overshadowing relation
by inspecting the text nodes in P from west to east, each
time checking the conditions of Definition 9 for each pair of
form fields, yielding O(t× f 2) in complexity.

5 Form Interpretation

There is no straightforward relationship between domain
concepts, such as location or price, and the structure of

their implementation on a form. Even seemingly domain-
independent concepts, such as price, often exhibit domain
specific peculiarities, such as “guide price”, “current offers
in excess”, or payment periods in real estate. OPAL’s do-
main schemata allow for covering these specifics. Recall
from Section 2 that a form model (F ′,τ) for schema Σ is
derived from a labeling F by extending F with types and
restructuring it to satisfy the segment constraints of Σ .

OPAL performs form interpretation of a form labeling F
in two steps: (1) the classification of fields and segments
in F according to the domain types F and S to obtain a
(partial) typing τP. This step relies on an annotation schema
and its typing of fields in F based on the constraints in CF ;
(2) the model repair where the segmentation structure de-
rived in the segmentation scope (Section 4.2) is aligned with
the segment constraints CS of Σ to complete the typing.

The effort for creating an OPAL domain schema may, at
the first glance, appear considerable. However, not only do
we provide OPAL-TL (Section 5.1) to ease the specification
of a domain schema, we also discuss in Section 6 how all the
artefacts needed by OPAL for a new domain can be nearly
automatically derived from a standard ontology of a domain
(including concept labels) and a set of entity recognisers (or
annotators) for instances of the concepts. We illustrate this
methodology for domain instantiation along the example of
the used car domain.

Annotations. To bridge the gap from labeling to interpreta-
tion, OPAL annotates values (“£200”) and labels (“price”).

Definition 10 An annotation schema Λ =
(
A,@,≺,

(isLabela, isValuea : a ∈ A)
)

defines a set A of annotation
types, a transitive, reflexive subclass relation @, a transitive,
irreflexive, antisymmetric precedence relation ≺, and two
characteristic functions isLabela and isValuea on text nodes
for each a ∈ A.

For example, for type price ∈ A, isLabelprice(“Price:”)
and isValueprice(“more than £500”) holds. The @ relation de-
scribes subtypes, e.g., postcode @ location, and the ≺ relation
defines precedence on annotation types for disambiguating
competing annotations. A select box offering “Choose sort-
ing order”, “By price”, and “By postcode” may be anno-
tated with order-by , price, and postcode. If order-by ≺ price and
order-by ≺ postcode, OPAL picks order-by .

5.1 Schema Design: OPAL-TL

OPAL provides a template language, OPAL-TL, for easily
specifying domain schemata reusing common concepts and
their constraints as well as concept templates. To implement
a new domain, we only need to provide (1) for each annota-
tion type a an annotator implementing isLabela and isValuea
and (2) an OPAL-TL specification of the field and segment
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types through their field and segment constraints. The latter
can be derived almost mechanically from the domain types
as discussed in Section 6.

Annotation types and their queries. Annotations (instances
of annotation types) are characterised by an external specifi-
cation of the characteristic functions isLabela and isValuea for
each a ∈ A. In the current version of OPAL, these functions
are either implemented with GATE (gate.ac.uk) gazetteers
and transducers, that are provided by human domain experts,
or realised by access to external annotators and knowledge
bases such as DBPedia and Freebase. Together they provide
annotators for common domain types such as price, loca-
tion, or date. Additional entity recognisers or annotators can
be added easily, as described in Section 6.

Annotation queries select fields based on annotations
which are associated with their own labels or with labels
on their enclosing segments. Intuitively, an annotation query
X@A returns all fields labeled with a text node that is an-
notated with A. If the modifier d (direct) is not present, we
also consider immediate segment parents, otherwise only di-
rect labels are considered (this defines the allowed labels
for modifier µ , Allowedµ in Definition 11). If the modifier
p (proper) is present, only isLabelA is used, otherwise also
isValueA. Together with Allowedµ , this establishes the full
set of matching labels Mµ . If the modifier e (exclusive) is
present, a node that fullfils all other conditions is still not
returned, if there are more labels with annotations of a type
that has precedence over A. If the modifier m (maximal) is
present, no other type, regardless of precedence, may have
more labels with annotations at the node. Since m excludes
strictly more nodes than e, a query with both m and e re-
turns the same nodes as that query without e. Nodes where
labels for A do not match these conditions for modifier µ are
collected in Blockµ .

Definition 11 For a form labeling F on a DOM P and
an annotation schema Λ with annotation types A, an
OPAL-TL annotation query is an expression of the form
X@A{d, p,e,m} where X is a first-order variable, A ∈ A,
and d, p, e, and m are annotation modifiers. An annotation
query X@Aµ with µ ⊆{d, p,e,m} holds for X ∈ JAµ K with

JAµ K = {n ∈ FIELDSF : Mµ(A,n) 6= /0}\Blockµ(A)

Mµ (A,n) =


Allowedµ (n)∩

⋃
A′@∗A

isLabelA′ if p ∈ µ

Allowedµ (n)∩
⋃

A′@∗A

(isLabelA′ ∪ isValueA′ ) otherwise

Blockµ (A) =


{n : ∃A′ 6= A : |Mµ (A,n)|< |Mµ (A′,n)|} if m ∈ µ

{n : ∃A′ ≺ A : |Mµ (A,n)|< |Mµ (A′,n)|} if e ∈ µ

/0 otherwise

Allowedµ (n) =

{
La(n) if d ∈ µ

La(n)∪La(parent of n) otherwise

A A

AA

B

B

C

3

42

1

Fig. 7: Example Form Labeling

order-by
order-by

price
price

order by
order-by

order-by
bedroom
bedroom

y
order-by

price

min max

order-by
order-by

price
price

order by
order-by

order-by
bedroom
bedroom

y
order-by

Fig. 8: Label Annotation Examples

Consider the form labeling of Figure 7 under a schema
with B ≺ A. Labels are denoted with triangles, fields with di-
amonds, segments with circles. Labels are further annotated
with matching annotation types (here always only one), with
value labels drawn as outlines only. Then, X@A{} matches
3,4; X@A{e,d} matches 4, but not 3 as 3 has more la-
bels of B than of A and the exclusive modifier e is present;
X@A{e, p} matches 3, but not 4 as the proper modifier p
prevents the value labels in white to be considered. The lat-
ter matches 3 despite the presence of e, as we consider also
the labels of the parent of 3 (since the direct modifier d is
absent) and thus there are two A labels.

Figure 8 shows two real-life example with the annota-
tions produced by a typical set of annotators. In the upper
part, there are two text inputs for min and max price. How-
ever, the two labels “min” and “max” are the only directly
associated text boxes and do not carry any information that
indicates that these fields are about prices. This is available
only when considering the segment label “Price:”. Thus,
X@price{d} returns the emptyset, but X@price{} returns the
two fields. In the lower part, the drop-down menu for result
ordering receives two price annotations, two bedroom anno-
tations, and five order-by annotations. With order-by ≺ price,
X@price{e} returns the emptyset, as the price annotations
are “blocked” by the order-by annotations.

OPAL-TL templates. OPAL-TL extends Datalog with tem-
plates and predefined predicates for querying annotations
and DOM nodes. Relations from F and P (as introduced
in Section 2) are made accessible to OPAL-TL in the ob-
vious way. Examples of templates are basic classification
rules defining a field type from a conjunction of annotation
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queries, or templates capturing the relationship among mul-
tiple fields with related annotations, e.g., min-max ranges. In
general, there are two types of such templates, one for field
constraints, one for segment constraints. The former specify
relationships between field and annotation types, the latter
the structure of field and segment types.
Definition 12 An OPAL-TL template is an expression of
the form: TEMPLATE N<T1, . . . ,Tk> { p1 ⇐ expr1. . . . } where N
is the template name, T1, . . . ,Tk are template variables, p1
is a template atom, expr1 a boolean formula over template
atoms and annotation queries. A template atom p<t>(s) con-
sists of a first-order predicate p, a sequence of terms =

t1, . . . , tn} (where ti is either a constant or a template vari-
able), and a sequence of terms s = s1, . . . ,sn where each si is
either a constant or a first-order variable. Template and first-
order variables constitute two disjoint sets. If t is empty, then
a template atom is a normal first-order atom, and if all terms
t are constants, the atom is called template-ground.
Multiple rules with the same head express disjunction of
their bodies. For convenience, we use ∨ and ¬ over con-
junctions, which are translated to Datalog¬ as usual.

As an example, the following template defines a fam-
ily of constraints that associate the field type C to a field
N whenever N is labeled by an exclusive direct and proper
annotation of type A.

TEMPLATE basic_field<C,A>{ field<C>(N)⇐N@A{d,e,p} }

An instantiation of a template tpl produces a set of rules
where the template variables C1, . . . ,Ck are assigned to val-
ues vi

1, . . . ,v
i
k defined by a template instantiation expression

of the form:

INSTANTIATE tpl<T1, . . . ,Tk> using {<v1
1, . . . ,v

1
k> . . . <vn

1, . . . ,v
n
k>}

For example, the following expression instantiates
basic_field replacing C with type RADIUS and A with anno-
tation type radius

INSTANTIATE basic_field<C,A> using {<RADIUS, radius>}

and produces the following instantiated rule:

field<RADIUS>(N)⇐N@radius{d,e,p}

The full syntax of OPAL-TL is given in Figure 9, with
〈string〉, 〈id〉, and 〈var〉 as in Datalog and 〈tvar〉, 〈type-id〉,
〈annot-id〉, 〈tag〉 template variables, domain types, annota-
tion types, and HTML tags, respectively.

The semantics of OPAL-TL is given by rewriting a set
of templates ΣT into Datalog¬ programs, assigning tem-
plate variables to constants as specified by the instantiation
rules to consider every template-ground predicate name as
new first-order predicate. Due to possible occurrences of
INSTANTIATE within templates, the instantiation must be re-
peated until there are no applicable INSTANTIATE rules. To en-
sure termination of the instantiation procedure, we do not

〈program〉 ::= (〈template〉 | 〈inst〉 | 〈trule〉 )+
〈template〉 ::= ‘TEMPLATE’ 〈id〉 ‘<’ 〈tvar〉+ ‘>’ ‘{’ 〈trule〉+ ‘}’
〈inst〉 ::= ‘INSTANTIATE’ 〈id〉 ‘<’ 〈tvar〉+ ‘>’

‘using’ ‘{’ (‘<’ 〈const〉+ ‘>’)+ ‘}’
〈trule〉 ::= 〈tatom〉 ‘←’ 〈tbody〉 | 〈inst〉
〈tbody〉 ::= 〈texpr〉 (‘,’ 〈texpr〉)*
〈texpr〉 ::= 〈atom〉 | 〈annot〉 | 〈tatom〉 | 〈neg〉 | 〈disj〉
〈annot〉 ::= 〈var〉‘@’ ‘{’ (‘d’ | ‘e’ | ‘p’ | ‘m’)* ‘}’
〈tatom〉 ::= 〈id〉 ‘<’ (〈tvar〉 | 〈const〉)+ ‘>’ ‘(’ 〈par〉* ‘)’

| ‘<’ 〈tvar〉 ‘>’ ‘(’ 〈par〉* ‘)’
〈par〉 ::= 〈var〉 | 〈tvar〉 | 〈const〉
〈const〉 ::= 〈type-id〉 | 〈annot-id〉 | 〈tag〉 | 〈string〉 | 〈id〉
〈neg〉 ::= ‘¬’ ‘(’ 〈tbody〉 ‘)’
〈disj〉 ::= ‘(’ 〈tbody〉 ‘∨’ 〈tbody〉 ‘)’

Fig. 9: OPAL-TL syntax

allow recursive template instantiations. Properties such as
safety can be easily extended from Datalog¬ to OPAL-TL:

Definition 13 A OPAL-TL template is safe, if every tem-
plate variable that occurs in the body also occurs in the head
of the template and every rule is safe, i.e., all first-order vari-
ables that occur in the head or in a negative atom in the body,
also occur in a positive atom in the body.

In contrast to safety, stratification depends on the instan-
tiation and is defined over the expanded program as usual.

Proposition 1 Let ΣT be a set of safe OPAL-TL templates,
and let I be a set of OPAL-TL instantiation rules, then any
instantiation 〈ΣT ,I〉 is a safe Datalog¬ program.

Proof Let T be a safe OPAL-TL template with template vari-
ables v1, . . . ,vk. Recall, that any instantiation of T must bind
all variables in the head of T to constants. Since T is safe, all
template variables in the body also occur in the head and the
instantiation yields rules, where all template variables are
replaced by constants and thus are safe. Since T is safe, all
first order variables are safe by definition and so is 〈ΣT ,I〉.

5.2 Field Classification

Field classification is based on the field constraints CF of
the domain schema Σ . These constraints are specified in
OPAL-TL to enable reuse of field types and templates. For
instance, in the real estate and used car domains, we iden-
tify four templates that suffice to describe nearly all field
constraints. These templates effectively capture very com-
mon semantic entities in forms and are parametrized using
domain knowledge. The building blocks are a field type C
and an annotation type A that is used to define a field con-
straint for C. None of these templates uses more than one
annotation type as template parameter, though many query
additional (but fixed) annotation types in their bodies.
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1 TEMPLATE field_by_proper<C,A> {field<C>(N)⇐N@A{d,e,p}}

2

3 TEMPLATE field_by_segment<C,A>{field<C>(N)⇐N@A{e,p}}

4

5 TEMPLATE field_by_value<C,A> {field<C>(N)⇐N@A{m},

6 ¬(A1 6= A, N@A1{d,e,p}∨ N@A1{e,p}) }

7

8 TEMPLATE field_minmax<C,CM,A> {

9 field<CM>(N1)⇐child(N1,G),child(N2,G),adjacent(N1,N2),

10 N1@A{e,d},(field<C>(N2)∨ N2@A{e,d})

11 field<CM>(N2)⇐child(N1,G),child(N2,G),next(N2,N1),

12 field<C>(N1),N2@range_connector{e,d},¬(A1≺ A,N2@A1{d})

13 field<CM>(N1)⇐child(N1,G),child(N2,G),adjacent(N1,N2),

14 N1@A{e,p},N2@A{e,p},
(
(N1@min{e,p},N2@max{e,p})

15 ∨ (N1@max{e,p},N2@min{e,p})
)

Fig. 10: OPAL-TL field classification templates

Figure 10 shows the field classification templates for
real-estate and used car: (1) Field by proper label. The first
template captures direct classification of a field N with type
C, if N matches X@A{d,e,p}, i.e., has more proper labels of
type A than of any other type A′ with A′ ≺ A. This template
is used by far most frequently, primarily for types with un-
ambiguous proper labels. (2) Field by segment label. The
second template relaxes the requirement by considering also
indirect labels (i.e., labels of the parent segment). In the real
estate and used car domains, this template is instantiated pri-
marily for control fields such as ORDER_BY or DISPLAY_METHOD

(grid, list, map) where the possible values of the field are of-
ten misleading (e.g., an ORDER_BY field may contain “price”,
“location”, etc. as values). (3) Field by value label. The
third template also considers value labels, but only if neither
the first nor the second template can match. In that case, we
infer that a field has type C, if the majority of its direct or in-
direct, value or proper labels are annotated with A. (4) Min-
max field. Web forms often show pairs of fields representing
min-max values for a feature (e.g., the number of bedrooms
of a property). We specify this template with three simple
rules (Line 5–12), that describe three configurations of seg-
ments with fields associated with value labels only (proper
labels are captured by the first two templates). It is the only
template with two template parameters, C and CM where
CM @C is the “minmax” variant of C. The first locates, adja-
cent pairs of such nodes or a single such node and one that is
already classified as C. The second rule locates nodes where
the second follows directly the first (already classified with
C), has a range_connector (e.g., “from” or “to”), and is not an-
notated with an annotation type with precedence over A. The
last rule also locates adjacent pairs of such nodes and classi-
fies them with CM if they carry a combination of min and max

annotations.

In addition to these templates, there is also a small num-
ber of specific rules. In the real estate domain, e.g., we use

1 TEMPLATE segment<C>{

2 segment<C>(G)⇐lone<C>(G),child(N1,G),¬
(
child(N2,G),

3 ¬(C1 –� C, field<C1>(N2)∨ segment<C1>(N2))
)
}

4

5 TEMPLATE segment_range<C,CM> {

6 segment<C>(G)⇐lone<C>(G),field<CM>(N1),

7 field<CM>(N2),N1 6= N2,child(N1,G),child(N2,G) }

8

9 TEMPLATE segment_with_unique<C,U> {

10 segment<C>(G)⇐lone<C>(G),child(N1,G),field<U>(N1),

11 ¬
(
C1 –� C, child(N2,G), N1 6= N2,

12 ¬(field<C1>(N2)∨segment<C1>(N2))
)
.}

13

14 TEMPLATE lone<C>{

15 lone<C>(G)⇐child(N,G),(segment<C>(N)∨ field<C>(N)),
16 ¬(adjacent(G, G′), segment<C>(G′)). }

Fig. 11: OPAL-TL segment constraints

the following rule to describe forms that use links (a ele-
ments) for submission (rather than submit buttons). Identi-
fying such a link (without probing and analysis of Javascript
event handlers) is performed based on an annotation type
for typical content, title (i.e., tooltip), or alt attribute of
contained images. This is mostly, but not entirely domain
independent (e.g., in real estate a there is a “rent” link).

field<LINK_BUTTON>(N1)⇐form(F),descendant(N1,F),link(N1),

N1@LINK_BUTTON{d},¬
(
descendant(N2,F),

(field<BUTTON>(N2)∨ next(N1,N2))
)

5.3 Segment Classification

As for field constraints, we use OPAL-TL to specify the seg-
ment constraints. The segment constraints and templates in
the real estate and used car domains are shown in Figure 11
(omitting only the instantiation as in the field case). All seg-
ment templates require that the segment has at least one
C child and is the lone C segment among its siblings (see
lone<C>(G)). (1) Basic segment. A segment is a C segment, if
its children are only other segments or fields typed with C.
This is the dominant segmentation rules, used, e.g., for ROOM,
PRICE, or PROPERTY_TYPE in the real estate domain. (2) Minmax
segment. A segment is a C segment, if it has at least two
field children typed with CM where CM @ C is the minmax
type for C. This is used, e.g., for PRICE and BEDROOM range seg-
ments. (3) Segment with mandatory unique. A segment is a
C segment, if its children are only segments or fields typed
with C except for one (mandatory) field child typed with
U where U 6@ C. This is used, e.g., for GEOGRAPHY segments
where only one RADIUS may occur.
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location bedroombedroombedroombedroombedroom min price max price
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Fig. 12: Farlowestates before model repair

5.4 Model Repair

The classification yields a form interpretation F , that is not
necessarily a model under Σ , and may contain violations of
segment constraints, e.g., due to missing or superfluous seg-
ment nodes that resulting from a badly structured DOM tree.
Recall (from Section 2), that we aim for a form model that
is complete w.r.t. the suitable labels and types. Since “suit-
ability” is up to human judgement, we can only hope to ap-
proximate it in the model repair by introducing types where
they are “obviously” missing and removing them where they
are “obviously” superfluous. To approximate suitability, we
focus on single-type defects, i.e., defects where a repair for
defects of a single type suffices to obtain a configuration for
n that satisfies τ(n). For example, if a segment s has a defect
A for type t and a defect B for type t ′, then we assume that
repairing A or B alone yields an s′ with s′ |= τ(s′). Other de-
fects are treated by simply dropping the violating types. As
demonstrated in Section 8, this suffices to obtain most suit-
able form types while avoiding unsuitable types introduced
by complex repair sequences.

Let s be a segment with s 6|= τ(s). Then there is a type t
such that s 6|= t and we distinguish five types of defects for t:

(1) Under Classification: If there are untyped children
c1, . . . ,ck of s and corresponding types t1, . . . , tk, such that
s |= τ(s) would hold if each ci is typed with ti and ci |=
τ(ci)∪{ti}, then we call s under classified.

(2) Over Classification: If there are children c1, . . . ,ck
of s typed with t1, . . . , tk and s |= τ(s) would hold, if each
ci is not typed as ti, and each ci is also typed with a type
different from ti, then we call s over classified.

(3) Under Segmentation: If there is a segment s and a
partition P1, . . . ,Pk,Prest of its children, such that each Pi –
wrapped in a new segment – satisfies CS(ti), and s with ad-
ditional segment children of type {t1, . . . , tk} satisfies τ(s),
then s is said to be under segmented.

(4) Over Segmentation: If there are children c1, . . . ,ck
of s such that s |= τ(s) would hold after deleting all ci and
moving their children to s, then we call s over segmented.

(5) Miss Classification: Otherwise, s is miss classified.

Algorithm 4: ModelRepair(Form interpretation F)

1 for k← height(F) down to 0 do
2 foreach segment s at depth k do
3 Forig← F ;
4 Fmax = F with all types for s removed;
5 foreach t ∈ τ(s) do
6 if under classified then type ci with ti;
7 else if over classified then remove ti from ci;
8 else if over segmented then
9 delete each ci moving the children to s;

10 else if under segmented then
11 wrap Pi in segment ci typed ti;

12 if score(F)> score(Fmax) then
13 Fmax← F ;

14 F ← Forig;

15 F ← Fmax;
16 if τ(s) = /0 then delete s moving children up;

As stated above, we assume only simple repairs and
thus at most one defect for a single type at each node.
This still allows single-type defects for different types. To
choose between the possible repairs, we use a simple scoring
of form interpretations which favours more over less types
and less over more segments: score(F) = ∑n∈F |τ(n)| −
|SEGMENTSF |. Algorithm 4 shows OPAL’s approach to re-
pair single-type defects. It iterates over all segments in a
bottom-up fashion (Lines 1–2). For each segment s it con-
siders single-type defects for each type (Lines 6–11) and
determines which repair yields the highest scoring form in-
terpretation (Lines 12–13). It also compares those with the
case where all types for s are removed (Lines 4). The highest
scoring repair is finally applied (Line 15) and segments that
are untyped after the repair are deleted (Line 16).

Figure 12 shows the segmentation and classification
OPAL obtains for a fairly complex real-estate form before
model repair with several problems:

(1) The min_price and max_price fields are not arranged
into a range segment as no such node is present in the
DOM. This is a case of under segmentation. Following the
segment_range constraint, OPAL introduces a price range seg-
ment to include both fields.
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(2) The four radio buttons under “order by” are of dif-
ferent domain types, i.e., ORDER_BY for the first two and DISPLAY

for the last two. Due to field_by_segment from Figure 10 and
the segment label “order by”, the last two would also be clas-
sified as ORDER_BY, if not for DISPLAY ≺ ORDER_BY. This is an
example of under segmentation, where OPAL needs to split
the existing segment as it is not supported by a segment con-
straint, but there are subsequences of children that can form
valid segments.

(3) Having the four radio buttons grouped together, the
last two buttons are also typed as ORDER_BY in addition to
DISPLAY. OPAL resolves this over classification by removing
ORDER_BY following the restructuring of the segment.

(4) The PROPERTY_TYPE segment is subdivided into two
segments in the original segmentation, since OPAL identi-
fies no style-equivalence among the six check boxes due to
lack of similarity. However, two segments of PROPERTY_TYPE

can not be contained in a single parent segment, see Fig-
ure 11. Thus, the two segments are removed, placing their
children in the surrounding segment. This is an example of
over segmentation.

(5) The original segmentation preserves the two DOM
nodes representing the two form rows. However, in the do-
main schema, these nodes do not carry meaning, and thus
are treated as over segmentation and removed.

5.5 Form interpretation complexity

The complexity of form interpretation is determined by the
complexity of fact inference in safe OPAL-TL: Given safe
OPAL-TL templates ΣT , their instantiations I, a set of atoms
D and a single atom a, decide whether D ∪ 〈ΣT ,I〉 |= a
holds, where 〈ΣT ,I〉 denotes the Datalog¬ program ob-
tained by instantiating ΣT with I. Hence, it is natural to ask
whether OPAL-TL increases the complexity of fact-inference
wrt. Datalog¬. The following results show that this is not the
case.

Proposition 2 Fact inference in OPAL-TL is PTIME-
complete in data complexity (when ΣT and I are fixed) and
EXPTIME-complete in combined complexity.

Proof As each instantiation I yields a Datalog¬ program
〈ΣT ,I〉, the data complexity is PTIME-complete as for
Datalog¬. Regarding the combined complexity, recall that
fact inference for a Datalog¬ program 〈ΣT ,I〉 and a set of
atoms D is EXPTIME-complete, since the maximum num-
ber of inferrable atoms is | R | dom(D)w where R is the set
of predicates in 〈ΣT ,I〉, dom(D) is the domain of D and
w is the maximum arity of predicates in R. The rewriting
〈ΣT ,I〉 generates at most | RT | ·|I|k template-ground atoms
if k is the maximum template arity. Therefore, the number of
atoms that can be generated is O(2k · 2w) that is still expo-
nential. The claim follows.

Proposition 3 Given a form interpretation where all fields
are typed and satisfy their constraints, OPAL’s model repair
yields a form model with correctly classified segments in
polynomial time (when ΣT and I are fixed).

Proof We show that Algorithm 4 yields in polynomial time
a form interpretation that is a form model.

First, note that OPAL-TL segment and field constraints
only access siblings and children of the constrained node.

The bottom-up traversal in Algorithm 4 ensures that all
children satisfy their type constraints before considering the
parent segment. Furthermore, all repairs require that all in-
volved nodes (segment and children) satisfy their type con-
straints after the repair, as we only consider single-type con-
straint violations (1)–(4). This is explicitly ensured, except
for removing all types (Lines 4) or deleting untyped seg-
ments (Line 16). However, all OPAL-TL constraints are such
that they do not access the type of the parent segment (only
those of the siblings and children). Thus, the constraints on
the children remain satisfied.

Algorithm 4 requires at mostO(|F |2×|CS |2) time. More
specifically, it processes each segment s in F at most once,
performing for each segment up to |τ(s)| ≤ |CS | repairs and
scorings, each in O(|F |× |CS |).

Theorem 2 Up to suitability, OPAL provides a solution to
the form interpretation problem with polynomial data com-
plexity (when ΣT and I are fixed).

Proof From Theorem 1, we obtain a solution F of the form
labeling problem in polynomial time. On that solution we
apply the OPAL-TL field and segment classification con-
straints to obtain a form interpretation F ′ where all fields
are typed and satisfy their constraints (by construction).
This classification has polynomial data complexity (Propo-
sition 2). F ′ may still contain unclassified or wrongly clas-
sified segments, which are repaired by Algorithm 4 in poly-
nomial time (Proposition 3), yielding a form model.

In Section 8, we illustrate that the labels and types in form
models obtained by OPAL are almost always suitable.

6 Deriving OPAL-TL Domain Schemas

In this section, we provide a methodology for deriving OPAL

domain schemas, from a given description of the domain,
e.g., an ontology. This is the typical way to instantiate a do-
main for use with OPAL.

Figure 13 shows a simple ontology for the used car do-
main (in the UK). Note, that most search forms are about
searching for entities (double border in Figure 13) by their
properties (single border) such as price or mileage of a car.
Therefore, most of the types in an OPAL domain schema cor-
respond to such properties of entities in the domain.
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Fig. 13: Used car ontology

We observe that properties can be roughly distinguished
into numerical, categorical, and free text according to their
range and that these distinctions dictate to a large extent the
expected form fields for searching by those properties. For a
numerical property we expect, e.g., either a single text input
or slider, two min-max fields for entering a range, or a set of
checkboxes to select common values or ranges. Categorical
properties, on the other hand, never exhibit range inputs.

These observations are codified in the derivation tem-
plates of Figure 14. These templates group typical instanti-
ations for the above kinds of properties as well as for com-
pound object types such as LOCATION in Figure 13:

(1) For an object type (ENGINE), we instantiate only the
segment<C> template, i.e., we allow segments, but not fields
of this type. Such segments typically collect multiple prop-
erties of the object type, e.g., ENGINE_SIZE and FUEL_TYPE.

(2) For a free text type (e.g., ADDRESS), we instantiate
only the field_by_proper<C,A> and field_by_value<C,A> tem-
plates that allows fields, but not segments of that type. There
is usually no need for a segment in this case, as there are
rarely multiple occurrences of fields for such a type. In the
rare case where that is nevertheless possible, we instantiate
segment<C> separately.

(3) For a categorical type (MAKE or COLOUR), we instan-
tiate in addition to field_by_proper<C,A> also segment<C> and
the field_by_segment<C,A>. Categorical types are often repre-
sented as single select boxes or lists of radio buttons or check
boxes. For the latter, an enclosing segment is desirable and
field_by_segment<C,A> allows us to propagate the segment la-
bels to the fields.

(4) For a numerical type (PRICE or SEATS), we also instan-
tiate the segment_range and field_minmax templates, enabling
the classification of range segments and fields.

With these templates, we can derive an OPAL annota-
tion and domain schema very quickly from a given domain
schema such as Figure 13.

First, we normalize the ontology: If a class C has sub-
classes without additional properties (type classes), we gen-
erate a new categorical property C_TYPE, add all labels from
the sub-classes to that property, and remove the sub-classes.

1 TEMPLATE object_type<C> {

2 INSTANTIATE segment<C> using { <C> } }

3

4 TEMPLATE free_text_type<C,A> {

5 INSTANTIATE field_by_proper<C,A> using { <C,A> }

6 INSTANTIATE field_by_value<C,A> using { <C,A> } }

7

8 TEMPLATE categorical_type<C,A> {

9 INSTANTIATE field_by_proper<C,A> using { <C,A> }

10 INSTANTIATE field_by_segment<C,A> using { <C,A> }

11 INSTANTIATE field_by_value<C,A> using { <C,A> }

12 INSTANTIATE segment<C> using { <C> } }

13

14 TEMPLATE numeric_type<C,CM, A> {

15 INSTANTIATE field_by_proper<C,A> using { <C,A> }

16 INSTANTIATE field_by_segment<C,A> using { <C,A> }

17 INSTANTIATE field_by_value<C,A> using { <C,A> }

18 INSTANTIATE field_minmax<C,CM,A> using { <C,CM,A> }

19 INSTANTIATE segment<C> using { <C> }

20 INSTANTIATE segment_range<C,CM> using { <C,CM> } }

Fig. 14: Templates for object and property types.

Second, we derive the annotation schema and, in partic-
ular, the necessary annotators as follows:

(1) For each concept or property c of the ontology, we
create an annotation type c. All labels of c, possibly enriched
with synonyms from an external knowledge base such as
Wordnet, form an annotator for the proper labels of the con-
cept (isLabelc).

(2) For categorical concepts or properties, we require a
list of instances, a regular expression, or an external entity
recogniser, again possibly provided by an external knowl-
edge base such as DBPedia or LinkedGeoData or an exter-
nal service such as OpenCalais. Numerical values are treated
similarly, though these often take simply the form of number
in a certain range. This provides isValuec .

Third, we derive the domain schema in four steps:
(1) For each class C, add an instantiation rule for

object_type<C>. In our example, this yields 6 instantiations
(recall, that type classes are normalised to properties above).

(2) For each property, add an instantiation rule of cor-
responding type, e.g.,
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INSTANTIATE numeric_type<C,CM,A> using {<PRICE,PRICEM,price>}

In our example, this yields 22 instantiations (20 properties
from Figure 13 and two . . ._type properties).

(3) Determine which “presentational” fields and seg-
ments occur in the given domain and add them to the do-
main schema. A field or segment is presentational, if it de-
termines the way the results are represented. In the used car
and real estate domains, we identify two types of presen-
tational fields: “order-by” and “pagination” which control
the order in which the results are presented as well as the
number of results per page. These presentational types are
mostly shared between domains and can be easily reused
thanks to OPAL-TL templates:

INSTANTIATE categorical_type<C, A> using

{ <ORDER_BY, order_by> <PAGINATION, pagination> }

In this step, we also add generic rules that are independent of
the domain, e.g., for the form itself and domain-independent
form facilities such as submit buttons or generic keyword
search fields.

(4) Sometimes small manual adjustments are necessary.
For example, numerical types may occur with multiple units
of measure or other modifiers, e.g., prices with different
currencies or locations with a search radius. Such modifier
fields are usually unique in their corresponding segment and
thus added using the segment_with_unique<C,U> template. In
the used car domain, we observe this for CURRENCY and RADIUS:

INSTANTIATE TEMPLATE segment_with_unique<C,U> using

{ <PRICE, CURRENCY> <LOCATION, RADIUS> }

INSTANTIATE TEMPLATE field_by_proper<C,A> using

{ <CURRENCY,currency>, <RADIUS,radius> }

INSTANTIATE TEMPLATE field_by_value<C,A> using

{ <CURRENCY,currency>, <RADIUS,radius> }

Some object types, in particular LOCATION, may also be entered
as a whole through free text fields and accordingly instanti-
ate the free_text_type template for them:

INSTANTIATE TEMPLATE free_text_type<C,A> using

{ <LOCATION,location }

Finally, we need to determine part-of, type alternatives,
and precedence between types. The part-of relations and
type alternatives are derived from the associations of the do-
main schema, e.g., ADDRESS –� LOCATION, FUEL_TYPE –� ENGINE,
SUV xor MINIVAN for our case. Precedence requires some obser-
vation of cases where annotations for different types over-
lap. Typically, we want to give presentational types prece-
dence over all domain types (as they often contain values
such as “sort by price”). For the used car domain, we observe
that PAGINATION≺ ORDER_BY and that both have precedence over
all domain types. We also observe that MILEAGE and RADIUS

(in locations) can have overlapping values. Though radius is
only used in segment_with_unique<C,U>, for LOCATION segments

which disallow MILEAGE elements, we add MILEAGE ≺ RADIUS to
express a preference for MILEAGE.

Derivation effort. For the real estate domain, our domain
schema consists of a few dozen field and segment types and
about 40 annotation types. Similarly, in the used car domain,
there are about 30 annotation types. Creating and verifying
an initial domain schema (including annotators) takes a sin-
gle person familiar with the domain and basic conceptual
modelling and programming skills roughly 1 week. When
not available, annotators have been created by acquiring the
necessary background knowledge from structured sources
such as LOD and FreeBase. In our experience, the human
effort required to build the domain schema has been often
significantly lower than the effort required to manually an-
notate the test corpus for OPAL.

7 Light-weight Form Integration

OPAL’s form models allow the easy implementation of many
types of applications that require automatic understanding
and interaction with forms, such as form integration and fill-
ing, data extraction, or web automation. As discussed in Sec-
tion 2, we focus here on form integration (or filling), i.e., the
part of a web integration system [15] that translates a query
on the global schema (OPAL’s domain schema) to a query
against concrete forms. In this section, we introduce a light-
weight form integration system that performs this task fully
automatically in a given domain, only requiring an OPAL do-
main schema. We have instantiated this system for the real
estate and used car domain, but OPAL is as easily applied
to other domains, since only a very limited amount of addi-
tional customisation is needed (on type variations and, pos-
sibly, similarities).

Recall, that we focus on the optimistic, single-query
variant of the form integration problem: We aim for a single-
query that returns all results matching the global (or master)
query, but allow to return also non-matching results, if there
is no more specific query that returns all matching ones.

OPAL’s form integration translates the master query into
concrete queries through a small set of translation rules sup-
ported by a notion of similarity on property values. OPAL

can perform form integration without any other information
than what is provided by an OPAL domain schema and corre-
sponding form model. However, it can be further improved
by providing additional domain-specific information.

Similarity on values is represented as a real-valued
function on pairs of values and is based on the property
type: For free-text and categorical properties, OPAL uses a
mix of Levenshtein and longest common substring distance,
for numeric properties a difference-based similarity. A do-
main schema can be enhanced by property-specific similar-
ity functions, e.g., to deal with different units of measure. A



18 Tim Furche et al.

small set of such functions is provided with OPAL: for price,
for distance properties, and for dates.

Translation rules use these similarity functions to trans-
late the constraints of the master query Q into queries on the
concrete forms. For each form F with form model M and
constraint C ∈ Q on type T , we retrieve the fields f1, . . . , fn
classified with T . Let values(C) be the (possibly infinite) set
of values for which C holds.

(1) Single field, single value: If n = 1, values(C) = {v}, and
(i) f1 is a free text input, return f1 = v.
(ii) f1 is a select box, return f1 = v′ where v′ is the op-

tion of f1 most similar to v.
(2) Multi field: If n≥ 1,

(i) values(C) = {v}, and all fi are radio buttons (exclu-
sive options), return fk = true for the fk that is most
similar to v.

(ii) values(C) = {v1, . . . ,vk} and all fi are check boxes
(non-exclusive options), return fk = true for each
fk where a vi exists such that the similarity of fk
and vi is minimal among all such pairs.

(iii) and all fi are free-text range input fields (i.e., of
type TM , where TM is the minmax type to T ), then
return fs = v1 for each fs that is a minimum input
and fe = vk for each fk that is a maximum input.

(iv) and all fi are select-box range input fields, then re-
turn fs = v′1 for each fs that is a minimum input
where v′1 is the most similar option of fs to vi that
is smaller or equal to v1. Analog for fe.

In all other cases (e.g., a select box for a set inclusion con-
straint), we return no constraints to avoid false negatives.

In many domains, we can observe that the same informa-
tion is represented in alternative ways on different sites. E.g.,
the age of a car is represented by the manufacturing year on
some sites. Similarly, the location of property may be given
as a street address, a postcode, or even just a town, in partic-
ular for rural agencies. To treat this cases, we need to be able
to translate a constraint such as “AGE = 6” to a constraint
“YEAR = 2006” or “POSTCODE = OX1” to “TOWN = Oxford”.
We call AGE and YEAR type variants and amend the domain
schema with a value mapping for each pair of type variants.
Value mappings for numerical properties are typically sim-
ple conversion functions, e.g., from different units of mea-
sure. Value mappings for categorical properties are typically
realised by a query to an external database or service such as
DBPedia. In our example domains, we use value mappings
for conversions of metric and imperial distances as well as
of postcodes to towns and other locations. To treat type vari-
ants we perform the following test and translation before the
aforementioned translation rules:

(0) Type variants. If n = 0 and there is a field f ′ with type
T ′ such that T ′ is a variant type of T , we translate the
values in C to T ′ and continue with that constraint.

Fig. 15: OPAL Testing Tool

With those simple rules, OPAL’s form integration man-
ages to translate most constraints as shown in Section 8.
There are, of course, still cases where the translation fails,
e.g., if categorical values are mapped to ranges by some or-
dering such as road tax brackets or iPhone models (ordered
according to year of introduction). But as demonstrated in
Section 8, this light-weight simple form integration already
provides us with a successful translation of a master query
in the vast majority of cases.

To illustrate OPAL’s form integration, we consider the
form of primelocation.com as shown in the middle of Fig-
ure 15. The figure shows the OPAL testing tool that we use
to test and verify the accuracy of OPAL domain schemas.
It allows the user to visualize the form labels, form seg-
ments, and classifications derived by OPAL and to track
down, where, e.g., there are problems with the classifica-
tion constraints or the annotations. It also provides a master
query in the lower third. The concrete form is automatically
filled according to the values provided in the master form.
This allows the user to visually verify that the query has
been translated correctly. The master form is automatically
generated from the domain schema, but the user can provide
additional information on which fields to include. For space
reasons, we have focused in Figure 15 on the types most
commonly used in constraints in the UK real estate domain.

For the concrete form on primelocation.com, we high-
light form fields and labels by colouring them with the same
color (here, e.g., the “minimum” and the first price field).
Form segments are shown as boxes with no filling except
for their labels (a price segment with “price range” label).
The figure shows the form after OPAL has filled it accord-
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ing to the values from the master query. Notice, how for the
three select boxes for minimum and maximum price, as well
as bedroom number, OPAL picks the closest value to the one
specified in the master form.

8 Evaluation

We perform experiments on several domains across four dif-
ferent datasets. Two datasets are randomly sampled from
the UK real estate and UK used-car domains, respectively.
We compare with existing approaches via ICQ and TEL-
8, two public benchmark sets, on which we only evaluate
OPAL’s form labeling. This limitation is necessary to allow
a comparison that is fair to existing approaches, that only re-
port form labeling and do not use domain knowledge. Even
with this limitation, however, OPAL outperforms previous
approaches in most domains by at least 5%. We also perform
an introspective analysis of OPAL to show (1) the impact
of field, segment, layout, and repair in the form interpreta-
tion, (2) OPAL’s performance and scalability with increasing
page size, and (3) the effectiveness of the form integration
in OPAL.

We evaluate the proper assignment of text nodes to form
fields using standard notions of precision, recall and F-score
(harmonic mean F = F1 = 2PR/(P+R) of precision and re-
call). For form labeling (classification), precision P is mea-
sured as the proportion of correctly labeled (classified) fields
over total labeled fields, while recall R is the fraction of cor-
rectly labeled fields over total number of fields. For form fill-
ing precision and recall do not apply and we therefore report
the error rate as portion of total fields that are not correctly
filled (i.e., either filled but with a wrong value or not filled at
all, despite a corresponding constraint in the master query).
For all considered datasets, we compare the extracted re-
sult to a manually constructed gold standard. We evaluate
segmentation through their impact on classification, see Fig-
ure 18a, and the improved performance on the two datasets
where we perform form interpretation (UK real estate and
used car) versus the ICQ and TEL-8 datasets.

Datasets. For the UK real estate domain, we build a dataset
randomly selecting 100 real estate agents from the UK yel-
low pages (yell.com). Similarly, we randomly pick 100
used-car dealers from the UK largest aggregator website
autotrader.co.uk. The forms in these two domains have
significantly different characteristics than the ones in ICQ
and TEL-8, mainly due to changes in web technology and
web design practices. The usage of CSS stylesheets for lay-
out and AJAX features are among the most relevant.

The ICQ and TEL-8 datasets cover several domains.
ICQ presents forms from five domains: air traveling, (used)
cars, books, jobs, (U.S.) real estate. There are 20 web pages

for each of the domains, but two of them are no longer acces-
sible and thus excluded from this evaluation. TEL-8, on the
other hand, contains forms from eight domains: books, car
rental, jobs, hotels, airlines, auto, movies and music records.
The dataset amounts to 477 forms, but only 436 of them are
accessible (even in the cached version).

8.1 Field Labeling

In our first experiment we evaluate the accuracy of OPAL’s
field labeling on all four datasets, but only in the UK real
estate and used car domain we employ the form interpreta-
tion to further improve the field labeling. Figure 16a shows
the results. The first two bars are for the random sample
datasets. For the real estate domain, OPAL classifies fields
with perfect precision and 98.6% recall. Overall we obtain a
remarkable 99.2% F-score. The result is similar for the used
car domain, where OPAL obtain 98.2% precision and 99.2%
recall, that amount to 98.7% F-score. OPAL achieves lower
precision than recall in the used car domain due to the fact
that web forms in this domain are more interactive: certain
fields are enabled only when some other field is filled prop-
erly, yet non-field placeholders are present in the HTML to
indicate that a field will appear when the other field is filled.
This introduces noise to field labeling and classification.

The other two entries in Figure 16a regard field labeling
on the ICQ and TEL-8 datasets. On these, OPAL applies only
its domain-independent scopes (field, segment, scope) as no
domain schema is available for these domains. Nonetheless,
OPAL reports very high accuracy also on these forms, con-
firming the effectiveness of our domain-independent analy-
sis. Not unexpected, OPAL performs better in the UK real
estate and used car domain where domain knowledge is
present, even though the forms in those datasets are on av-
erage more modern and contain more fields (10.4 and 9.2
fields per form in the real-estate and used-car dataset versus
6.5 and 7.9 fields per form for ICQ and Tel-8).

Cross Domain Comparison. We use ICQ and TEL-8 to
compare field labeling in OPAL against existing approaches,
on a wide set of domains. Figure 16b details the result of
OPAL on each domain of the ICQ dataset. It shows perfect
F-score values for the jobs domain (100%) as well as auto
and air travelling (99.3% and 98.3%). For comparison, [11]
reports 92% F-score for labeling on ICQ on average, which
we outperform even in the domain most difficult for OPAL

(books). [33] reports slightly better precision and recall than
[11], but OPAL still outperforms it by several percents.

The results for the TEL-8 dataset are depicted in Fig-
ure 16c. Here, the overall F-score is 96.3%, again mostly
affected by the performance in the books domain. Note that,
especially on TEL-8, OPAL obtains very high precision com-
pared to recall. Indeed, lower recall means OPAL is not able
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Fig. 16: OPAL labeling performance

labeling
field segment layout

total 761 154 72
false positives 2 3 8

= % 0.3% 1.9% 11.1%

Table 1: False positives

to assign labels to all fields, missing some of them. For
comparison, [11] reports 88− 90% overall F-score, which
we outperform by a wide margin. [24] reports F-scores be-
tween 89% and 95% for four domains in the TEL-8 dataset.
Though they perform slightly better on books, we signifi-
cantly outperform them on the three other domains included
in their results, as well as on average. It is worth noting that
both [11,24] use a slightly differently sampled set of forms
from TEL-8, though this should not significantly affect the
presented comparison.

In Section 5, we discuss that OPAL prioritises field over
segment over layout scope and we claim that this is due to
the decreasing precision. Table 1 shows the total number of
fields labeled in each scope, as well as the number and per-
centage of false positives among those labels. It illustrates
that, indeed, the field scope produces almost no false posi-
tives (2 out of 762 fields labeled in this scope, i.e., 0.3%),
the segment scope also produces very few (3 out of 154 la-
beled fields), and the layout scope produces most (8 out of
72 labeled fields).

What keeps OPAL from achieving 100% accuracy? Most
of the cases are due to OPAL’s assumption that form labels
are separate text nodes. This is evidently the case in most
forms, as demonstrated by near perfect accuracy, but there
are some outliers that use image only labels or merge mul-
tiple labels into one node and use whitespace to achieve the
desired result, e.g., by aligning text in a single node to differ-
ent fields using &nbsp;. While both cases are easy enough
to address, they do require specific treatment and we omitted
them from the version of OPAL presented here to illustrate

that nearly perfect form labeling and interpretation is possi-
ble even without such specifically tailored heuristics.

8.2 Form Interpretation

The quality of OPAL’s form interpretation depends on the
quality of the form labeling and that of the annotators. As
discussed above, for this evaluation we used background
knowledge for the UK real estate and used car domains plus
generic entities such as locations, numbers, and colors. The
location related annotators are based on standard sources
(GeoNames and LinkedGeoData) and thus have reasonable
recall, but precision is fairly low, due to the high number
of locations in the UK that are homonyms to common En-
glish words (e.g., the town of “Selling”). Noise in the value
annotators, however, affects OPAL very little, as the values
of form fields are only used if the proper labels are incon-
clusive and then only those of the most frequent annotation
type. Noise in the label values is far more likely to lead to
classification errors. However, typical annotators are small
lists of 5− 10 typical labels which are easy to create and
have very low noise. E.g., for bedroom labels we use just
“bedroom”, “bed”, and their plural forms, for make, model,
mileage and many more just “make”, “model”, “mileage”,
and their plural form, resp.

With this, we achieve near perfect classification, cor-
rectly classifying most of the fields, see Table 1: Precision
is 97.3% over all fields in the real estate data set (with just
24 out of 931 classified fields incorrectly classified) and re-
call 97.4%. This excludes 56 (or 5.5%) fields for which our
domain schema does not contain a concept (usually as they
appear only very rarely).

Classification errors are mostly caused by ambiguity in
the used form labels. For example, consider a field with a
proper label “model style” which is correctly assigned to the
field in the field labeling, and field values “4x4”, “City Car”,
etc. In the classification, we prioritise proper labels over val-
ues (as value annotators are more noisy). In most cases, this
is indeed preferable, but here the proper label “model style”
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is annotated with model and we classify the field as model

rather than car_type, as “model style” is not recognised as
a label for car_type. A probabilistic classifications that com-
bines classifications from labels and values (with a lower
weight) would allows us to choose the most likely global
form classification and thus to address such outliers. How-
ever, this would also increase the effort in creating a domain
schema.

8.3 Contributions of Scopes

We demonstrate the effectiveness of combining different
types of analysis by measuring to what extent each of our
four scopes contributes to the overall quality of form under-
standing. We use again the two domain datasets from the
previous experiment. For both we show the results for re-
call, though the picture is similar for precision and F-score,
cf. Figure 16a. As illustrated in Figure 18a, for the field la-
beling in the real-estate dataset, the field scope already con-
tributes significantly (67%). The Segment scope increases
recall by 18%, layout scope and the repair in the form inter-
pretation add together another 13%. Note that, the contribu-
tion of the repair in the form interpretation is more signifi-
cant than that of the layout scope, indicating the importance
of domain knowledge to achieve very high accuracy form
understanding. In the used car domain, field scope alone
is even more significant 85% (as many of the websites use
modern web technologies and frameworks with reasonable
structure). Figure 17 further shows which individual scopes
are necessary on which page (of the 100 real estate sites).
A dark blue rectangle indicates that the scope is used to la-
bel at least one field, a light blue that it is not used. We also
show where OPAL misses some fields (red rectangles in the
last row). This shows that only for less than a third of the
pages does the field scope suffice. For more than a quarter
three or more scopes are necessary.

8.4 Form Integration

For the evaluation of the form integration, we determine
the error rate in the query translation for all forms in the
used car and real estate datasets. We use multiple master
queries in both cases, using for the real estate domain com-
binations of location, min price, max price, and min bed-
room. For the used car domain, we use combinations of lo-
cation, make, model, min price, and max price. The values
are generated randomly from the known Gazetteers or valid
numeric ranges. Values for different properties are gener-
ated independently, except for “make” and “model” in the
used car domain, which are cross-validated. We evaluate
the constraints separately and consider a constraint correctly
translated, if it involves the right field on the concrete form
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and uses the best matching value. Overall, OPAL generates
95.6% and 93.8% correctly translated constraints.

Figure 18b presents the number of web forms where
OPAL fails to translate one or more constraints correctly.
Overall, 87% of the forms were filled perfectly, and 95%
of the forms have no more than one failure. Figure 18c
presents the major causes for OPAL’s failure in translat-
ing constraints: Most of the errors are caused by scripted
forms with hidden (21%) or heavily customised form con-
trols (24%). The remaining cases divide rather evenly be-
tween errors in the form labeling (17%), in the classification
or annotation (incomplete gazetteer), and an assortment of
other issues, mostly browser related (e.g., scripted popovers
that block access to the form fields or fields that can only be
filled in a certain order).

8.5 Scalability

As discussed in Sections 4 and 5, overall the analysis of
OPAL is polynomial in the size of the form. As expected ac-
tual performance follows a quadratic curve, but with very
low constants. There is a significant amount of outliers, par-
tially due to long page rendering time and partially due to
variance in the depth and sophistication of the HTML struc-
ture. Figure 19 reports OPAL performance on all 534 forms
in the combined TEL-8 and ICQ datasets. The highlight area
covers 80% of the forms with 2200 nodes. OPAL requires at
most 30s for the analysis (including page rendering) of these
forms. Further analysis on the effect of increasing field or
form numbers confirms that these have little effect and page
size is the dominant factor.

9 Related Work

Form understanding has attracted a number of approaches
motivated by deep web search [21,28,29], meta-search en-
gines and web form integration [16,11,32–34,36] and web
extraction [30,31]. We focus here on differences to OPAL,
for a complete survey see [19,12]. We present related work
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for form understanding and form integration separately, as
not all approaches consider both aspects.

9.1 Form Understanding

Form understanding approaches can be roughly categorised
by the fundamental approach to the problem:

(1) The most common type encodes (mostly domain
independent) observations on typical forms into implicit
heuristics or explicit rules MetaQuerier [9,36], ExQ [33],
SchemaTree [11], LITE [28], Wise-iExtractor [16], DEQUE [29],
and CombMatch [17]. (2) Alternatively, some approaches La-

belEx [24] and HMM [18] use machine learning from a set
of example forms (possibly of a specific domain). (3) Form
understanding is often done to surface the results hidden be-
hind the form and approaches such as [21,32,28] exploit the
extracted results for form understanding.

Aside of system design, OPAL primarily differs from
these approaches in two aspects: (1) They mostly incorpo-
rate only one or two of OPAL’s scopes (and feature classes):
MetaQuerier, ExQ, and SchemaTree mostly ignore the HTML
structure (and thus field and segmentation scope) and rely on
visual heuristics only; CombMatch, LITE, DEQUE, and LabelEx

ignore field grouping. HMM ignores visual information. [21,
32,28] use only the HTML structure, but exploit probing in-
formation, i.e., whether a submission is successful or not.
(2) None of the approaches provides a proper form model
classifying the form fields according to a given schema.
Furthermore, no approach uses domain knowledge is used
to improve the labeling or verify the classification, though
LabelEx analyses domain specific term frequencies of label
texts and HMM checks for generic terms, such as “min”. As

evident in our evaluation, each of the scopes in OPAL con-
siderably affects the quality of the form labeling and classifi-
cation. The fact, that each of these approaches omits at least
one of the domain-independent scopes, explains the signifi-
cant advantage in accuracy OPAL exhibits on Tel-8 and ICQ.
Notice also that not using domain knowledge keeps these
approaches out of reach of the nearly perfect field classifica-
tion achieved by OPAL.

Form understanding by observation and heuristics. Most
closely related in spirit to OPAL, though very different in re-
alisation and accuracy, is MetaQuerier [36]. It is built upon
the assumption that web forms follow a “hidden syntax”
which is implicitly codified in common web design rules.
To uncover this hidden syntax, MetaQuerier treats form un-
derstanding as a parsing problem, interpreting the page a
sequence of “atomic visual elements”, each coming with a
number of attributes, in particular with its bounding box. In a
study covering 150 forms, the authors of MetaQuerier identi-
fied 21 common design patterns. These patterns are captured
by production rules in grammar with preferences. MetaQue-

rier is not parameterisable for a specific domain. In contrast,
the domain independent part of OPAL achieves nearly per-
fect accuracy with only 6 generic patterns by combining vi-
sual, structural, and textual features, and a simple prioritisa-
tion of these patterns by scope. OPAL’s domain dependent
part allows us to adjust it for patterns specific to a domain.

ExQ [33] is similarly based primarily on visual features
such as a bias for the top-left located labels comparable to
OPAL, but disregards most structural clues, such as explicit
for attributes of label tags and does not allow for any do-
main specific patterns.
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Also SchemaTree [11] uses only visual features (and the
tabindex and for attributes for fields and labels). It exploits
nine observations on form design, e.g., that query interfaces
are organised top-down and left-to-right or that fields form
semantic groups. It uses a hierarchical alignment between
fields and text nodes similar to OPAL’s segment scope and
a “schema tree” where the nine observations are observed.
Again, no adaptation to a specific domain is possible.

Wise-iExtractor [16] firstly tokenizes the form to obtain
a high-level visual layout description (an interface expres-
sions (IEXP)), distinguishing text fragments, form fields,
and delimiters, such as line breaks. It then associates texts
and fields by computing the association weight between any
given field and the texts in the same line and the two preced-
ing lines, exploiting ending colons, similarities between the
text and the field’s HTML name attribute, and the text-field
distance. In addition, Wise also identifies generic relation-
ships between fields: range (e.g. from, to), part (e.g. first
and last name), group (e.g. radio buttons), or constraint
(e.g. exact match required). However, in contrast to OPAL

their form labeling only explores limited visual and textual
information relying mainly on weight computation. More-
over, their domain-independent typing shares some similar-
ities with OPAL’s templates but lacks the flexibility provided
by OPAL’s domain schemata that allow us to adjust these
generic types to a given domain. Though these adjustments
are often small, their impact is significant, as shown in Sec-
tion 8.

In [35], a (manually derived) domain schema is used to
guide understanding. In contrast to OPAL, it segments a form
purely based on the domain schema (called schema tree).
They evaluate on a fragment (around 100-150 forms) of
TEL-8 using domain schemata derived from the rest of TEL-
8 (about 250 forms). This yields on the considered fragment
similar accuracy as OPAL achieves on the full TEL-8, yet
OPAL does not use any domain schema in this case, let alone
domain schemata specifically trained on TEL-8.

Form understanding by learning from example forms.
Where the above approaches rely on humans to derive
heuristics and rules for form understanding, the following
approaches use machine learning on a set of example forms.
Therefore, they can also be trivially adapted to a specific do-
main by using domain-specific training data. The evaluation
in [18], however, shows little effect of domain-specific train-
ing data: a training set from the biological domain outper-
forms domain-specific training in 4 of the 5 other domains.

LabelEx [24] uses limited domain knowledge when con-
sidering the occurrence frequencies of label terms. Domain
relevance of the terms occurring in a label, measured as the
occurrence frequency in previous forms, is one feature used
to score field-label candidates. Field-label candidates are
otherwise created primarily using neighbourhood and other

visual features, as well as their HTML markup. However,
LabelEx does not consider field groups and thus is unable to
describe segments of semantically related fields or to align
fields and labels based on the group structure and does not
use any domain knowledge aside of term frequency.

HMM [18] uses predefined knowledge on typical terms
in forms, such as “between”, “min”, or “max”, but does not
adapt these for a specific domain. HMM employs two hidden
Markov models to model an “artificial web designer”. Dur-
ing form analysis, the HMMs are used to explain the phe-
nomena observed on the page: The state sequences, that are
most likely to produce the given web form, are considered
explanations of the form. Compared to OPAL, HMM uses no
visual features and no domain knowledge.

Form understanding by probing. All the above approaches
conduct their analysis based purely on information avail-
able on the web forms. Alternatively, there is also an indi-
rect route for form understanding by submitting the forms
and analysing the query results, which often are much eas-
ier to classify (as there are many instances compared to a
single form). The price is, however, that a certain amount of
analysis of those result pages is necessary. Therefore, this is
primarily used in a context where such analysis is anyway
required, e.g., in crawlers or data extraction systems. Typi-
cally, these approaches use an incremental approach, identi-
fying inputs for some fields, submitting the form, analysing
the result page, and then possibly restarting the whole pro-
cess, now with, e.g., an increased set of input values for the
form. For example, [21] determines whether a field must
be filled or is a “free” input by iterating over possible tem-
plates and selecting those that return sufficiently distinct re-
sult pages. This is driven by the desire to surface some rep-
resentative, but not necessarily complete set of results from
the web form. None of these approaches produces a sophis-
ticated form model, but at best rough classifications of the
fields and whether they are mandatory.

9.2 Form Filling and Integration

Form integration has been considered in many shapes, either
as “meta-search” where a master query on a given global
schema is translated to concrete forms as in OPAL, as “inter-
face matching” where many concrete forms are integrated
without a global schema (often using schema matching), or
as “query generation” in the context of data extraction or
crawling where the aim is to generate a set of queries to ex-
tract all or most of the data, but often not even full form
understanding is performed.

Though some query generation and most interface
matching approaches use form understanding, they are fo-
cused on different issues than OPAL’s form integration
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which is a type of “meta-search”: How to find an opti-
mal query set that uncovers as much deep content as pos-
sible [3], how to determine if a query will produce relevant
data even if only partial information about the data is avail-
able [5], how to maximize the diversity of the extracted con-
tent [21], or how to identify semantic equivalences between
fields from different forms [25].

Similar to OPAL, [1] fills web forms by connecting
fields at the conceptual level, but with WordNet [27] in-
stead of proper annotations. Furthermore, OPAL produces
more structured form model that is verified against a do-
main schema. MetaQuerier [9], targets the integration of web
sources and tackles query translation for form filling in that
context. As OPAL, MetaQuerier selects values closest to the
constraint in the source query (similar to our master query).
They also perform type-based query translation to map a
source query to a target query considering numeric and text
types, but achieve only 87% accuracy. OPAL performs form
filling in a similar fashion, but also considers the number of
fields for each domain type in the master query and performs
significantly better (93%).

10 Conclusion and Future Work

To the best of our knowledge, OPAL is the first compre-
hensive approach to form understanding and integration.
Previous form understanding approaches have been limited
mainly by generic, domain independent, monolithic algo-
rithms relying on narrow feature sets. OPAL pushes the state
of the art significantly, addressing these limitations through
a very accurate domain independent form labeling, exploit-
ing visual, textual, and structural features, by itself already
outperforming existing approaches. This domain indepen-
dent part is complemented with a domain dependent form
field classification that significantly improves the overall
quality of the form understanding and produces nearly per-
fect form interpretations. Accurate form interpretations en-
ables form integration: OPAL successfully realizes a light-
weight form integration system, able to translate master
queries to forms of a domain with nearly no errors.

Nevertheless, there remain open issues in OPAL and form
understanding in general that need to be addressed for form
understanding to become a reliable tool to access web data
through forms with little more effort than through APIs:

(1) Dynamic, scripted forms: OPAL is able to under-
stand most static forms with near perfect accuracy, but per-
forms much worse on dynamic forms. We are already work-
ing on an extension of OPAL for dealing with dynamic, heav-
ily scripted interfaces that combines ideas from state explo-
ration and crawling with form understanding.

(2) Customised form widgets: More and more forms
use customised widgets such as tree views or sliders.

Though most of these cases use hidden form fields that can
be analysed by OPAL, the use of fully scripted cases in-
creases. We plan to extend OPAL to allow the customisation
of the form widgets that it can recognise. However, if these
cases become more common, it may become necessary to
automatically explore and learn such new widget types.

(3) Probing-based understanding: One of OPAL’s
virtues is that it achieves its near perfect accuracy without
any probing, using only the form page. However, this also
limits the information that OPAL can provide, and prevents
the verification and repair of the form model through the re-
sults returned by a form submission. For applications that
need to access the result pages (e.g., data extraction and sur-
facing), we plan to integrate OPAL with the result page anal-
ysis system AMBER [14] to further improve accuracy and
to address integrity and access constraints.

(4) Integrity and access constraints. OPAL produces
some integrity constraints through the domain schema and
it’s form segmentation, e.g., dependencies between min and
max fields in a range segment. We see an increase in the use
of integrity constraints in forms thanks to the availability
of easy-to-use client-side validation libraries. Light-weight
methods for analysing and exploiting such client side vali-
dation would allow us to extend our form models with more
detailed integrity constraints. This is in addition to integrity
and access constraints derived from probing.

(5) Supporting domain-schema derivation: A do-
main schema for a new domain can be easily obtained
by means of the methodology described in Section 6. We
are currently developing a support tool for semi-automatic
derivation of the necessary OPAL-TL templates from ontolo-
gies specified in OWL or as UML Class Diagrams. The
second challenge is the semi-automatic acquisition of the
necessary background knowledge, e.g., gazetteers, for do-
main types and properties, whether by leveraging existing
knowledge bases, Gazetteer extension techniques, or crowd-
sourcing [10] to partially bootstrap this process.

(6) Evolving OPAL: OPAL is based on a set of assump-
tions about general patterns of web forms and OPAL do-
main schemas encode specific patterns for a domain. If the
way forms appear on the web evolves, e.g., new widget
types are introduced, OPAL’s labeling heuristics may re-
quire adjustment, thought the combination of simple heuris-
tics based on different feature sets has proved fairly robust
to such changes. If the way forms appear in a specific do-
main evolves, e.g., new attributes are introduced, the corre-
sponding domain schema must be adapted. Given a set of
evolution operations on a standard domain ontology, these
can likely be translated into corresponding operations on the
OPAL domain schema.
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