VLDB Journal manuscript No.
(will be inserted by the editor)

OXPATH: A Language for Scalable Data Extraction,
Automation, and Crawling on the Deep Web

Tim Furche - Georg Gottlob - Giovanni Grasso -
Andrew Sellers

10 Feb 2012

Abstract The evolution of the web has outpaced itself: A
growing wealth of information and increasingly sophisti-
cated interfaces necessitate automated processing, yet exist-
ing automation and data extraction technologies have been
overwhelmed by this very growth.

To address this trend, we identify four key requirements
for web data extraction, automation, and (focused) web crawl-
ing: (1) Interact with sophisticated web application inter-
faces, (2) precisely capture the relevant data to be extracted,
(3) scale with the number of visited pages, and (4) readily
embed into existing web technologies.

We introduce OXPATH as an extension of XPATH for
interacting with web applications and extracting data thus
revealed — matching all the above requirements. OXPATH’s
page-at-a-time evaluation guarantees memory use indepen-
dent of the number of visited pages, yet remains polynomial
in time. We experimentally validate the theoretical complex-
ity and demonstrate that OXPATH’s resource consumption
is dominated by page rendering in the underlying browser.
With an extensive study of sub-languages and properties of
OXPATH, we pinpoint the effect of specific features on eval-
uation performance. Our experiments show that OXPATH
outperforms existing commercial and academic data extrac-
tion tools by a wide margin.

1 Introduction

The dream that the wealth of information on the web is eas-
ily accessible to everyone is at the heart of the current evo-
lution of the web. Due to the web’s rapid growth, humans
can no longer find all relevant data without automation. In-
deed, many invaluable web services, such as Amazon, Face-

Oxford University Department of Computer Science
Wolfson Building, Parks Road, Oxford OX1 3QD
E-mail: firstname.lastname @cs.ox.ac.uk

Christian Schallhart -

book, or Pandora, already offer limited automation, focus-
ing on filtering or recommendation. But in many cases, we
cannot expect data providers to comply with yet another in-
terface designed for automatic processing. Neither can we
afford to wait another decade for publishers to implement
these interfaces. Rather, data should be extracted from exist-
ing, human-oriented user interfaces. This lessens the burden
for providers, yet allows automated processing of everything
accessible to human users, not just arbitrary fragments ex-
posed by providers. This approach complements initiatives,
such as Linked Open Data, which push providers towards
publishing in open, interlinked formats.

For automation, data accessible to humans through exist-
ing interfaces must be transformed into structured data, e.g.,
each gray span with class source on Google News should
be recognized as news source. These observations call for
a new generation of web extraction tools, which (1) can in-
teract with rich interfaces of (scripted) web applications by
simulating user actions, (2) provide extraction capabilities
sufficiently expressive and precise to specify the data for ex-
traction, (3) scale well even if the number of relevant web
sites is very large, and (4) are embeddable in existing pro-
gramming environments for servers and clients.

Previous approaches to web extraction languages [34,
46] use a declarative approach akin to OXPATH; however,
mainly due to their age, they often do not adequately fa-
cilitate deep web interaction, e.g. form submissions. Also,
they do not provide native constructs for page navigation,
apart from retrieving pages for given URIs. Where script-
ing is addressed [12,47], the simulation of user actions is
neither declarative nor succinct, but rather relies on impera-
tive scripts and standalone, heavy-weight extraction inter-
faces. Lixto [12], Web Content Extractor [2], and Visual
Web Ripper [3] are moving towards interactive wrapper gen-
erator frameworks, recording user actions in a browser and
replaying these actions for extracting data. As large com-

Tim Furche et al.

mercial extraction environments, their feature set goes be-
yond the scope of OXPATH. They all emphasize the visual
aspect of wrapper generation that ease the design of extrac-
tion tasks by specifying only few examples, mainly selecting
layout elements on the rendered page. Further, Lixto adopts
tree generalization techniques to produce more robust wrap-
pers, whereas Web Content Extractor allows to write com-
plex user-defined text manipulation scripts. However, de-
spite their feature richness, none of these systems addresses
memory management and our experimental evaluation (Sec-
tion 6) demonstrates that such systems indeed take memory
linear in the number of accessed pages.

OXPATH restricts its focus to data extraction in the con-
text of deep web crawling. This sets OXPATH apart from
information extraction (IE) systems, that aim at extracting
structured data (entities and relations) from unstructured text.
Systems like [11,23] and [19] extract factual information
from textual description (mainly by lexico-syntactic patterns)
and HTML tables on the web, respectively. Though, OX-
PATH could be extended to support libraries of user defined
functions to refine extraction from text (along the lines of
procedural predicates in [46]), this is out of the scope of
this paper. Whereas OXPATH takes advantage of the struc-
tures on the web (possibly revealed through simulating user
interaction) to extract, e.g., infoboxes on Wikipedia or prod-
ucts on Amazon along with all their reviews, the task of ex-
tracting, e.g., named entities from these reviews is not ad-
dressed by OXPATH, but delegated to post-processing of the
extracted information, e.g., using a IE systems.

As far as web automation tools are concerned, though
some of them [17,31] can deal with scripted web applica-
tions, they are tailored to single action sequences and prove
to be inconvenient and inefficient in large-scale extraction
tasks requiring multi-way navigation (Section 6).

It is against this backdrop that we introduce OXPATH, a
careful, declarative extension of XPATH for interacting with
web applications to extract information revealed during such
interactions. It extends XPATH with a few concise exten-
sions, yet addresses all the above desiderata:

I—Interaction. OXPATH allows the simulation of user ac-
tions to interact with the scripted multi-page interfaces of
web applications: (1) Actions are specified declaratively with
action types and context elements, such as the links to click
on, or the form field to fill. (1) In contrast to most previ-
ous web extraction and automation tools, actions have a for-
mal semantics (Section 4.4) based on a (1) novel multi-page
data model for web applications that captures both page
navigation and modifications to a page (Section 4.3).

2—Expressive and precise. OXPATH inherits the precise se-
lection capabilities of XPATH (rather than heuristics for ele-
ment selection as in [17]) and extends them: (1) OXPATH al-
lows selection based on visual features by exposing all CSS

properties via a new axis. (I) OXPATH deals with naviga-
tion through page sequences, including multi-way naviga-
tion, e.g., following multiple links from the same page, and
unbounded navigation sequences, e.g., following next links
on a result page until there is no further such link. (1) OX-
PATH provides intensional axes to relate nodes through mul-
tiple conditions, e.g., to select all nodes which are at the
same vertical position and have the same color as the cur-
rent node. (Iv) OXPATH enables the identification of data
for extraction, which can be assembled into (hierarchical)
records, regardless of its original structure. (v) Based on the
formal semantics of OXPATH (Section 4.4), we show that
its extensions considerably increase the language’s expres-
siveness (Section 4.10).

3—Scale. OXPATH scales well both in time and memory:
(1) We show that OXPATH’s memory requirements are in-
dependent of the number of pages visited (Section 5). To
the best of our knowledge, OXPATH is the first web ex-
traction tool with such a guarantee, as confirmed by a com-
parison with five commercial and academic web extraction
tools. (1) We show that the combined complexity of evaluat-
ing OXPATH remains polynomial (Section 4.10) and is only
slightly higher than that of XPATH (Section 5). (1) We also
show that OXPATH is highly parallelizable (Section 4.10).
(1v) We provide a normal form which reduces the size of the
memoization tables during evaluation and rewriting rules to
normalize arbitrary expressions (Section 4.9). (v) We verify
these theoretical results in an extensive experimental eval-
uation (Section 6), showing that OXPATH outperforms ex-
isting extraction tools on large scale experiments by at least
one order of magnitude.

4—Embeddable, standard API. OXPATH is designed to in-
tegrate with other technologies, such as Java, XQUERY, or
Javascript. Following the spirit of XPATH, we provide an
API and host language to facilitate OXPATH’s interopera-
tion with other systems.

Bonus: Open Source. We provide our OXPATH implementa-
tion and APl at http://diadem.cs.ox.ac.uk/oxpath,
for distribution under the new BSD license.

OXPATH has been employed within DIADEM [24], a
domain-driven, large-scale data extraction framework devel-
oped at Oxford University, proving to be a practically viable
tool for (1) succinctly describing web interaction and extrac-
tion tasks on sophisticated web interfaces, for (2) generating
and processing such task descriptions, and for (3) efficiently
executing these wrappers on the cloud.

This paper extends [25] in three main aspects:

(1) It clarifies the design of OXPATH and introduces in-
tensional axes (Section 4.7) as a further instrument for
extracting data from rich web applications. With inten-
sional axes, the OXPATH user can on-the-fly specify
new types of relations between elements of a web page,

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 3

amazZoNnCO.UK Hello Sign in o get personalised recommendations. New Customer? Start here

Your -1 azon.co.uk | Today's Deals 2 ift Cards = Gifts & Wish Lists
search {__Books JEE Seattle (=)

Iy

Tk
New Arrivals Books > "seattle” E)

Any Release Date
Last 30 days (147)
Last 90 days (726)
Next 90 days (96)

Showing 1 - 12 of 43,774 Results

1 S2lP), Seattle: City Guide (Lonely Planet City Guide)
Department (Paperback - 18 Feb 2011)
< Any Department
Books
Travel & Holiday (2,595)
Reference (5,574)
Art, Architecture &
Photography (3,106)
Computing & Internet (2, |
Children's Books (2,117) | |
Fiction (3,012) |

Books > "Seattle" > History

Showing 1 - 12 of 7,655 Results

Sort by (Temanee)

Brother Eagle, Sister Sky: A Message from Chief Seattle (Picture Puffin) by |
Susan Jeffers (Paperback - 4 Nov 199 1
Buy YEXTIP £5.24 37 Used & new fiym £0.01

I
Get it by Tuesday, Mar 1 if you order in the\gext 49 hours and choose express |
delivery. I
I
I

History u2oaas 1 Eligible for FREE Super Saver Delivery. {click /}

Society, ¥aitks & L ok i M
Philosophy (13,480)

Product details
Paperback: 32 pages
IR ublisher: Puffin; New Ed edition (4 Nov 1993)
Language English
ISBN-10: 014054514X
ISBN-13: 978-0140545142
Product Dimensions: 29.8 x 23.6 x 0.6 cm

doc("amazon.co.uk")
//field()[@title='Search in’]1/{"Books"}®
/following: :field() [@title="Search for’]/{"Seattle" /}®
//field()[@alt="Go’']1/{click /}®
//al*.refinementLink[.~"History’]]1/{click /}®
//*.result:<book>[.//a.title:<title=(.)>/{click /}®
//b[.~"Publisher’]/following-sibling: :*:<publisher=(.)>]
[.//span.price[l]:<price=(.)>]

Fig. 1 Finding an OXPATH through Amazon.

e.g., to select all paragraphs with the same color and di-
mension.

(2) The page-at-a-time evaluation algorithm (Section 5) has
been further refined to cater to these additions and to
improve the complexity bounds from [25]: By splitting
and specializing the memoization table, we achieve a
reduction by up to a factor of n in time and memory.
An additional factor of n reduction (at a slight increase
in expression size) can be achieved by applying a new
normalization rewriting (Section 4.9).

(3) An extensive study (Section 5.7) of the impact of the
main features of OXPATH, extraction markers, actions,
and Kleene-star iteration, on evaluation performance is
used to define a normal form for OXPATH (Section 4.9)
together with a sound and complete rewriting.

1.1 A Gentle Introduction to OXPATH

OXPATH extends XPATH with five concepts: Actions to nav-
igate the interface of web applications, means for interacting
with highly visual pages, intensional axes to identify nodes
by multiple relations, extraction markers to specify data to
extract, and the Kleene star to extract from a set of pages
with unknown extent.

Actions. For simulating user actions such as clicks or mouse-
overs, OXPATH introduces (i) contextual, as in {click}, and

(ii) absolute action steps with a trailing slash, as in {click /}.

Since actions may modify or replace the DOM, we assume

that they always return a new DOM. Absolute actions con-
tinue at DOM roots, contextual actions continue at those
nodes in the new DOM matched by the action-free prefix
(Section 4.4) of the performed action. This prefix is obtained
from the segment starting at the previous absolute action by
dropping all intermediate contextual actions and extraction
markers.

Style Axis and Visible Field Access. For lightweight visual
navigation we expose the computed style of rendered HTML
pages with (i) a new axis for accessing CSS DOM node prop-
erties and (ii) a new node test for selecting only visible form
fields. The style axis navigates the actual CSS properties of
the DOM style object, e.g., it is possible to select nodes by
their (rendered) color or font size. To ease field navigation,
we introduce the node-test field(), that relies on the style
axis to access the computed CSS style to exclude non vis-
ible fields, e.g., /descendant::field()[1] selects the first
visible field in document order.

Intensional Axis. XPATH is not able to express queries where
nodes from two node sets are related by more than one re-
lation. Also, the set of relations that can be used is fixed. To
overcome this limitation, OXPATH introduces intensional
axes: Users can identify nodes by intentionally defining re-
lations between node pairs, as needed. For example, exploit-
ing the style axis, the following expression selects all nodes
with the same font and color as a hyperlink:

doc("www.google.com")//a[@href]/
[$lhs/style::color = $rhs/style::color and
$lhs/style::font-size = $rhs/style::font-size]::x

Intensional axes allow to compare node sets by more
than one relation with the use of the reserved variables $lhs
and $rhs.

Extraction Marker. In OXPATH, we introduce a new kind of
qualifier, the extraction marker, to identify nodes as repre-
sentatives for records and to form attributes. For example,

doc("news.google.com")//div[@class~="story"]:<story>
[.//h2:<title=string(.)>]
[.//span[style::color="#767676"]:<source=string(.)>]

extracts a story element for each current Google News
story, along with its title and sources (as strings), produc-
ing:

<story><title >Tax cuts ...</title>

<source>Washington Post</source>
<source>Wall Street Journal</source></story>

The nesting in the result mirrors the structure of the OX-
PATH expression: extraction markers in a particular predi-
cate, such as title and source, yield attributes associated
with the last marker outside this predicate, in our example
the story marker.

Tim Furche et al.

Google scholar CHEITTS @ W

[cited_by SN D S

Scholar | Aricles and Artictes and patents ﬂJ#b ence of scaling in random networks |
ors: AL Barabasi, R Albert - Science, 1999 - sciencemag.or

Page 1. DOI: 10.1126/science.286.5439.509 , 509 (1999); 28|

Barabasi, Emergence of Scaling in Random Networks This cq

1 @EIEEER Albert, H Jeong, AL Barabési - A non-commercial use only. . clicking here colleagues, clients, §

arXiv:cond-mat/9907038v2 [cond i Cited by 8027 - Related articles - BL Direct - All 57 versions
Despite its increasing role in CoMMUl— — = = = — = = — = = — = - — — — — — ——— = = — — — |

controlled medium: any individual or |

1 The diameter of the world wﬂ

PR | Cited by 2497 d articleses Vig
<Uick 77
Goooooooooogle » i}

Result Page:

doc("scholar.google.com")/

descendant::field()[1]/{"world..."}O

/following::field()[1]/{click/}®

/(//alcontains(string(.), 'Next’)1/{click/})*®

//div.gs_r:<paper>[.//h3:<title=string(.)>]
[.//*.gs_a:<authors=substring-before(.,’” - ’')>]
[.//a[.~'Cited by’']1/{click /}®

//div.gs_r:<cited by>[.//h3:<title=.>]
[.//*.gs_a:<authors=substring-before(.,’ - ")>1]

Fig. 2 Finding an OXPATH through Google Scholar

Kleene Star. We follow [35] in adding the Kleene star. The
following expression, e.g., queries Google for “Oxford”, tra-
verses all accessible result pages, and extracts all links.
doc("google.com")/descendant: :field()[1]/{"Oxford"}

/following: :field()[1]1/{click /}
/(/descendant:

To limit the range of the Kleene star, one can specify upper
and lower bounds on the multiplicity, e.g., (...)*{3,8}.

2 Application Scenario

This section showcases some typical applications of OX-
PATH: interacting with a visual, scripted interface to find
flights on Kayak, extracting books on Amazon, information
on relevant academic papers and their citations on Google
Scholar, and stock quotes from Yahoo Finance.

History Books on Seattle. To extract data about history books
on Seattle as offered on amazon. co.uk, a user has to per-
form the following sequence of actions to retrieve the page
listing these books (see Fig. 1): (1) Select “Books” from the
“Search in” select box, (2) enter “Seattle” into the “Search
for” text field, and (3) press the “Go” button to start the
search. On the returned page, (4) refine the search to only
“History” books, (5) and open the details page for retrieving
further details. Fig. 1 shows an OXPATH expression that re-
alizes this extraction (each action is numbered according to
the involved step). Lines 1-5 implement the above steps: To
select the two input fields, we use OXPATH’s field() node-
test (matching only visible form elements) and each node’s
title attribute (@title). A contextual action (enclosed in {})

:a:<Link=(@href)>[.~"Next"]/{click /})*

oo © 2]

selectcustom (] include nearby airports or select custom

m London, United Kingdom x+ to Seattle, WA, United States
L a T A T [29/08/2011 |Anvtime v to [03/09/2011 | Anytime v | Search |

Depart — Mon 29 Aug 2011

2of B11 retum Ui Al American Arines Depars: 15:05 Anives: 16:40
Fiights

Toolbox ~

Heathrow (LHR) Seattle/Tacoma Intl (SEA)
. Get a price alert Price = - Airli Operated by British
5 Showfare chars Fiters: | stops (QID)
el Share results in real-time
< KLM to Seattle flights
Diect lihtsfom Landon Hesfrow & Gatwick. Checkx special deals!
www.kim.com/Seattle o
= P S [SO
‘ @z 1651 CRED . !
Foonrszp O R AAig) un 15ps » s 16w 0 d
[2 JISEES) s | 19045 » LR 1150 0 |
(0 2+ stops. £760 Im 1
| 1site °deta\\s save share [J %

doc("kayak.co.uk")//input#origin/{"London"}
/following: :input#destination/{"Seattle"}
/following: :input[@name='Search’]/{click /}
//+#stopsl/{click }/following: :=#stops2/{click /}
//tbody.resultrow:<flight>
[.//a.results_price:<price=(.)>]
[.//a.resultdetaillink/{click /}
//*.flight_detailsExtra
:<plane=(substring-before(.,"|"))>]

Fig. 3 OXPATH for Flights to Seattle

selects “Books” from the select box and continues the nav-
igation from that field. The other actions are not contextual
but absolute (with an added / before the closing brace) to
continue at the root of the page retrieved by the action. To se-
lect the “History” link, we adopt the . notation from CSS for
selecting elements with a class attribute refinementLink
and use OXPATH’s ~ shorthand for XPATH’S contains()
function to match the “History” text.

For the obtained books, we extract their title, price, and
publisher in step (5), as shown in Lines 68 of Fig. 1: The el-
ement with class result serves as indicator of book records,
denoted by the record extraction marker :<book>. From there,
we navigate to the contained title links, extract their value as
a title attribute, and click on the link to obtain the page
for the individual book, where we find and extract the pub-
lisher. Finally, we extract the price from the previous page —
without caring for the order in which the pages are visited
during extraction. OXPATH buffers pages when necessary,
yet guarantees that the number of buffered pages is indepen-
dent of the number of visited pages.

WWW Papers with their citations. We might want to ex-
tract the most relevant papers of a scientific field together
with other works citing them. Fig. 2 shows the sequence
of necessary user actions (each one numbered accordingly):
(1) Enter “world wide web” in the search field and (2) press
“search”. From the result page we extract, for each paper, its
title and authors paper and (3) click on its “cited by” link.
To retrieve the next result page, we (4) click on “Next” and
continue with (3).

Fig. 2 shows an OXPATH solution for this extraction
task: Lines 1-3, navigate to Google Scholar, fill and submit

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 5

LFTSE ALL-SHARE (*FTAS)

At 12:55pM : 2,939.(

{click /}

Components Get Component:

1-50 of 627 | First | Previous | Next f-east=——"

Historical Prices
Symbol Name Last Trade ange Volume
charts @D EED- - - - - — - - - -@CD-— - —— |
A STRUCTURE 113.98 p 12:29°P] (0.87%) 256,927

c FOR AFTAS
Interactive =

Basic Chart
Technical Charts

News & Info E ke)

Headlines

31 INFRASTRUCTURE (LSE: 3IN.L / ISIN JEOOB1RJLF86)

113.98 p
12:29pm

Day's Range: 113.30 -114.10
106.00 - 115.00
Volume: 256,927
Avg Vol (3m) 592,965
Market Cap: (ST 925.13M
P/E (ttm) 10.27 x
EPS (ttm) 1110 p
Div & Yield 5.50 (4.87%)

| Last Trade
| Trade Time: 52wk Range:
Change: 4+ 0.98 (0.87%)

113.00

Prev Close:
Open 113.30
Bid: 113.80
Ask 114.00
120.00 p

{click /} o

1y Target Est

doc("http://uk.finance.yahoo.com/q?s=%5EFTAS")

//table[tbody/tr/td[.="Name’']]

//trnot(position() = 1)]:<stock>

[td[2]:<name=string(.)>]

[td[4][? .[img/@alt="Up’]:<changelUp=concat(’'+",.)>]

[? .[img/@alt="Down’]:<changeDown=concat(’-",.)>]1]
/{click /}//tr[.~"Market Cap’]

[.//span:<marketCap=string(.)>]

Fig. 4 OXPATH for stock quotes

the search form. Line 4 realizes the iteration over the set of
result pages by repeatedly clicking the “Next” link, denoted
with a Kleene star. Lines 5-6 identify a result record and its
author and title, lines 7-9 navigate to the cited-by page and
extract the papers. The expression yields nested records of
the following shape:
<paper><title>The diameter of the world..</title>
<authors>R Albert, H Jeong, ...</authors>
<cited_by>
<title>Emergence of scaling in ... </title>

<authors>AL Barabasi...</authors></cited_by>
<cited_by> </paper>

Flights from Kayak. Our next example (Fig. 3) demonstrates
using OXPATH for finding non-stop flights to Hyderabad.
This example illustrates the interaction with a heavily scripted
page for refining the search results from any stops to only
non-stop flights. Here search results are only exposed through
serial user action input, which is allowed via well-formed
OXPATH expressions. After submitting the form, we wait
for the first result page to load and refine our results by se-
lecting only non-stop flights and flights with a single stop.
We can then extract flights, along with features such as price,
airline, and plane. In this example, we use the # selector from
CSS, analogous to the . selector used in this previous exam-
ple, that filters elements based upon their id attributes.

Stock Quotes from Yahoo Finance. Fig. 4 illustrates an OX-
PATH expression extracting stock quotes from Yahoo Fi-
nance. In particular, note the use of optional predicates ([? 1)
for conditional extraction: If the change is formatted in red,
it is prefixed with a minus, otherwise with a plus.

parent = child ™!

descendant = child™

ancestor = parent™

descendant-or-self = descendant U self

ancestor-or-self = ancestor U self

following = descendant-or-self o nextsibling™ o ancestor-or-self
preceding = descendant-or-self o (nextsibling_l)+ o ancestor-or-self
following-sibling = nextsibling™

preceding-sibling = (nextsibling=!)*

Fig. 5 XPATH axes composed in terms of “primitive” tree relations
child and nextsibling, their inverses, and the identity relation self.

3 Preliminaries: XPATH Data Model

XPATH is used to query XML documents modeled as un-
ranked and ordered trees of nodes. The set of nodes within
a document are given as DOM, with nodes of seven types,
namely root, element, text, comment, attribute, namespace,
and processing instruction. Documents begin at a unique
root node with elements as the most common non-terminal.
All nodes except comment and text have an associated name
(or label). Within a document, nodes x and y are ordered
by document order, which is defined as the binary relation
X <goc ¥, iff the opening tag of x occurs before the opening
tag of y in the well-formed XML document. Node types and
labels are formally represented in this paper through a set of
unary relations, (unaryy)veunary With, e.g., text, element,a €
Unary (all text nodes, elements, and a-labeled nodes).

An XPATH query result has one out of four possbible
data types, which is either (1) an unordered collection of
distinct document nodes, called node sets, or a scalar value
of type (2) Boolean, (3) string, or (4) number.

Briefly, XPATH queries are composed of functions and
operators. Most importantly, node sets are specified by path
expressions of concatenated steps: Each step evaluates the
context nodes resulting from the previous step and consists
of an axis (or child, if omitted), node test, and optional pred-
icate expressions. XPATH axes are binary relations, relating
a context node to another node in the document according to
the definitions in Fig. 5 (self is given as {self(x,x)|x € dom}).
In addition to self and the axes in Fig. 5, XPATH has specific
axes to access attribute and namespace nodes.

Axis navigation is further refined by node tests. In addi-
tion to a wildcard node test (node()) covering all document
nodes, XPATH defines node tests to filter by each of the un-
named node types (text (), processing-instruction(), and
comment ()). Node tests can also filter elements by name or
by #*, which is a wildcard for all elements.

Finally, steps can be filtered further with an arbitrary
number of predicate expressions. Predicates contain a sin-
gle input expression, and return each node from the context
that evaluates to true for its input expression.

We leave further details on XPATH to Section 4, where
we discuss XPATH implicitly as OXPATH’s sublanguage.

Tim Furche et al.

4 Language
4.1 Design Principles

The design of OXPATH is guided by the following design
goals derived from two core principles:

(1) Spirit of XPATH. OXPATH maintains, where possi-
ble, the principles upon which XPATH is built, in particular
the use of a single, navigational expression, polynomial time
evaluation, and concise syntax. Where we extend XPATH,
we do so using existing web standards such as CSS or DOM
events. (1) Single Expression. OXPATH expressions are path
expressions just like plain XPATH. We choose not to extend
OXPATH with a separate “construct” clause specifying the
result of the expression (as in SPARQL, SQL, or XQuery),
but rather to embed the specification of the result of the ex-
traction into the path expression through extraction mark-
ers. This requires the shape of the expression to mirror the
shape of the extracted result, a limitation, however, that is
insignificant due to XPATH’s flexible axes.! (1) Tree result.
The result of an OXPATH expression is a tree constructed
from matches for the record extraction markers and their at-
tributes. This poses only a small limitation, as data on the
web is usually presented in a hierarchical way. (1) Poly-
nomial time. We design OXPATH to remain polynomial
and in two-variable logic for both selection and construction
(see Section 4.10). Though there are cases, where full first
order-logic is necessary for extraction (e.g., to refer back to
values encountered on other pages), we believe that OX-
PATH presents a more useful trade-off in most cases (see
Section 2).

(2) Low memory. The second core principle is that OX-
PATH should not require an unbounded buffer for pages,
but rather be able to extract from hundreds of thousands
of pages with very little memory use. This is necessary for
large-scale data extraction. (1) No page identity. OXPATH
does not manage page “identity”: If two links lead to the
same URL, OXPATH considers the pages reached by click-
ing on those links as distinct. This avoids issues with server
state where the same URL returns different results at dif-
ferent times or points in an interaction. It also avoids the
need to maintain pages in OXPATH in case they are later en-
countered again. (11) No back. OXPATH does not allow the
reverse (or “back”) navigation over pages. Once we have
moved from page A to B, there is no way back to A. This is a
limitation as it (together with the lack of variables) prohibits
a class of wrappers that refer back to values encountered on
earlier pages. However, it is essential to maintain the low
memory profile of OXPATH.

! However, classical results [41] on rewriting reverse axes such as
ancestor in XPATH do not extend to OXPATH.

{expry 2= {expry {binop) {expr) | {xpath-unop) {expr)
{pathy (*|” Lpath))*

{path) = (istepy (/)’ {step))*
{istep) = {functy (O (Lexpry (©,” Lexpry)*)?)’ [{var)
| (" Cexpry *)’ | {istep) (step-suffix) | {step)
{step) = (step) {step-suffix) | {action) | {kleene)
| axisy ‘::’ (node-test)
(kleeney = “(* {pathy)’ (‘{" {number) ©,” {(number) ‘}’)?
{action) = ‘{’ ((ident)|{xpath-value)) ‘/’ 7 ‘}’
{funct)y = {xpath-functy| ‘doc’
{axis)y == {xpath-axisy| ‘style’ |{intensional-axis)
(intensional-axisy ::= ‘[’ {expr) ‘1’

{node-testy ::= ({xpath-nty | “field()”) ((.| ‘#) {ident))?
{step-suffixy ::= {qualifier) | {marker)

{qualifiery = ‘[’ {expry ‘I’

{marker) := ‘:<’ {(name) (‘=" {expry)? >’

{binopy = {xpath-binop)| ‘~="| ‘~’| ‘subset’

Fig. 6 OXPATH Syntax.

4.2 Syntax

The syntax of OXPATH is defined in Fig. 6 atop XPATH’s
syntax as defined in [26,13]. We add OXPATH specific con-
structs to XPATH non-terminals and highlight the newly in-
troduced non-terminals, i.e., the action and kleene-star ex-
pressions added to step, and the marker expression added
to step-suffix. Moreover, we allow certain CSS selectors [5]
to occur in OXPATH expressions and maintain their normal
semantics. These include ‘# and ‘.’ , which filter by the
id and the class attribute, respectively. For instance, a#myid
matches a elements with id attribute equal to myid whereas
a.result selects an a node if it contains result as a word
in its class attribute. The containment operator ‘~=’ returns
true iff the right operand is contained in the left operand as
a word (cf. word containment in CSS [5]). Furthermore, we
add five abbreviations: For contains(a,b) we write a ~ b
(string containment), for count(a | b) = count(b) we ab-
breviate with a subset b (subset), for [a | true] we write
[? al, for (a)*{1,1} we write (a), and for style::color we
write ~color.

Even with the added selection capabilities of CSS, OX-
PATH’s text extraction capabilities are still rather weak com-
pared to full IE system. We are currently extending OXPATH
with rich text processing operators (e.g., regular expression
matching) inspired by XPATH 2.0. However, proper entity
or relation extraction is beyond the scope of OXPATH and,
if necessary, can be performed in a post-processing step.

Finally, we define the main path to a step s in an expres-
sion e as the sequence of steps occurring on the path to from
the root of e’s expression tree to the step s. For example,
given e =a[b[c]/d]/e, we obtain for s =d and s =e respec-
tively the main paths a/b/d and a/e.

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 7

The grammar in Figure 6 omits a few restrictions neces-
sary to avoid an undesirable interplay of our new language
features with functions, predicates and sorting operators as
well as to avoid unintuitive extraction: (R1) Actions and ex-
traction markers may not occur in other extraction markers,
function or operator arguments. Further, extraction markers
may not occur inside intensional axes (see Section 4.7). This
limitation is mainly for simplicity, although actions in oper-
ator arguments can also affect the low memory principle of
OXPATH (see Section 4.1). (R2) We disallow position()
on the node set obtained from (Kleene-starred) bracketed
expressions having actions or extraction markers in their
main paths, to avoid sorting nodes which originate from dif-
ferent documents or relate to different extraction markers.
This restriction is necessary to maintain the low memory
goal of OXPATH, as it would require storing all these nodes
from different pages if allowed. Expressions with extrac-
tions inside Kleene stars are rewritable into expressions sat-
isfying this restriction, as shown in Theorem 2. (R3) Ex-
traction markers may only occur in a predicate if there is a
marker on the path leading to the predicate and the last such
marker does not extract a value. Extraction markers extract-
ing a value may not occur outside a predicate. The value of
an extraction marker must yield a scalar value. These three
restrictions ensure a sane use of extraction markers such that
the expressions always produces a proper output tree (“tree
result” principle). (R4) All predicates which are followed
by a contextual action with no absolute action between must
be free of actions. This ensures that the action-free prefix
(see Section 4.4) of a contextual action does not contain any
actions in predicates and thus can safely be executed multi-
ple times on different pages without violating the “no page
identity” principle.

4.3 Data Model

OXPATH’s data model extends the data model of XPATH to
multiple HTML pages, interconnected by actions. We eval-
uate OXPATH expressions on relational structures, called
page trees, with an input schema extending the model in-
troduced in Section 3:

((unaryy) yeunary, child, self, next-sibl, attribute, style,
(actiong) geaction

Therein, (unaryy)yeunary is the set of unary relations, indicat-
ing type and label sets, child is the parent-child relation, self
is the identity relation, next-sibl is the direct sibling relation,
attribute relates nodes with their attribute nodes, and anal-
ogously, style relates nodes with their style nodes, that is,
the dynamically computed style values of their parent nodes.
For example, the node types box- top, box-bottom, box- left,
box-right, box-width, and box-height refer to the dimen-
sions of the bounding box of node at hand.

;accessed

——child ----- + next-sibl —actiongp i

O DOM node D extracted record <> extracted value page

Fig. 7 OXPATH page tree.

The remaining XPATH axes, such as descendant, are de-
rived from the basic relations, as in Section 3. We also add
for each OXPATH action ¢ a binary relation (actiony) geaction-
Herein, actiong (x,y) indicates that action ¢ triggered on node
x yields the page rooted at y. The actions (actiong)geaction
and the child axis together form a tree: Each page has a
unique parent node connected by a single action edge, i.e.,
if two links point to the same URI, they yield two different
pages in the page tree.

An OXPATH expression E returns an unordered tree of
extracted nodes represented as a single relation O such that
(0,p,t,v) € O indicates that there is an output node o with
parent output node p, tag ¢, and a value v, which is possi-
bly null. A Record extraction marker R yields tuples of the
form (r, p,R,null), (typically) containing tuples of the form
(a,r,A,v), generated from an attribute extraction marker A
and a non-null value v. This allows the extraction of (possi-
bly nested) records with multiple values. We refer to nodes
in this tree (in the page tree) as output (input) nodes.

Fig. 7 illustrates both the data model and the result of
an OXPATH expression. The page tree consists of the nodes
of the considered pages, connected by child, next-sibl, and ac-
tion edges (in the figure we use only {click/}). Each distinct
path of actions and nodes leads to a distinct page. OXPATH
traverses action edges only in the direction of the edge (no
reverse navigation), and only directly (no descendant over
action edges). The part of the page tree accessed by a given
OXPATH expression is called the accessed page tree (dot-

Tim Furche et al.

ted area in Fig. 7), consisting of accessed pages and nodes.
Fig. 7 also shows the result of an OXPATH expression

//d:<R>/{click/}/.[//p:<Tp,=string(.)>]
[//k:<S>/parent: :b:<T,=string(.)>]

producing (square) output nodes (R, results, R, null) for match-

ing record extraction markers //r:<R>, and (S,Ry,S,null)

for //s:<S> (nested records). It produces (diamond) nodes

<Ap,Rd, Ty, vp> and (Ap, Si, Tp, vp) for value extraction mark-
ers //p:<Tp,=string(.)>and parent: :b:<7,=string(.). Note
that, the structure of the output tree reflects the structure of
the extraction markers in the OXPATH expression, but not

necessarily the structure of the input tree. In our example,

the fragment //k:<S>/parent: :b:<T,=string(.)> produces

output nodes A, children of output nodes S, although the

b’s are parents of the k’s in the input tree.

4.4 Semantics

The semantics of OXPATH is defined with its extraction se-
mantics [[expr]]g (¢), specifying the result tree for expres-
sion expr, context tuple ¢, and variable assignment . Each
context tuple ¢ = (n,p,[) consists of an input node n, the
parent output node p, and the last sibling output node I,
accessed through the notation c.n, c.p, c.[. We define the
extraction semantics atop the value semantics [[expr}]e (¢)
which matches nodes from the page tree, akin to XPATH’s
semantics in [13]. The latter computes the value reached via
expr, which is either a set of context tuples, a Boolean, inte-
ger, or string value. For lucidity’s sake, we first develop the
semantics for the OXPATH language without the intensional
axes, which we add to the semantics in Section 4.7.

The OXPATH semantics deviates from XPATH in the
contents of its context tuples. We maintain both, the preced-
ing parent and sibling match, to organize the extracted nodes
hierarchically: At context ¢ = (n, p,l), an extraction match
outside predicates (1) yields an output tuple (o,c.p,M,v),
with a fresh output node o, becoming descendant of c.p and
sibling of c./, and (2) changes the context to ¢’ = (c.n,c.p,0).
On entering a predicate, c.l replaces c.p as parent output
node, such that further extraction matches yield nodes that
are nested as descendants of c./ instead of c.p.

We start the evaluation of an OXPATH expression with
the initial context node ¢ = (L, results, results), where L is
an arbitrary context node and results is the root of all subse-
quent extraction matches. The context node is arbitrary since
all expressions start with doc (uri) which returns the root of
the page at uri regardless of the supplied context node.

For an OXPATH expression that is also an XPATH ex-
pression, the value semantics computes the exact same re-
sult as standard XPATH. Table 1 and 2 give the full OX-
PATH value and extraction semantics, respectively, though
we omit those rules in the extraction semantics that only

vi [path]y(c) = [path]y(c)
va [fet(er,....ex)]y(c) =Fra([er]y(c),...,[ex]y(c))
vi [eropex]y(c) =Bop([e1]v (c), [e2]y (c))

va [op ey (c) =Uyp([ely ()
vs [value]) (c) =value
V6 [[$var]]€ (c) = Blvar]

i [(i)step/path]y ()

N [axis]y (c)

={c" [e [(i)step]y(c) A c” € [parh]y (')}
={(W,c.p,c.l) | axis(c.n,n’)}
N3 [axis::nt]y (c) ={c’ € [axis]y(c) | ¢’ .n € unary,}
na - [()step[g] I (¢) ={c e [()step]\ (c) | [q]s ({"-n,c"1,c" 1))}
xs [(istepigqp]] (¢) ={c eC|C = [(i)stepy] (c)n

[REWRITE+ (gp,C,) g ({¢".n,c".1,c" 1))}
Ne [{action /}] (c)
N [{action}]y (c)
s [(M[=vD) Iy (o)
v [path)s]y ()

= {(,c.p,c.I)} with actiongerion (c.n,n")
= [AFP(action, c.n)]y ([{action /}]\ (c))
= {{en,c.p,0UT(cn, M)}
={¢|Ir=0vV0<s<r:

¢s+1 € [path]y (cs) Aco =c}
no [(path) = {v,w}]y(c) ={c;|Iv<r<wVO<s<r:
¢s+1 € [path]y (cs) A co =c}

i [y (e) ={c}

Bi [expr]g(c) = Upooiean([expr]y (c))

Table 1 Value Semantics of OXPATH

decompose the expression. Fr, B, and U, are the seman-
tic functions on the nodes corresponding to XPATH’s func-
tions, binary, and unary operators, extended by the OXPATH
. and # node-tests and ~ and ~= operators. As the variable
assignment f is handed thorough unchanged throughout the
semantics, we show 8 only in Rule V6, where we evaluate
variables , and drop it otherwise. For simplicity, we disallow
positional functions outside qualifiers.

4.5 Value Semantics

In Table 1, Rule V1, [path], delegates the evaluation of a
path to [path],, which handles expressions computing node
sets. The Rules V2-V4 deal with functions and operators
and apply the corresponding semantic functions on the eval-
uated subexpressions and operands. Rule V5 handles literals
and Rule V6 maps a variable $var to its value ($var).

The major part of the value semantics, consisting of Rules
N1-N10, deals with path expressions. At first, Rule N1 de-
composes a given path into its first element, which is ei-
ther a step or an istep, and the tail expression path. Then
the semantics evaluates the (i)step with Rules N2-N10, and
evaluates path on the resulting node set recursively.

N2-NS5: Axes, node-tests, and predicates. In Rules N2
and N3, we handle OXPATH axes and node-tests as in stan-
dard XPATH. The case of predicates in Rules N4 and NS

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 9

follows XPATH as well, but requires additional provisions:
To manage the nesting of the extracted data, upon entering a
predicate, OXPATH takes the last sibling output node as new
parent output node, both in Rule N4 and N5. Expressions in
predicates are cast to Booleans by means of [expr]g with
Rule B1, as in XPATH. Rule NS, for positional predicates,
relies on two new functions, REWRITE, and REWRITE _,
of the form expr x C x ¢ — expr’, where expr is an input
expression, C is a context set, ¢ € C, and expr’ is a rewrit-
ten expression as follows: Both functions replace in the in-
put expression each non-nested occurrence of last() with
|C| and of position() with the position of ¢ within C ac-
cording to document order. This order is well-defined within
all possible context sets at this point, since all such context
sets contain only tuples with nodes from the same page with
identical parent and sibling matches: If (i)step starts with an
axis/node navigation or an action, this property holds. Oth-
erwise (i)step must a be bracketed (Kleene star) expression,
and in this case, the expression is not allowed to contain
actions or extraction markers (Restriction (R2) on page 7),
preventing any changes in the underlying page or context
tuples. We write REWRITE 4 for conciseness, where the spe-
cific function applied depends on the (i)step: For axis nav-
igation, we choose REWRITE ;. for forward and REWRITE _
for reverse axes. Otherwise, for (Kleene-stared) bracketed or
action expressions, we always select REWRITE , .2

N6-N7: Actions. Actions map the context node c.n to a
node in a different page. Absolute actions in Rule N6 map
c.n to the root n’ of some other page with (actiong) geaction-
By our data model, we assume that the node n’ is differ-
ent from any other node previously reached. For contextual
actions, Rule N7 first also evaluates the absolute action to
obtain the root of the new page, but then attempts to move
to a node that corresponds closely to the node c.n on the
original page. We select the corresponding node by apply-
ing the same OXPATH expression to the new page root as we
used to select c.n in the original page. The action-free prefix
AFP(action,c.n) of action and c.n in OXPATH expression
expr returns the following OXPATH expression: Let base be
the subexpression of expr between action and its last preced-
ing absolute action, stripped of all extraction markers and
all contextual actions occurring in the main path of expr.
Then AFP(action,c.n) = (base)[i] where i is the position of
c.n in document order among all nodes in the current page
matching base. In the original page, this expression uniquely
identifies c.n. When evaluated from the root returned by the
absolute action on c.n, it selects a unique node reached by
the same path and in the same relative position.

N8: Extraction markers. For extraction markers, the con
text set of the corresponding step is modified by replacing

? Thus, (path)*[ap] = (UZopath)[ap] always holds, but
(path)*[qp] = U;’:(, path'[qp] does not hold necessarily, since [qp]
is applied to each of the i-th copy of path.

m

v [(i)step/path]g (c)
2 [(i)steplq] Je (c)

= [(i)Step]E (C) Y Uc’e[(i)step]]v [[path]]E (cl)
= [(i)stepe (c)u

Uc’eﬂ(i)step]]v(c) HqHE ((c'.n,c'.l,c'.l})
= {(ouT(c.n,M),c.p,M,null)}

= {(ouT(c.n,M),c.p,M,[v]y (c))}

m

E3

Table 2 Extraction Semantics of OXPATH (partial)

the last sibling output node c./ with the one generated from
this marker M and current node c.n. OXPATH computes the
new node with OUT(c.n, M) where OUT injectively maps an
input node c.n and extraction marker M to an output node.

N9-N10: Kleene star. Unbounded and bounded Kleene
stared expressions match the Kleene-repeated path multiple
times, enforcing optional iteration bounds.

N11: Empty expressions. Return the context node.

4.6 Extraction Semantics

The extraction semantics [expr]g (c) for OXPATH in Ta-
ble 2 takes context tuple ¢ and extracts an output tree from
the input page tree. For sake of brevity, we omit those rules
that recursively decompose the expression but have no other
effect. Except for extraction markers, the extraction seman-
tics is straightforward: For expressions with subexpressions,
we compute the extraction semantics for each subexpres-
sion and take the union of all extracted results. To com-
pute the extraction semantics for a subexpression expr, we
first compute with the value semantics [], the context set
to apply expr on, and then apply [expr]g recursively on
each obtained context node. Rule E1 and E2 exemplify this
case for paths and predicates. For all other expressions not
shown here, we collect all extraction markers returned by
their subexpressions (if any), regardless of the (value) se-
mantics of the involved expressions.

Extraction markers are treated in Rule E3 and E4: For
markers without extracted values (Rule E3), OXPATH ex-
tracts the tuple (OUT(c.n, M), c.p, M, null). The resulting node
is thus a child of the parent match c.p. For markers with val-
ues (Rule E4), we evaluate additionally the value expression
v: We take the value returned by [v] (¢) (a string or other
scalar) and output (OUT(c.n,M),c.p,M,[v] (c)).

4.7 Intensional Axis

In XPATH, axes relate nodes through a fixed set of relations
such as child or following. Together with functions and oper-
ators these are the only means in XPATH for relating two
nodes. Unfortunately, these means are rather limited, e.g.,
we cannot identify all nodes that follow the current node in

10

Tim Furche et al.

document order and are displayed in the same font size as
the current node. In general, XPATH is not able to express
queries where nodes from two node sets are related by more
than one relation.

Theorem 1 Let . be the set of first order queries of the
Jorm Q(x,y) < ¢(x,y) A y(x,y) where ¢(x,y) and y(x,y)
are non-empty first order formulas expressible in XPATH.
Then there are queries in ¥ that cannot be expressed in
XPATH.

Proof (sketch) From [36] and [13], this follows for naviga-
tional XPATH, which expresses exactly all XPNF queries.
An XPNF query is a FO? query over page trees (without
action relations) built from relations between two node sets
which are limited to disjunctions of binary atomic formulas.

For full XPATH, we need to show that neither relational
operators, functions, aggregation, or positional arithmetic
allow us to express multiple relations between two node-
sets. All queries in .# relate two nodes, and thus we can
ignore boolean and other value queries.

First, outside predicates, id() is the only functional op-
erator allowed in such queries. As id() returns the same re-
sult for any context node, it does not relate multiple nodes.

Second, inside predicates, XPATH allow conjunctions of
functions, relational operators, and aggregations. However,
the only “shared variable” between such conjuncts is the
context node (see V1-V6 in Table 1). Though it is possible
to build up several node sets originating from the same con-
text node, once constructed, its individual elements are only
accessible via quantification. For example, [.//a=.//b and
.//a=.//c] does not require the existence of a single a node
having the same value as some b and some c: In contrast,
the predicate is already satisfied if there exist two a nodes
which match respectively the values of some b and c.

Though the same context set can be matched by multi-
ple conjuncts (by using two equivalent sub-expressions), the
individual nodes in these node-sets cannot be related. This
even holds for count() which can be used to relate entire
node-sets, but not individual nodes. &

To address this limitation, we introduce intensional axes
to support OXPATH users in intensionally defining relations
between node pairs, as needed. We denote intensional axes
like predicates, but place them in lieu of an axis, i.e., before
a ::. For example, if we evaluate on a context c,

[$rhs subset $lhs/following::* and
$lhs/style: :font-size=$rhs/style::font-size]::x

we obtain the context set C containing all nodes ¢’ such that
the expression inside the brackets evaluates to true for the
variable assignment B’ = B[$lhs « c.n,$rhs < ¢'.n]. We
bind $1hs to the current node c.n, try for $rhs every node
in the current page, and return those for which the axis ex-
pression is satisfied. Thus, this expression solves the query

{axis)

{intensional-axisy ::= ‘[’ {expry ‘1’

= {xpath-axisy | ‘style’ | {intensional-axisy

Fig. 8 OXPATH intensional axis.
N [axis:nodes]y(c) ={{n,c.p,c.l)|n’ € [axis]y(c) A nodes(n')}

= {(n’,c.p,c.l) | n’ € nodes A [[expr]]g, (c)n
B’ = B[$lhs — c.n,$rhs — n']}

Nz [[expr] [y (¢)

Table 3 Value semantics for intensional axes

from the beginning of this section: It returns all nodes that
follow the current node in document order and are displayed
in the same font size. The expression uses OXPATH’S subset
operator to test if $rhs is among the nodes following $1hs
(see Section 4.2).

Definition 1 An intensional step [¢]: :ny consists of an in-
tensional axis of [¢]1, a node-test n, an arbitrary number of
predicates Y, and an arbitrary OXPATH expression ¢ that
may use the reserved variables $1hs and $rhs. An inten-
sional axis [¢] returns, for a context node ¢, all nodes m
such that [¢] is true if $1hs is bound to ¢ and $rhs to m.

Note, that an intensional axis that does not refer to $1hs
or the context node relates all context nodes to the same
bindings for $rhs (since [¢] does not depend on $1lhs.
If it does not refer to $rhs it acts as a filter to the context
nodes, but each context node that matches the filter is re-
lated to all nodes in the DOM. If neither is referenced, it is
either J or the set of all pairs of DOM nodes, depending on
whether [¢ [|5 holds (which is absolute and independent of
the context node).

Table 3 show the necessary additions to the semantics
of OXPATH. The existing Rule N2 already suffices to cover
intensional steps. Rule N12 (and only this rule) modifies the
set of variable bindings 8 such that $1hs is now bound to
the context node and $rhs is successively bound to all nodes
n in the document. With this updated variable binding, expr
is evaluated under Boolean semantics, and if [expr]y eval-
utes to true, n is added to the resulting context set. Conse-
quently, in case of nested intensional axes, $1hs and $rhs
are always bound according to the last axis.

Examples. Table 4 lists five applications of intensional axes
in OXPATH. Expression (1) selects all nodes that have the
same font color and size as an a. In (2) we select all divs
that are rendered north-west of an a. Expression (3) selects
all books having a common author with another book that
is cited by the latter one, i.e., it selects books containing
self citations. Example (4) shows a nested intensional axis:
It selects all em children of elements that have the same font
family as a div and that are to the north of an a of that div
with the same value. This case requires a nested relational

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 11

(1) Same font color and size:
//a/l$lhs/~color = $rhs/"~color and
$lhs/~font-size = $rhs/~font-size]::x

(2) To the north-west:
//a/[$rhs/"box-right < $lhs/”~box-left and
$rhs/~box-bottom < $lhs/~box-top]::div

(3) Same author and cites:
//book/[$1hs/author = $rhs/author and
$lhs/@id = $rhs/cites/@idref]::book

(4) Same font family and to the north and same value as a descendant:
//div/[$lhs/~font-family = $rhs/"~font-family and
$rhs subset $lhs//a/[$lhs = $rhs and
$lhs/~box-bottom <= $rhs/"box-top]::*]::x/em

(5) Visually contained:

//div/[$1lhs/"box-left <= $rhs/~box-left and
$lhs/~box-right >= $rhs/”~box-right and
$lhs/~box-top <= $rhs/"box-top and
$lhs/~box-bottom >= $rhs/~box-bottom]: :*

Table 4 Intensional axis examples

axis, as the div is related to the em by more than on relation,
but so is the a to the em’s parent. Expression (5) selects all
elements that are visually contained in some div.

4.8 OXPATH Properties

As discussed in Section 4.1, OXPATH is designed to avoid
buffering many pages or result tuples at the same time. This
design goal is expressed in two formal properties:

OXPATH avoids sorting context sets which contain nodes
from different pages, since it is unclear how to order nodes
from different pages, without first retrieving (and thus buffer-
ing) those pages.

Proposition 1 (No Node Sorting across Pages) The evalu-
ation of an OXPATH expression never requires sorting con-
text sets which contain nodes from different pages.

Proof OXPATH requires sorting only for positional qual-
ifiers in Rule N5, where the function REWRITE 4 (q,C,¢’)
sorts the tuples in the context set C and determines the posi-
tion of ¢’ within C. Thus, it suffices to show, that C in Rule
NS never contains nodes from different pages.

This holds true, since in Rule N5, C = [(i)step4 ||, (¢) is
computed from a single axis navigation axis :: nodes (N3),
followed by a sequence of (positional) qualifiers (N4 and
N5) and markers (N8). Our language restriction (4) from
Section 4 ensures that actions cannot occur in (i)step+, as
they are disallowed in positionally qualified steps. Since Rule
N3 always results in a context set with nodes from the same
page, and since N4-5,8 can only remove nodes from the con-
text set, C must contain nodes from a single page only. o

OXPATH’s semantics does not require any further pro-
cessing on result tuples, and hence allows them to be streamed
out as they are extracted. Extracted tuples are never modi-
fied, deleted, or re-accessed again.

Proposition 2 (No Output Buffer) The evaluation of
OXPATH expressions requires no output buffer.

Proof Only Rules E3 and E4 in Table 2 create output tu-
ples. We visit each input node c.n at most once with extrac-
tion marker M, and thus, each created output tuple is unique
(and is not overridden or altered in any anymore). The out-
put tuples are immediately added to the output relation O,
regardless of whether the current expression evaluates even-
tually to true or not. Also, when the output tuples are created,
the parent output nodes are known by construction and thus
no buffering is needed to obtain all tuple values. All other
rules in the extraction semantics (as in E1 and E2) only col-
lect the tuples returned by their sub-expressions. Since no
duplicate tuples are created, this requires no buffering. o

More intuitively, this holds as the structure of the out-
put tree reflects the structure of the OXPATH expression
and parent nodes are therefore always created before their
children nodes. Also, tuples are extracted immediately upon
creation, regardless of whether the current subexpression
matches or not. For example, consider expr[p;1[p2]1. If py
contains extraction markers, the extracted tuples are returned
whether p, matches or not.

Requiring that tuples extracted by p; are returned only if
p> matches, would require an unbounded buffer, as the vis-
ited pages and extracted results for p; are both unbounded.
Furthermore, we can achieve the same effect in the existing
OXPATH semantics at the cost of an increased query size:
We can rewrite the above expression into expr[p,1[pi1[p2]
where p) is obtained from p, by removing all extraction
markers. Then p/, matches if and only if p, matches, as ex-
traction markers do not affect matching, and tuples extracted
by p; are only returned if p, matches.

4.9 Normalizing OXPATH

We can reduce the size of the necessary memoization tables
by a factor of n, without restricting the language, at potential
expense of longer queries by rewriting general OXPATH into
normalized OXPATH, a fragment denoted OXPATH ,or.

We introduce two normalization properties for OXPATH
expressions: Property (A) does not allow any extraction mark-
ers within Kleene-star expressions, and Property (B) dis-
allows any two extraction markers on the same expression
branch. The latter property means that all extraction mark-
ers after any given marker must be nested within predicates.
For example, Property (B) is violated by a:<R>b: <S> but sat-
isfied by a:<R>[b:<S>]. In this section, we do not distinguish
record markers, such as :<R>, and attribute extraction mark-
ers of the form :<R=...>.

To normalize general OXPATH expressions, we apply
two rewriting steps. The first rewriting, shown in Theorem 2,

12

Tim Furche et al.

produces expressions which meet Property (A). When we
cannot apply Theorem 2 anymore, we rewrite the obtained
expression following Theorem 3, again until inapplicable, to
meet Property (B) as well.

The proof of Theorems 2 and 3 relies on the loose cou-
pling of value and extraction semantics in OXPATH: The
extraction semantics does not influence the value semantics
at all, as stated in Fact 3. On the other hand, the extraction
semantics depends on the value semantics, as the value se-
mantics determines which nodes to extract. But extractions
take place immediately, independently of whether the tailing
expression matches any values or not, as stated in Fact 4.

Fact 3 (Extraction agnostic value semantics) The introduc-

tion or removal of extraction markers does not affect the
value semantics of an OXPATH expression.

Fact 4 (Tail agnostic extraction) When extraction marker
<R> in a:<R>b is evaluated after having matched a, the corre-
sponding pairs (n,R) are extracted immediately, regardless
of whether b matches subsequently.

4.9.1 Extraction-Free Kleene Star

For the next theorem, we rely on OXPATH not being short-
circuited, e.g., the evaluation of [« | b] cannot be aborted
once a is evaluated to true since b may contain extraction
markers which must be matched, even if they do not affect
the value semantics.

Theorem 2 (Extraction-Free Kleene Star) Let e be an OX-
PATH expression hpxt, with h, p, and t as arbitrary subex-
pressions. Then the expression e is rewritable with

hpxt = ht | hgxpt = h [? g*xp] g*t ,

where q denotes the expression derived from p by removing
all extraction markers.

Proof We show the theorem by proving
px = self | gxp = self [? gxp] g* ,

where we abbreviate self:node() with self. From this claim,
the theorem follows, by adding 4 and ¢ to the start and end
of the three subexpressions in claim.

First, we show the claim for the value semantics and
subsequently for the extraction semantics. Using =y to de-
note the equivalence with respect to value semantics, we
obtain px =y ¢gx =y self [? x] ¢* =y self [? gxp] g*.
Therein, Step (1) holds for Fact 3, (2) holds for every expres-
sion x, since optional predicates are not required to evaluate
to true (in fact, they have been introduced for conditional ex-
traction), and (3) instantiates x with g*p. Similarly, we have
px =y self | pxp =y self | gxp, where Step (1) unrolls
the Kleene star expression, and (2) holds again for Fact 3.
Taken together, these identities show the claim for value se-
mantics, i.e., for =y .

Second, for extraction semantics, we show

p*x =g self | pxp =g self | gxp
=g self [? gxp 1 y =g self [? gxp] g% ,

yielding the sought for equivalences after Steps (2) and (4).
Step (1) unrolls the first iteration of the Kleene star. In (2) we
replace an instance of p with ¢, and hence we need to show
that every pair extracted by an instance of p in pxp is also
extracted by g+p. But this is the case: If p*p extracts some
pair, then there must exist a minimal i > 0 such that p'p ex-
tracts this pair. Because of Fact 4, we only consider the pre-
fix leading to the extraction, while we ignore the subsequent
expressions to be matched. Since i is minimal, the extrac-
tion does not occur within p’ but in the tailing p, and there-
fore, ¢'p produces the same pair. Hence, ¢xp does so as well,
proving the soundness of this step. Step (3) holds for any
y without extraction markers: All pairs extracted by g*p are
also extracted by the conditional predicate self [? g*p], re-
gardless of the tailing y. On the other hand, since y does not
contain extraction markers, self [? g*p] y cannot extract
more than g=+p. Step (4) instantiates y with g, which is valid
since g contains no extraction markers. O

Both rewriting options in Theorem 2 have exponential
upper bounds: If we rewrite hpxt with ht | hgxpt, we need to
duplicate the entire expression, with additional occurrences
of h, ¢, and p (in terms of g). On the other hand, if we use &
[? gxpl gxt, we triplicate p with two additional copies of gq.
In our experience, if extraction markers occur in Kleene star
expressions, then the Kleene-stared expressions are rather
short, i.e., the second option is usually the better choice. Fi-
nally, if the Kleene star must match at least once (e.g., when
using the Kleene + instead of *), then we can use an even
more efficient rewriting:

Corollary 1 (Rewriting for Kleene +) Let ¢ be an OX-
PATH expression hp+t, with h, p, and t arbitrary. Then the
expression e is rewritable with hp+t = hq*pt where q de-
notes the expression derived from p by removing all extrac-
tion markers.

In general all these rewritings are exponential in the ex-
pression size. However, the overhead introduced by rewrit-
ing Kleene star expressions with bounded Kleene nesting
depth is polynomial. This bound is practically relevant, as
we never encountered natural OXPATH expressions with a
nesting depth larger than 2.

Moreover, the rewriting of Theorem 2 is naturally ex-
tended to the bounded case with (for a ~ b = max(a — b,0))
hpx{n,m}t = ht | hgx{n=1,m=1}pt

= h [? g«{n=1,m=1}p] g*{n,m}s .

4.9.2 Sibling-Free Extraction

Theorem 3 (Sibling-Free Extraction Markers) Ler e be
an OXPATH expression a:<R>b:<S>c, with a, b, and ¢ as ar-
bitrary subexpressions. Then e is rewritable with

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 13

a:<R>b:<S>¢ = a [self:<R>] b:<S>c

Proof We prove Theorem 3 first for value semantics, then
for extraction semantics. With =y for equivalence according
to value semantics, we obtain

a:<R>b:<S>c =y ab:<S>c =y a [self:<R>] b:<S>c

where Step (1) holds because of Fact 3, and Step (2) holds
since [self:<R>] evaluates to true under value semantics for
every node.

For extraction semantics, a:<R> and a [self:<R>] must
extract the same pairs, since <R> is applied to the same node
sets, as a and a/self select same nodes. Again, because of
Fact 4, the respective tail expressions are irrelevant. o

4.10 Complexity

Considering the complexity of OXPATH, we note that ex-
pressions containing Kleene star repeated actions may re-
quire access to an unbounded number of pages. In particu-
lar, when we evaluate such an expression, we do not know
whether the evaluation terminates and how many pages are
accessed during evaluation. Thus, when we discuss the com-
plexity of evaluating OXPATH, we only consider expres-
sions whose evaluations terminate and consider all accessed
pages as input. Furthermore, we assume that traversing an
action takes constant time, as most pages execute their ac-
tions quickly.

Theorem 4 (Complexity) OXPATH evaluation without mul-
tiplication and string concatenation is in NLOGSPACE for
data complexity. OXPATH evaluation is PTIME-complete
for combined complexity.

Proof We show the theorem statements separately, starting
with data complexity: From all extensions over XPATH, only
the Kleene star causes an increase in complexity: Actions
are assumed to take constant time, extraction markers do
not require additional memory as they are streamed out, and
the additional axis does not introduce further complexity.
XPATH 1.0 without string concatenation and multiplication
has data complexity LOGSPACE [13]. Each Kleene star ex-
pression can be realized as transitive, reflexive closure of
the Kleene star repeated expression, therefore we arrive at
NLOGSPACE data complexity for OXPATH without string
concatenation and multiplication.

Combined Complexity: PTIME-hardness follows imme-
diately from the PTIME-hardness for XPATH query evalu-
ation [13]. To evaluate an OXPATH query, we process the
query left to right, and decompose it recursively. Since we
show that evaluating each subexpression requires at most
polynomial time, the overall evaluation runs in polynomial
time as well.

— > child = actiongiicy 1y

& extracted value

page (O DOMnode []extracted record

Fig. 9 Page and Result Tree Example.

doc (uri) : /desc %
&
CJ

/a ‘ | v @) emolzed
S A

Fig. 10 Call Graph Example.

For XPATH subexpressions, we rely on one of the known
polynomial time algorithms for XPATH [26], which can be
easily extended with style, intensional axes, and the other
selection only features added in OXPATH. If the expression
is an extraction marker, we stream out the extracted tuple,
which is in polynomial time, too, while actions are assumed
to take constant time.

The only remaining case is the Kleene star: If the Kleene
star repeated expression contains a non-nested action, we
know that each iteration of the repeated expression leads to
a new page. Consequently, there are at most input size many
iterations. If the Kleene star does not contain non-nested ac-
tions, we evaluate it like an ordinary Regular XPATH, lead-
ing to a polynomial time algorithm [35]: If a predicate within
the expression contains an action, we can evaluate this pred-
icate in polynomial time, and since we need to evaluate this
predicate at most for a polynomial number of context tuples,
the theorem statement follows. o

5 Page-At-A-Time Evaluation

As shown in the previous section, OXPATH remains close
to the favorable complexity results of XPATH. In this sec-
tion, we show OXPATH’s practical performance to be close

14

Tim Furche et al.

to XPATH’s performance, only slightly increasing the upper
bounds. For example, consider evaluating the expression

doc(u)//div:<R>//p//al{click /}//title:<t=string(.)>]

on the (simplified) DOM fragment in Fig. 9. The expression
navigates to all descendant links of p nodes, which are them-
selves descendants of div nodes. It extracts an <R> record
for the div node and then clicks on all found links to ex-
tract the title of each reached page as <t> attribute. The
evaluation first expands the abbreviated syntax to obtain
Expr =doc(u) /descendant-or-self::node()/child: :div:<R>

/descendant-or-self::node()/child::p

/descendant-or-self::node()/child::a

[{click /}/descendant-or-self::node()
/child::title:<t=string(.)>]

and then proceeds by processing the individual steps of the
expanded expression. Fig. 10 shows the call graph during
the evaluation of Expr, starting with the initial context tu-
ple (L, results,results). For simplicity, the nodes in the call
graph do not show the full context tuples (n, p,l) but only
the respective DOM nodes . In the first step, doc (uri) is ap-
plied to L to yield O, where the latter is the DOM root of uri.
The next step reaches via descendant-or-self:node() all
nodes 0...12. Since the nodes 1...12 have no child::div
successor, as required in the third step, we summarize those
nodes into a single node, and continue from node 0, which
is the only node with a div child. In the fourth step, the
extraction marker :<R> creates an <R> record for node 1,
linked to the results record which contains all extraction re-
sults. Subsequently, when we process the remaining steps in
this fashion, we need to make sure, that we do not perform
redundant computations. For example, there are two ways to
reach nodes 7 and 9, respectively, such that all computations
below those two nodes would be replicated by a naive algo-
rithm. In such cases, we avoid recomputing the same results
by memoizing the afore-computed results. We complete the
processing by clicking on all found links (nodes 4, 7, 10, 12)
and by extracting the title of the reached pages (not shown
in the figure). In general, we have to assume that loading
a page a second timeyields two different pages. Hence, to
minimize the needed resources, we buffer the current page
and load each of the four linked pages one after another into
a second page buffer.

5.1 Algorithmic Design Goals

Starting with a standard XPATH evaluation with memoiza-
tion [26], only two of OXPATH extensions demand signifi-
cant additional treatment, leading to the following three de-
sign goals: (1) Actions visit different pages, and multiple ac-
tions on the same page yield branches in the page tree (see
Section 4.3). Unfortunately, if the same page is fetched mul-
tiple times, we may obtain different results, e.g., if the un-
derlying data has changed or the page contains time sensitive

information. Thus, we need to buffer such pages, but at the
same time, need to minimize the number of necessary page
buffers without reloading pages. (2) With extraction mark-
ers, we can return multiple, possibly related data items, re-
quiring the evaluation to collect these items. To scale well
with large scale extraction tasks, we need to efficiently prop-
agate matches on extraction markers and their relations. Aside
these two goals, we also need to (3) maintain the polynomial
evaluation of XPATH, catering the other extensions of OX-
PATH efficiently.

To address (1), our page-at-a-time algorithm traverses
the page tree in a depth-first manner without retaining infor-
mation on pages not visited again. However, a naive depth-
first traversal of the DOM nodes within individual pages
would cause an exponential worst-case runtime in violation
of (3), necessitating memoization of intermediate results. To
address (2), our algorithms stream out extraction matches,
requiring no buffering at all.

Mutual Recursive Evaluation. As a solution to these design
goals, we employ two mutually recursive evaluation proce-
dures eval_ and eval. Thereby, eval_ evaluates simple
OXPATH expressions without actions or extraction markers.
As such, they are regular XPATH expressions (as in [35]),
extended with the style axis and additional operators dis-
cussed at the beginning of Section 4. In our example //div,
//p//a, and //title are simple subexpressions to be eval-
uated with eval_. Given eval_, eval decomposes full
OXPATH expressions into chunks of simple expressions for
delegation to eval_, and directly handles those steps which
contain actions and markers. Each chunk spans from one ex-
traction marker, action, or predicate, containing markers or
actions to the next such step. Both algorithms implement a
recursive top-down evaluation, in the spirit of the semantics
in Section 4.4, as shown in Algorithms 2 and 3. To com-
pute the value semantics [|, and extraction semantics [[¢
simultaneously, eval_ and eval return the result according
to [[, while outputting the tuples following [. For clar-
ity, we factor the evaluation of individual tuples from eval_
into evalT_ in Algorithm 1.

Memoization. As essential design goal, we need to prevent
multiple evaluations of the same expression with the same
context tuple. For example, while evaluating //p//al...]
in our example, there are two a nodes (7 and 10) that are
descendants of multiple p nodes. While a naive implemen-
tation processes such a nodes multiple times, we avoid this
overhead by inserting memoization at two strategic posi-
tions: We (1) encapsulate the evaluation of simple expres-
sions into eval_ extending the memoization-based XPATH
evaluation from [26], and (2) additionally memoize the out-
come of non-simple predicates of eval). Only recursion
branches starting at these points can possibly process the
same node and expression more than once. Thus it suffices
to memoize at these points (see Section 5.7 for details).

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 15

Page Management. To keep the resource consumption of
PAAT low, PAAT minimizes the number of simultaneously
retained pages and frees a page as soon as possible, either
explicitly or by implicitly replacing it with a new page. To
decide whether we can replace a page with a new one, eval
maintains recursively a flag Free which is set to true if a
page is not required anymore by the caller — and thus can be
overridden or freed. In our example, we visit for nodes 4, 7,
10, and 12 a new page recursively. In the first three of recur-
sive calls, Free is set to false, since we still need the current
page to follow the last link to another page. Only in case of
the last link, Free is set to true. When a page is removed
from memory, both the browser DOM and the correspond-
ing entries in the lookup tables are freed.

5.2 Context Tuples

eval and eval_ take as input a (full or simple) OXPATH
expression, and two sets ICtx and Ctx of context tuples, both
of the same type (out of two possibilities): (1) XPATH con-
text tuples ¢, = (cy.ny,cy.px) depend on their context set to
evaluate position and size and consist of the context node
and its parent context node, see [26]. (2) Extraction context
tuples co = {(Ce.Cx,Co.p, Ce.1) consist of one XPATH context
tuple and the ids of the last parent and sibling extraction
match — reminiscent of the context tuples in the semantics,
allowing subsequent extraction matches to be nested accord-
ing to the predicate nesting (Section 4.4).

As remarked above, XPATH context tuples are always
relative to some context set, which determines the position
of the tuple within the set. Since we want to evaluate only
part of the Ctx, we maintain those tuples in ICtx S Ctx, and
use Ctx only for determining the position of a tuple. For effi-
ciency, we maintain several context sets in the same program
variable. Hence, we select all tuples with same parent con-
text node (and same parent and sibling extraction matches)
to obtain the restricted tuple set Cix|., (Ctx|c,) containing
only tuples from the (proper) context of c,. Furthermore, we
write Ctx|¢, . = {(c;.Cx, Ce-p, 1) | ¢ € Cix|c, } to adapt par-
ent and sibling match in a restricted context set.

5.3 PAAT Simple Evaluation

The first procedure, evalT_ (Algorithm 1), evaluates a sim-
ple expression Expr on a context tuple cy, belonging to a
context set Ctx. As simple expression, Expr is free of ac-
tions or extraction markers, but may use other OXPATH fea-
tures such as Kleene stars. For brevity, Algorithm 1 only
deals with the most important expressions, i.e., axis naviga-
tion, Kleene stars, and predicates. The omitted parts (mostly
functions and operators) do not affect the algorithm design
and can be added analogously to predicates. In our design of

Function evalT_ (Expr, ¢y, Ctx):

2 if Expr = € then return {c,};
3 if Lookup[Expr,c,] # null then return Lookup[Expr,cy];
4 Expr = et where e matches one of the following cases;

5 ICtx « J;Ctx’ «— ;
6 if e = axis :: nodes then
7 ICtx «— {{n}, cx.ny} | @Xis(Cy.lx, 1Y) A 1 € UNAIY,0005) }5
8 Ctx’ « ICtx;
9 else if e = (path) = {v,w} then
10 ICtx «— {cy}; OCtx «— F;
11 fori—Otow—1do
12 if i > v then
13 | 1Ctx « ICtX\OCtx; OCtx «— OCtx L ICitx;
14 if ICtx = ¢ then break;
15 ICtx «— eval_(path,ICtx,ICtx);
16 ICtx «— {{C.ny,Cx.px) | €k € 1Ctx U OCitx};
17 | O « ICtx;
18 else if e = [¢] then
19 if evalT_(g,cy,Ctx) # & then ICtx« {cy};
20 | O « {cy € Ctx | evalT_(g,cy, Ctx) # I}

21 Result < eval_(z,ICtx,Ctx');

Lookup[Expr, c,] < Result;

23 return Result;

Algorithm 1: Evaluation of simple OXPATH on tuples

n
n

1 Function eval_ (Expr, ICtx, Ctx):

2 Result « ¢J;

3 if Ctx is extraction context set then

4 for c, € ICtx do

5 for ¢, € evalT_(Expr,ce.cy,Ctx) do

6 L L Result «— Result U {{cx,ce.p,ce.l)};

7 else for ¢, € ICtx do
8 L Result «— Result u {evalT_{Expr, ¢y, Ctx);

9 return Result;
Algorithm 2: Evaluation of simple OXPATH on tuple sets

evalT_, we are inspired by polynomial time XPATH evalu-
ation algorithms from [26]: evalT_ implements a dynamic
programming approach in maintaining a memoization table
Lookup which maps subexpressions and context tuples to in-
termediate results.

First we check for empty expressions as base case and
return the input tuple ¢, as result {c,} (Line 2). Next, we
check whether the result of applying Expr to ¢, has been
memoized, and if so, return this result (Line 3). Otherwise,
Algorithm 1 proceeds in a depth-first manner: It splits Expr
into prefix e and remainder ¢ (Line 4) to evaluate e directly
and ¢ recursively. In its main part (Lines 5 to 20), Algo-
rithm 1 evaluates e on ¢, to obtain the context sets ICtx and
Ctx’ (see Section 5.2), where e is either an axis with node
test, a Kleene star, or a predicate. Finally, the evaluation of
the tailing expression ¢ on ICtx and Ctx’ yields the result to
memoize and return (Lines 21 to 23).

(1) For axis navigation (Line 6), we obtain ICtx = Ctx’
via axis and unaryneges, adjusting the parent node to cy.n,.

16 Tim Furche et al.
1 Function eval(Expr, ICtx, Ctx, Free): (2) In case of Kleene star expressions without actions or
> if Expr is simple then return eval_ (Expr, ICx, G): extraction markers (Line 9), each succes.swe. 1tere}t10n might
3 Expr = het where h is simple, ¢ is not; return nodes already reached through prior iterations. Thus,
4 ICtx « eval_(h,ICtx, Ctx, false); in each of the w application of path, we avoid traversing
5 if ICtx = ¢ then return ¢ ; paths starting at already analyzed context tuples. More specif-
6 Result — f; ically, we collect in OCtx the tuples reached by the com-
7 ife = {action/} v {action} then pound Kleene star expression, and maintain in ICtx the tu-
8 for c, € ICtx do . .

0 7« Free A isLast(c,IC); ples to be explored. Inside the loop, if we have reached the
10 ICtx'—{((getPage(action, c..cx.n, f),Ce) ,Co-PsCe-l) }: lower bound v, we remove from ICtx all tuples already col-
1 if e = {action} then lected in OCtx (as they would be redundant), and take all new

g : : ! . 1. . .

12 if isPageUnmodified() then 10" —{ccl; ~ podes into OCtx (Line 12). If there are no new tuples left, we
13 else ICtx’ < eval_(AFP{action,c,.cx.n),ICtx’,ICtx); . .

;o break the loop (Line 14), otherwise we evaluate path once

" !:lesult < Result u eval{z, ICtx ,ICtx,,true), (Line 15) to complete the iteration. Finally we add OCtx to
15 if Free then FreeMem(pageof(ICtx")); . .

L - ICtx and set in all resulting tuples cy.n, as parent context

16 elseif e = (M[=v]) then (Line 16). The latter groups the tuples in the context ICtx, as
1; If?rxc‘: %tx do ICtx might become part of a larger context set subsequently:
19 val evalT_(v,co.co,Ctxe,)i This ensures, e.g., that in an expression y/ (¢){2,3}[il, for
20 output (OUT(C,.Cx.1x, M), Ce.px, M, val); each node n matching y, the i-th node reached via ¢ from n
21 ICtx" < ICtx" U {{ce.Cx, Ce.p, OUT(Ce.Cnx, M)) 3 is returned, instead of the single i-th node among all nodes
22 | Result —eval(z,ICtX,ICtX’, Free); reached via y/ (¢){2,3}.

23 else if e = (path) * {v,w} then (3) We deal with predicate expressions [q] (Line 18),
24 ifpath contains an action on the main palh then by recursively evaluating q with eva-LT_, since q must be
25 if w > 0 then . . :
26 ifv = Othen Result«—Resultueval(t, ICtx, ICtx, false); simple 1.tself. If the évalu.atlon returfls a no’n-emp ty set, we
o7 Expr’ — path path s {max(0,v—1),w— 1} 1; keep c, in ICtx, and likewise, determine Ctx’ as the subset of
28 Result < Result U eval(Expr’, ICtx, ICtx, Free); Ctx whose nodes satisfy g (Line 20).
29 else Result < Result U eval(t, ICtx, ICtx, Free): Finally, in all cases, we evaluate tail ¢ of Expr with the
20 else new context sets ICtx and Ctx’ to return the memoized result.
31 N« & Algorithm 2 iterates over a set of context tuples ICtx and
32 forc. € I/Ctx do calls evalT_ for each tuple. It is split into two parts: The
zi lf(;:(, H({)C:O} ;VSCD; ;@ ; first part (Lines 3 to 6) covers the case that ICtx contains
IR — K
a5 ifi>vthen ICtxé—ICtX\OCix;OCtx—OCIKUICHK: extraction context tuples, the other part the case of XPATH
36 if ICt’ = ¢ then break; context tuples. In the former case, we strip the extraction
37 ICtx'—eval(path,ICtx ICtx] Freen(i=w—1)A(r=¢€)); matches from the tuples to reduce the space for Lookup in
38 N—NU{({C} 11x, Ce-Px) 5 Ch-Pe, Co-le) | €, EICX LOCHX} ; evalT_, see Section 5.7. Either way, we call evalT_ for
39 Result < eval(z,N,N, Free); each tuple in ICtx, providing the restriction Ctx., (or Ctx|,)
o of Ctx to the proper context set of ¢, (or ¢.). In case of extrac-
40 else if e = [¢] then . . -
“ o — & ; tion tuples, the algorithm reattaches the parent and sibling
42 for c, € ICtx do matches to the returned nodes in Line 6.
43 Free' « Free A (t = €) A isLast(c,,ICtx);
44 ¢l {co.CxyColeyCo.le);
45 if Lookups[e, c.] = false then continue; 5.4 PAAT Full Evaluation
46 else if Lookups [e, c.] = true or
/ /
47 e\,/al(q7 ‘,{Ce}=,C‘XIa~cévFree) # & then In Algorithm 3, we show eval for handling full OXPATH.
48 | ICt—ICtX'Ufc, };Lookups [e,] « true; o . -
Building upon eval_, eval deals with actions and extrac-
49 else Lookups e, c.| < false;
- tion markers, and expressions that contain actions and ex-
5 | Result«— eval(z,ICtX,ICtX’,Free);

51

return Result;

Algorithm 3: Evaluation of full OXPATH on tuple sets

traction markers as subexpressions, i.e., Kleene stars and
predicates. Next to exploiting the memoization of eval_,
eval also memorizes the outcome of predicate evaluations
in its own lookup table Lookups. As in evalT_, we omit
functions and operators for clarity; they are handled analog
to predicates.

Performing the actions in the expression, eval traverses

the page tree in a depth-first manner. For Kleene stars with-
out actions on the main path, eval works similar to evalT_,

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 17

since all resulting nodes are on the same page, even if ac-
tions within the predicates of the Kleene star expressions
may navigate to other pages. While the input context set Ctx
only contains nodes from a single page, the result set Result,
however, may contain nodes from many pages.

If Expr is simple, we delegate its evaluation to eval_
and return the result (Line 2). Otherwise, we split Expr into
three parts (Line 3): & is the maximum prefix which is sim-
ple, e is either an action, an extraction marker, or a Kleene
star or predicate containing an action or extraction marker,
and ¢ is the remaining expression. The prefix 4 is evaluated
with eval_ (Line 4), and the result is returned if empty
(Line 5).

(1) The first main case deals with actions (Line 7), cover-
ing both, absolute {action} and contextual actions {action/}.
Roughly, we iterate over all ¢, in ICtx, obtaining per ¢, a new
context set ICtx” with a single tuple. That tuple is either the
root of the page returned by the action applied to ¢, or the
result of evaluating the action free prefix on that root. Either
way, the parent and sibling extraction matches are copied
from c,. In getPage, we free the page to perform the action
upon, if the input flag Free is set and ¢, is last in the itera-
tion (Line 9). Upon freeing a page, all memoization infor-
mation in Lookup and Lookups related to this page is freed,
too. If the action is contextual (Line 11) and did not alter the
page, we stay at ¢, to avoid evaluating the action free prefix
AFP(action, c..c,) (Line 12), as done otherwise. Either way,
we evaluate ¢ recursively on ICtx’, descending one step fur-
ther in the depth-first traversal of the page tree (Line 14). We
set Free to true, since the page and all related memoized in-
formation is freed after the invocation in any case (Line 15).

(2) For extraction markers (Line 16), first the value to be
extracted is evaluated with evalT_, as extraction values are
always computed from simple expressions (Line 19), and
the obtained result tuple written to the output (Line 20). Fi-
nally, we add a tuple to ICtx’ that is identical to c, up to the
sibling match which is set to OUT(c,.c,.ny,m). The tail is
then recursively evaluated with the new context set ICtx’.

() Kleene stars containing actions are treated in two
cases: (i) If a Kleene star contains an action on its main path,
we expand the expression (Line 27) and recursively evaluate
the expanded expression (Line 28). Once the expansion has
reached the lower bound, i.e., v became 0, we also collect
results by evaluating the tail # (Line 26). The results for the
final iteration are collected in separately (Line 29). By eval-
uating the tail ¢ at each individual recursion step, we avoid
context sets with nodes from different pages and neverthe-
less evaluate the same expression only once for the same
context, as each iteration yields nodes from different pages.
(i) Otherwise, without actions on the main path (Line 30),
different iterations can never re-reach a node already pro-
cessed, and hence, we use similar strategy as in evalT_.

(4) It remains to address predicates containing actions
or extraction markers (Line 40). Here, we need to evaluate
the contained expression g for every c, in ICtx to test if it
yields J. Since g contains an action or extraction marker,
we need to use eval. Doing so without memoization would
lead to an exponential runtime, due to expressions such as
//al.//bl{click/}]1[.//c[{click/}][...]1]1] —requiring an-
other lookup table Lookups. Here, we need to memoize an
entry per extraction context tuple and expression, however,
as result we only store true or false. We construct the extrac-
tion context tuple ¢, for evaluating the predicate by taking
the sibling extraction match as new parent match (Line 44).
Then g is evaluated over {c;} with Ctx|, ./ (see Section 5.2)
as new context set (Line 46). It remains to evaluate tail # on
the filtered context ICtx” (Line 50).

5.5 PAAT Example

With the algorithms at hand, we now revisit the example
shown in Fig. 9 and 10 to discuss its processing in detail.
1—Navigation. PAAT starts with eval(Expr, Cix, Cix, true)
where Ctx = {((L, 1), results,results) }. Expr is split into & =
€, e =doc(uri), and ¢t =descendant-or-self::node()...,
see Line 4 of Algorithm 3. As & is empty, the call to eval_
in Line 3 returns the unchanged context tuples, continuing
with e =doc(u), an absolute action to load the new page
(Line 10). Thereby, we Free' = Free = true, since there is
only a single tuple in the context set. On loading u, getPage
returns O, the root of the page tree in Fig. 9. The context
tuple ({0,.L),results,results) is used for processing the tail
recursively (Line 14).

In the recursive invocation on O (yielding the second box
in Fig. 10), the former tail # becomes Expr, is split into & =
/descendant-or-self::node()/child::div, e = :<R>, and
the rest ¢. First, eval evaluates & with eval_ which calls
evalT_ for each single context node. Since evalT_ has
no memoized data available for 4 (Line 3), it splits Expr
into descendant-or-self: :node() and child: :div (Line 4).
Evaluating the first expression, the context is expanded in
Line 7 to all nodes in the page and child: :div is evaluated
on these nodes with eval_ which calls evalT_ once for
each node. In Fig. 10, we summarize these calls with three
boxes: Starting at 0, descendant-or-self::node() yields a
summary box for the DOM nodes 1...12 (albeit, there is
one call for each node), and a box for 0. Finally, child: :div
leads from O to 1.

Thus eval_ returns ((1,1),results,results) to eval to
continue with the evaluation of :<R> (Line 16). For that con-
text, (OUT(1,R),results, R,null) is written to the output by
the evaluation of :<R> (Line 20). In Fig. 9 the new tuple is
shown as a (square) node R.

Tim Furche et al.

eval continues recursively with the rest of the expres-
sion using the context tuple ({1, L) results, OUT(1,R)), car-
rying the fresh output node OUT(1, R) as new sibling marker.

The rest of the expression is split again, this time into
the simple expression % of four XPATH steps between :<R>
and the predicate, the predicate (as e) and an empty tail.
The evaluation of the simple expression is again delegated
to evalT_ (via eval_): 1 has all nodes except L as de-
scendants, but only the only nodes with p are 1, 5, and 8,
all others will return subsequently empty results. The eval-
uation continues in a depth-first manner, evaluating the left
most branches first. Fig. 10 shows how we first find all a
descendants of p descendants of 1, memoizing the results at
every step. When we later search for such nodes for 5 and 8,
we find that all matching nodes have been already evaluated
and the corresponding results memoized.
2—Predicate Evaluation. The evaluation of the predicate
in eval starts with the context set containing one context tu-
ple for 4,7, 10, and 12. For example, with 4, we get the tuple
((4,2) ,results,OUT(1,R)). To evaluate e =[{click/}/....]1,
eval changes the tuple to ((4,2) ,0UT(1,R),0UT(1,R)), such
that the last sibling match ouT(divy,R) becomes the par-
ent in the recursive call to eval (Line 46). Thus, all tuples
extracted during the predicate evaluation (i.e., within this
branch of the call tree) are descendants of OUT(1,R).

The recursive calls to eval split Expr into e ={click /}
andt =/desc-or-self::node()/title:<t=string(.)>.Inthe
first three of these four calls, Free is set to false, since the
page is still needed, but in the last invocation, Free is set to
true, such that the page buffer of the current page can be
reused. Accordingly, the action in e opens the linked page
with getPage (Line 10) either into a new or the current page
buffer, overwriting the old page. In any case, the context now
refers to the root node of the new page. eval evaluates ¢
recursively (Line 14), setting Free to true in any case, the
newly loaded page will be freed after this invocation any-
way (Line 15).

The subsequent recursive invocations on the new page
navigate to the title node for value extraction. Hence, with
i ranging over the reschaed title nodes, evalT_ outputs the
tuple (OUT(i,r),0UT(1,R),¢,val;) (diamond in Fig. 9) as child
of OUT(1,R), associated with its textual content val; (Line 20).

5.6 Intensional Axes

So far, we did not consider the evaluation of intensional
axes. As we will show in Theorem 8, we could rather as-
sume that they are precomputed on page load. In practice,
however, it is usually preferable to delay that computation
and to use memoization, requiring a small modification to
the PAAT algorithm: First, we must explicitly manage the
environment containing the variable bindings. While tech-
nically necessary for plain XPATH, we omitted the variable

bindings in the algorithms for OXPATH without intensional
axes for clarity, as these bindings are handed through all re-
cursive invocations unaltered. Second, in Line 7 of evalT_,
we can no longer assume that the axis is precomputed, but
rather need to determine all nodes related to the current con-
text node by calling eval with the expression defining the
intensional axis and an updated environment. If the result is
not empty, the node is related to the context node and added
to Ctx’. To avoid multiple evaluations of the same intensional
axis, we guard this evaluation with a memoization table sim-
ilar to Lookups, but with an additional entry for the related
node. In Section 6, we show that, implemented in this way,
intensional axes have little impact on the practical perfor-
mance of OXPATH.

5.7 Analysis of PAAT

In Table 5, we summarize the complexity of OXPATH and
some sublanguages. We denote the size of the query with
g, with n the (maximum) number of nodes in a document,
with p the number of pages in the page tree, and with d its
depth tree. On the left of the table we show which features
of OXPATH are allowed, X, or not allowed, —. (X) indicates
that the complexity is not affected by removing or adding
the particular feature. The considered features are extrac-
tion markers (normalized only or any), actions (absolute or
contextual), Kleene stars (bounded only or any). We also
give the number of page buffers PAAT maintains at most for
each class. In the following, we give proofs for the most im-
portant cases. Intensional axes are considered separately in
Theorem 8.

Theorem 5 Evaluating a simple OXPATH expression with
evalT_ takes at most O(q* - n*) time and O(q* - n®) space
where q is the size of the expression and n the number of
nodes in all documents reached by the evaluation.

In case of simple OXPATH?, n is the number of nodes in
the start document.

Proof The proof follows closely the proof of Theorem 6.6 in
[26], since simple OXPATH is roughly comparable to XPATH,
adding only Kleene stars, the style axis and a few operators.
Due to the memoization, the Kleene star does not affect the
complexity (it does, however, impact practical performance,
as it generates on average far more Lookup entries than other
expressions).

PAAT is a top-down, recursive implementation of the
context value table principle from [26].

We first show that evaluating a simple OXPATH expres-
sion using evalT_ takes O(I_ - Typ) time and O(I_ - Syq)

3 Simple OXPATH is the restriction of OXPath to simple OXPATH
expression, but we allow a doc () action at the start of the expression
to set the document to be queried.

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web

extraction actions Kleene Time Space Page buffers
norm. any | abs. context. | bounded any
— — | — — — — o(g?> -n*) o(g? -n) o(1) XPATH + style, ...
— — | — — X (X) O(g% -n*) O(g?-n) o(1) simple
X — | — — — — O(g*-n*) 0(g*-n*) o(1)
X x| — — — — | o@nh 0(q? -y o)
— — | X X) — — | 0@ (p-m*) | O(¢*-(min(q,d) -n)*) | O(min(q,d))
— — | x (X) X X | O(g*-d-p*-n*) O(q*- &3 -n3) O(min(q,d)) | Extraction-free
X = x — = | ogptnh 0(q°-n’) O(min(g,d))
X X X X) — — o(g*-p*-n*) 0(q" -n*) O(min(q,d)) | Kleene-free
X — X X) X X O(g?>-d-p>-n*) O(g?-d* - n?) o(d) normalized
X X X (X) X X | O(g*-d-p*-n*) O(g® - &> -n*) o(d) full

Table 5 Complexity of OXPATH family

space where /_ is the maximum number of entries, Sy the
maximum size of an entry in the lookup table Lookup in
evalT_, and Ty, the maximum cost for evaluating a func-
tion or operator. This holds as the body of evalT_ runs
at most once per entry in Lookup. For each entry, the time
for executing evalT_ is bounded by the maximum time for
evaluating a function or operator, as this time dominates the
other cases in evalT_ (all bounded by O(n), whereas the
function or operator evaluation is > n). For size, observe
that other than the size of the lookup table, we only man-
age the three contexts Ctx, Ctx’, and Ctx” and the Result, the
first three bounded by O(n?), the second by O(n), and thus
dominated by the size of Lookup.

Second, we show that (1) [_ € O(q-n?). This follows im-
mediately from the signature of Lookup. (2) Sya € O(g - n).
concat () and multiplication are the operations that yield the
largest increase in value size and the resulting values are
bounded by O(q - n), see [26]. (3) To, € O(q-n?). Again fol-
lowing Theorem 6.6 in [26] we observe that the most expen-
sive operation is = which compares two nodesets of up to
O(n) size. Together with the bound on value size we obtain
a bound of O(g-n?) for T,,. The added axes or comparison
operators in OXPATH do not affect this result if we assume a
pre-computed table for ~ and ~= as for =. We also deviate in
how we compute position() and size() by projecting the
context set to tuples with the same parent and sorting the re-
sult. However this is done in O(nlogn) and thus dominated
by the time for=. o

Proposition 5 Evaluating an OXPATH expression with eval
takes O(Nexpr - Ne, + Nexpr - Ne, - Top) time and O(Nexpr - Scix +

I3+1_-Sya1)) where Negor the number of subexpressions eval-

uated by recursive calls in the evaluation, N, the number of
extraction context tuples, N, the number of XPATH context

tuples from all reached pages, Sci the maximum size of a

context set in eval, I3 the maximum size of Lookups, [_ the

maximum size of Lookup, and S, Top as in Theorem 5.

Proof We first consider space complexity: eval uses Lookups
and (indirectly) the lookup table Lookup for evalT_. Addi-

tionally, we have to account for the various context sets and
the result set Result. The latter can be streamed out rather
than stored, as it is never processed further. The context sets
are accounted for by the Sci - Negpr, as each call to eval
uses a constant number of such sets and the depth of the call
graph (and thus the number of simultaneously stored context
sets) is bounded by Ngyr. It suffices to consider /_ - Sy, for
the impact of evalT_, as Theorem 5 shows that this expres-
sion dominates its space complexity.

For time complexity, observe that eval is called at most
Neypr - Ne, times. This holds since, eval is never called twice
on the same expression for the same context tuple other than
in Line 46 where two calls may use the same context tu-
ple ¢, (originating from context tuples with different parent
matches). However, in that case the total number of calls is
still bounded by the original ICtx set.

In each such call, eval may delegate the evaluation of
the expression or some subexpression to evalT_. Due to the
memoization in evalT_ the total time for all these calls is,
however, bounded by Neyp - N, - Top as any repeated calls im-
mediately return the memoized result and the memoization
tables are kept until all nodes from the page are processed.

Other than those calls and recursive calls to itself on a
proper subexpression, eval only requires constant time per
node if we assume that action execution is constant.

Theorem 6 Evaluating a full OXPATH expression requires
O(q -d - p*-n*) time and O(q> - d° - n*) space.

Proof For this proof, we first observe the invariant on eval:
each context set contains only context tuples with context
nodes from one page.

For full OXPATH the following bounds hold (g query
size, d depth of the page tree reached by the evaluation, n
maximum number of nodes on a page, p number of pages
reached by the evaluation) (1) Nepr is bounded by O(q - d)
not O(g) as the expansion of Kleene stars in Line 27 intro-
duces new expressions. However, there can be at most d + 1
such expansions on the path to the root from any leaf expres-
sion, as each expansion includes at most one action and, af-

20

Tim Furche et al.

ter d expansions any additional expansion yields an expres-
sion with d + 1 actions on a single path and thus an empty
result as the page tree is bounded by d. In this case the ex-
pansion is stopped and we obtain the bound of O(g-d). For
the evaluation of action-free prefixes, we at most double this
number (if each step contains a contextual action). (2) N, is
bounded by O(g? - p* - n*) since there are at most p-n (par-
ent or actual) context nodes, each such pair combined with at
most g - p - n different parent and sibling matches, since they
must originate from an extraction marker on the path to the
root and such a path has at most ¢ distinct such expressions.
Kleene star expansion may cause the same extraction marker
to occur in several positions, but matches for all occurrences
are indistinct. (3) N, is similarly bounded by O((p-n)?).
(4) Ty, and Syy are as in Theorem 5, as we do not allow
actions in operands of functions and operators and thus an
operand is limited to nodes from a single page. The value
size is also not affected by Kleene star expansions. (5) [_ is
bounded by O(Neyr - (d - 1)?), since only the lookup entries
from at most d pages are active at a time. (6) /5 is similarly
bounded by O(Nexy - ¢* - d* - n*) since there are only tuple
from at most d pages with at most n nodes stored in Lookups
and each of those may be combined with g - d - n parent and
the same number of sibling markers. (7) Sci is bounded by
O(n? - ¢*-d*-n2) as each context set contains only extrac-
tion context tuples for context nodes from one page (but ex-
traction matches may originate from any page on the current
branch of the page tree). With this, the complexity follows
from Theorem 5. O

Theorem 7 Evaluating a normalized OXPATH expression
takes O(q* - d - p* - n*) time and O(q* - d* - n?).

Proof For normalized OXPATH we can drop the sibling ex-
traction markers from the extraction context tuples in eval
and eval_.

The complexity remains as for full OXPATH except for
(1) N, is bounded by O(q- p*-n*) since we do not need
to maintain sibling extraction matches. (2) /5 is bounded by
Neor- (- d?-n3) for the same reason. (3) Scy is bounded by
O(q-d-n®) as each context set contains only extraction con-
text tuples for context nodes from one page (but parent ex-
traction matches may originate from any page on the current
branch of the page tree). With this, the complexity follows
from Theorem 5. o

Theorem 8 Intensional axes increase the complexity of OX-
PATH and any sub-language including XPATH by at most a
factor of O(n*) where n is the total number of nodes in the
page tree.

Proof In general, intensional axes can be evaluated as fol-
lows: First, we materialize all intensional axes in an expres-
sion bottom-up. Then, the expression is evaluated over the
intensional axis as usual. The actual evaluation complexity

is not affected as the two necessary operations, testing if a
pair of nodes is in an axis and iterating over all nodes that
are related to a given context node by an axis, retain their
(constant, resp. linear) complexity.

For the materialization of the intensional axes, we first
note that there are at most g such axes. For each axis, we
need to store at most O(n?) tuples. To compute the material-
ization, we need to evaluate the expression inside the inten-
sional axis at most once for each pair of nodes, binding each
successively to $1hs and $rhs. o

Theorem 9 (Memory minimality) Let L be an OXPATH
expression without actions in predicates. Then there exists
a page tree for which every algorithm that computes [-],
without prior knowledge of the page tree requires at least as
many page buffers as PAAT.

Proof An expression from L has the shape
ey = doc(w)rg with ry = /¢,/{action}r,_; for d > 1 and
r1 = €. Assume further that in the page tree of the expres-
sions e; each page has at least two nodes with an action
that leads again to another page of this form. e; executes
{action} on all nodes of a page w that match the corre-
sponding ¢;, and continues recursively from all pages thus
reached. It returns the roots of the pages finally reached.

When we evaluate e; with PAAT, we access the page
tree up to a depth of d and use exactly d page buffers. This
holds, since the accessed page tree has at least two branches
at each page.

Any other algorithm A must load the leaves of the ac-
cessed page tree of PAAT as these nodes are the result of
evaluating [e4]y,. To visit such a leaf node / of the accessed
page tree, we have to load its parent p first, because with-
out prior knowledge all children of p are only accessible by
performing {action} on the respective node in p. Thus, A
must have loaded all d — 1 ancestors of / to finally access /.
Assume that [is the first leaf reached by A. Then, A must
buffer all d — 1 ancestors in addition to /, because for each
ancestor of / there are further children to be visited. &

6 Evaluation

We confirm OXPATH’s scaling behavior as follows:

(1) The theoretical complexity bounds from Section 5.7
are confirmed in several large scale extraction experiments
in diverse settings, in particular the constant memory use
even for extracting millions of records from hundreds of
thousands of web pages.

(2) We illustrate that OXPATH’s evaluation is dominated
by the browser rendering time, even for complex queries
on small web pages. None of the extensions of OXPATH
(Section 1.1) significantly affects the scaling behavior or the
dominance of page rendering.

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 21

60 | —— 1200 200 T T

160

=
memory memory 14 8 70 |- memory ~ 7000
50 |- visited pages ------- - 1000 extracted matches 408 o | exiracted maiches 4 s000 &
p e 150 | visited pages -+ - 120 % visited pages ------- S
=y % =) £ @ a
g 40 - 800 . g {100 3 g 50 5000 £
z 30 A 600 o z 100 ” 80 = z 4 4000 2
£ 7 Q £ = £ 30 3000 &
5} o o) i 160 oS @ v/ q 2
2 20 400 2 NUA, 3 2 s V= 2
A y 50 f AM&M\/\/W/WWW w0 S 20 ™ v\'r*\fv\ v 2000 é
10 e 200 = 420 g 10 - 1000
o L 0 o k== o § S T e e e
0 50 100150200250300350400450 o 2 4 6 8 10 12 * 50 100 150200250300 350 400 450

time [sec]

(a) Many pages.

time [h]
(b) Millions of results.

time [sec]

(c) Many Results.

Fig. 11 Scaling OXPATH: Memory, visited pages, and output size vs. time.

(3) In an extensive comparison with commercial and
academic web extraction tools, we show that OXPATH out-
performs previous approaches by at least an order of magni-
tude. Where OXPATH stays within constant memory bounds
independently of the number of accessed pages, most other
tools require linear memory.

Scaling: Millions of Results at Constant Memory. We vali-
date the complexity bounds for OXPATH’s PAAT algorithm
and illustrate its scaling behaviour by evaluating three classes
of queries that require complex page buffering. Fig. 11(a)
shows the results of the first class, which searches for pa-
pers on “Seattle” in Google Scholar and repeatedly clicks
on the “Cited by” links of all results using the Kleene star
operator. The query descends to a depth of 3 into the citation
graph and is evaluated in under 9 minutes (130 pages/min).
The number of retrieved pages grows linear in time, while
the memory size remains constant throughout. The jitter in
memory use is due to the repeated ascends and descends of
the citation hierarchy. Fig. 11(b) shows the same test mir-
roring Google Scholar pages on our web server (to avoid
overly taxing Google’s servers). The number in brackets in-
dicate how we scale the axes. OXPATH extracts over 7 mil-
lion pieces of data from 140,000 pages in 12 hours (194
pages/min) with constant memory.

We conduct similar tests, i.e., repeatedly clicking on all
links on certain pages, chosen from sites with different char-
acteristics: In one experiment we took very large pages from
Wikipedia, and in another one we took pages from Google
Products to reach different web shops with their typically
visually elaborate pages. Fig. 11(c) demonstrate OXPATH’s
constant memory usage in the face of an increasing number
of visited pages. For large pages the results are very similar.

Profiling: Page Rendering is Dominant. We profile each stage
of OXPATH’s evaluation performing five sets of queries on
the following sites: apple.com (D1), diadem-project.
info (D2), bing.com (D3), www.vldb.org/2011/ (D4),
and the Seattle page on Wikipedia (D5). On each, we click
all links and extract the html tag of the resulting pages. Fig-
ures 12(a) and 12(b) show the total and page-wise averages,
respectively. For bing.com, the page rendering time and

1
plain XPath —+—
0.8 I OXPath
T 06
8,
()
E 04
02 =
0
1 2 3 4 5

query expansions

Fig. 13 OXPATH vs. Plain XPATH

number of links is very low, and thus also the overall evalu-
ation time. Wikipedia pages, on the other hand, are compar-
atively large and contain many links, thus the overall evalu-
ation time is high.

The second experiment analyzes the effect of OXPATH’s
actions on query evaluation, comparing time performance of
contextual and absolute actions. Our test performs actions
on pages that do not result in new page retrievals. Fig. 12(c)
shows the results with queries containing 1 to 6 actions on
Google’s advanced product search form. Contextual actions
suffer an insignificantly small penalty in their evaluation time
as compared with their absolute equivalents.

Actions (as well as extraction markers and Kleene star
expressions) affect the evaluation notably, as expected. This
contrasts sharply with the added selection capabilities: Nei-
ther style, field(), nor the added selectors significantly
impact evaluation performance. The same holds for inten-
sional axes. Fig. 13 summarizes this observation showing
the evaluation time for a series of expansions of a simple ex-
pression. It compares the case where the expression is pure
XPATH (/descendant-or-self::«[self::x] repeated 1 to 5
times) with the case where the expression uses a style axis
(instead of self::x). The results are nearly identical for in-
tensional axis or any of the other added features, if expres-
sion size is properly accounted for. We show results for up
to 5 repetitions, but observe that the roughly 10% overhead
holds also for much larger expressions. Note that these re-
sults are affected by our use of the XPATH engine provided
by the browser, which does not perform any optimization of
XPATH expressions.

22

Tim Furche et al.

30

50 - prowser initialization []
40 F page rendering [_ 0.3] i -
PAAT evaluation I

0.4 absolute mm—

‘ tontextual Bz

time [sec]

20

0.2 | -

time [sec]

10

01 -

@ browser initialization (13%)
page rendering (85%) ol A 1 =

ml | 0

. PAAT (2%) D1 D2 D3

query set

(b) Profiling OXPATH (per query).

(a) Profiling OXPATH (avg.).

Fig. 12 Profiling OXPATH’s components.

Order-of-Magnitude Improvement. We benchmark OXPATH
against four commercial web extraction tools, namely, Web
Content Extractor [2] (WCE), Lixto [12], Visual Web Rip-
per [3] (VWR), the academic web automation and extrac-
tion system Chickenfoot [17], and the open source extrac-
tion toolkit Web Harvest [4]. Where the first three can ex-
press at least the same extraction tasks as OXPATH (and,
e.g., Lixto goes considerably beyond), Chickenfoot and Web
Harvest require scripted iteration and manual memory man-
agement for many extraction tasks, particularly for realiz-
ing multi-way navigation. We do not consider tools such as
CoScripter and iMacros as they focus on automation only
and offer no iterative constructs as required for extraction
tasks. We also disregard tools such as RoadRunner [22] or
XWRAP [33], since they work on single pages and lack the
ability to traverse to new web pages.

In contrast to OXPATH, many of these tools cannot pro-
cess scripted websites easily. Thus, we choose an extrac-
tion task on Google Scholar as benchmark example, since it
does not require scripted actions. On heavily scripted pages,
the performance advantage of OXPATH is even more pro-
nounced. With each system, we navigate the citation graph
to a depth of 3 for papers on “Seattle”.

Specifically, we implement the following OXPATH ex-
pression in the other systems for our experiments:
doc("scholar.google.com")/

descendant: :field()[1]/{"Seattle"}/

following: :field()[1]/{click /}/

(//alstring(.)#="Cited by"]1/{click/})*{0,3}
An equivalent Web Harvest program takes 54 lines, whereas
an equivalent Chickenfoot script takes 27, and the other tools
use visual interfaces.

We record evaluation time and memory consumption for
each system. We measure the normalized evaluation time,
in which we discount the time for page loading, cleaning,
and rendering. This allows for a more balanced comparison
as the differences in the employed browser or web cleaning
engines affect the overall runtime considerably. Fig. 14(a)
shows the results for each system up to 150 pages. Though
Chickenfoot and Web Harvest do not render pages at all or
do not manage page and browser state, OXPATH still outper-

D4 D5 1 2 3 4 5 &
#actions
(c) Contextual actions.

forms them. The systems that manage state similar to OX-
PATH are between two and four times slower than OXPATH
even on this small number of pages.

Fig.14(b) illustrates the normalized evaluation time up
to 850 pages. In this case, we omits WCE and VWR as
they were not able to run these tests. Figures 14(a) and 14(b)
show a considerable advantage for OXPATH, amounting at
least one order of magnitude.

Fig. 14(c) illustrates the memory use of these systems.
WCE and VWR are again excluded, but they show a clearly
linear memory usage in those tests we were still able to
run. Among the systems in Fig. 14(c), only Web Harvest
comes close to the memory usage of OXPATH, which is
not surprising as it does not render pages. Yet, even Web
Harvest shows a clear linear trend. Chickenfoot exhibits a
constant memory consumption just as OXPATH, though it
takes about ten times more memory in absolute terms. The
constant memory is due to Chickenfoot’s lack of support
for multi-way navigation that we compensate by manually
using the browser’s history whenever possible. This forces
reloading when a page is no longer cached, but requires only
a single active DOM instance at any time. We also tried to
simulate multi-way navigation in Chickenfoot, but the re-
sulting program was too slow for the tests shown here.

7 Related Work

The automatic extraction and aggregation of web informa-
tion is not a new challenge. Almost all previous approaches
require either (1) service providers to deliver their data in a
structured fashion, as in the Semantic Web, or (2) clients to
wrap unstructured information sources to extract and aggre-
gate relevant data. The first case levies requirements service
providers have little incentive to adopt, rendering client-side
wrapping as only realistic choice.

As recognized in [6], wrapping web sites has become
even more involved with the advent of AJAX-enabled web
applications which reveal the relevant data only during user
interactions. Previous approaches to web extraction [34,46]

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 23

700 f T]] | | |

OXPath 1600

350 OxPaih
Lixto
300 Web Harvest ----
Chickenfoot

600 - web Content Extractor 1400 OXPath
) Lixto Lixto
500 |- Visual Web Ripper 1200 - Web Harvest -
Web Harvest ——-—-— Chickenf
400 Chickenfoot =:=:=:-" 1000 IcKentoo

300

200

memory [MB]
n
o
o

time w/o page loading [sec]
time w/o page loading [sec]

100 s T

0 20 40 60 80 100 120 140
#pages
(a) Norm. evaluation time, <150 p.

Fig. 14 Comparison.

do not adequately address web page scripting. Where script-
ing is addressed [12,42,15,47], the simulation of user ac-
tions is neither declarative, nor succinct, but rather relies on
imperative action scripts and standalone, heavy-weight ex-
traction interfaces. Web automation tools such as [17,39] are
increasingly able to deal with scripted web applications, but
are tailored to automate a single sequence of user actions.
Hence they are neither convenient nor efficient for large-
scale data extraction with their inherent multi-way naviga-
tion, necessary to reach all relevant information pieces by
following multiple links on the same page.

Thus, in the following, we particularly consider (1) fill-
ing and submitting (scripted) web forms, (2) multi-way nav-
igation, and (3) memory management for large scale ex-
traction. We focus on supervised extraction tools, catego-
rized into web crawlers, web extraction IDEs, extraction lan-
guages, and web automation tools. Thus, we exclude unsu-
pervised web extraction tools (see [21] for a survey), as they
focus on automated analysis rather than extraction, render-
ing them rather incomparable to OXPATH.

Web Crawlers. Most commonly employed by search engines
for indexing web pages, such crawlers store the relevant in-
formation on any found web pages and move on to new
pages by traversing all present hyperlinks. Due to the com-
mercial relevance of web crawlers, rather little published re-
search exists, as compared to their prominence in industrial
applications. Nevertheless, some work has been published,
e.g., most famously on the Google crawler [18]. Acting only
on static page representations, such crawlers are unable to
handle dynamic, scripted content.

Thus, these web crawlers, in their current state, are inca-
pable of extracting information from content reachable only
via some user interaction. [14] first recognized that such
amount of content exceeds the quantity of data accessible
by hyperlink traversal by far, and is assumed to grow in im-
portance ever since [28] OXPATH expressions can specify
the crawling of scripted websites by following web links,
submitting forms, etc.

Web Extraction IDEs. Web extraction IDEs, such as [12],
have a wider scope than OXPATH, as they provide an entire

Number of pages
(b) Norm. evaluation time, <850 p.

0 100 200 300 400 500 600 700 800
#pages
(c¢) Memory consumption, <850 p.

development environment (e.g., extraction cluster on Ama-
zon Cloud EC2, full support of XPATH 2.0). But in terms of
extraction speed and memory consumption, OXPATH out-
classes these systems by a wide margin (see Section 6). Lixto,
Visual Web Ripper [3], and Web Content Extractor [2] are
interactive wrapper generator frameworks, recording user
actions in browsers to replay these actions for extracting
data. As our experimental evaluation (Section 6) demon-
strates, the memory footprint of these systems grows linear
in the number of accessed pages — in contrast to OXPATH’s
constant memory requirements.

Deep web extraction tools such as [15] increasingly deal
with scripted, highly visual web sites, but infer the extraction
scripts automatically from user-provided examples. Though
allowing for easy wrapper generation, such an approach lacks
the precision necessary for many fully automated tasks. An
another example, BODE [47] is a browser-based extraction
tool, whose imperative extraction language BODED is not
portable and hard to optimize. Without minimizing the mem-
ory requirements, BODE replicates complete browser in-
stances for multi-way navigation, imposing a significant per-
formance penalty, rendering BODE unsuitable for large-scale
data extraction.

Web Extraction Languages. Most extraction languages fol-
low a declarative approach [37,9,44,34,46,45], much like
OXPATH. However, they do not adequately facilitate deep
web interaction, such as form submissions, often due to their
age. Also, they do not provide native constructs for page
navigation, apart from retrieving a page from a given URL.
As an exception, the BODED extraction language [47] deals
with modern web applications, but is unsuitable for large-
scale extraction tasks, as discussed in the previous section.

In our evaluation, we compare with Web Harvest [4],
a recent, open source extraction language. Extraction tasks
are specified as imperative scripts, formulated in XML. Web
Harvest does not deal with interactive web applications and
does not give access to the rendered page, but rather to a
cleaned XML view of HTML documents.

Another strand of research employed XML technolo-
gies, e.g., XPATH, for information extraction. As a notable
example, ANDES [40] is capable of navigating modern web

24

Tim Furche et al.

interfaces, but only by generating URLs from naively filled
forms and feeding these URLSs back to the underlying crawler.
In contrast, OXPATH embeds extraction and navigation into
a single seamless process, handling more complicated web
interfaces in a more intuitive manner.

Otherwise similar to ANDES, the approach in [7] is lim-
ited to generalizing tree traversal patterns. A third example
are L-wrappers [10], albeit limited to scraping data from re-
sult pages returned on query submissions. In [20], the au-
thors reported on an XPATH-based interface for web forms,
but did not release their work so far. As a final example,
Web-Prospector [38] processes the Deep Web within the sci-
ence domain, but appears to be limited to this domain.

XLog [46] extends the ideas from Elog (the datalog-
based extraction formalism underlying Lixto [12]) for in-
formation extraction by embedding (procedural) extraction
predicates. It is optimized for large-scale information extrac-
tion tasks, but does not address any kind of web interaction
such as form filling and page navigation. Earlier work also
explores declarative languages for specifying extraction [44,
37,9], but does not sufficiently support interaction or page
scripting.

WA4F [44] offers wysiwyg support for wrapper speci-
fication, whereas extraction rules are specified using HEL
(HTML Extraction Language), an SQL-like language for
HTML elements selection in the spirit of WebSQL [37] and
WebOQL [9]. However, all these languages do not adequately
address web interaction.

Web Automation Tools. Web automation tools mainly focus
on single navigation sequences to automate a single task, but
do not consider large-scale web extraction with their need
for low overhead and multi-way navigation. Coscripter [31]
and iMacros [1] are examples of such tools, not support-
ing multi-way navigation due to their limited iterative and
conditional programming constructs. Vegemite [32] is a Co-
Scripter extension that introduces some extraction capabil-
ities, such as querying some value for a number of inputs.
However, as its authors note, such navigation patterns are ex-
pensive, since the same page might be reloaded many times.
Furthermore, as the page state is not preserved, some web
applications may not behave as expected.

The same applies to Chickenfoot [17], a language for
web automation running its scripts in Firefox. Chickenfoot
scripts are essentially imperative Javascript programs which
contain loops and iterations, enabling interaction with forms
as well as loading and navigating pages. Multi-way navi-
gation is possible, but only by explicit “back” instructions
commanding the browser to return to previous pages. Thus,
page buffering is unnecessary, but for a high price: Page
states are lost, and thus, pages must be rendered anew for
each branch leaving a page during a multi-way navigation.

There are some other systems relying on recorded user
actions, e.g., WebVCR [8] and WebMacros [43], or more re-

cently [39]. All these tools suffer from limitations on mod-
ern web pages and consider only single action sequences
rather than scalable multi-path data extraction tasks.

More recent work [48] addresses the issue of filling web
forms automatically. This work, however, does not offer declar-
ative scripting and makes several simplifying assumptions
we do not take — for example, they consider drop down lists
as the only dynamic content.

8 Conclusion and Future Work

To the best of our knowledge, OXPATH is the first web ex-
traction system with strict memory guarantees, which reflect
strongly in our experimental evaluation. We believe that it
can become an important part of the toolset of developers
interacting with the web.

We are commiitted to building a strong set of tools around
OXPATH. We provide a visual generator for OXPATH ex-
pressions and a Java API based on JAXP. Some of the issues
raised by OXPATH that we plan to address in future work
are: (1) OXPATH is amenable to significant optimization
and a good target for automated generation of web extrac-
tion programs. (2) Further, OXPATH is perfectly suited for
highly parallel execution: Different bindings for the same
variable can be filled into forms in parallel. The effective
parallel execution of actions on context sets with many nodes
is an open issue. (3) We plan to further investigate language
features, such as more expressive visual features and multi-
property axes.

9 Acknowledgements

The research leading to these results has received funding
from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement no. 246858 (DIADEM). This
work was carried out in the wider context of the networking
programme FoX — Foundations of XML, FET-Open grant
agreement number FP7-ICT-233599. The views expressed
in this article are solely those of the authors.

References

www.iopus.com/iMacros.

www . newprosoft.com/web-content-extractor.htm.

www.visualwebripper.com.

www .web-harvest.sourceforge.net.

http://www.w3.0rg/TR/CSS2/selector.html.

A. Alba, V. Bhagwan, and T. Grandison. Accessing the deep web:

when good ideas go bad. In OOPSLA, 2008.

7. T. Anton. XPATH-wrapper induction by generalizing tree traversal
patterns. In LWA, 2005.

8. V. Anupam, J. Freire, B. Kumar, and D. Lieuwen. Automating

web navigation with the webver. In WWW, 2000.

AN kE L=

OXPATH: A Language for Scalable Data Extraction, Automation, and Crawling on the Deep Web 25

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

. G. O. Arocena and A. O. Mendelzon. Weboql: Restructuring doc-

uments, databases, and webs. In ICDE, 1998.

C. Badica, A. Badica, E. Popescu, and A. Abraham. L-wrappers:
concepts, properties and construction: A declarative approach to
data extraction from web sources. Soft Comput., 11(8):753-772,
2007.

M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Et-
zioni. Open Information Extraction from the Web. In IJCAI, 2007.
R. Baumgartner, S. Flesca, and G. Gottlob. Visual web informa-
tion extraction with Lixto. In VLDB, 2001.

M. Benedikt and C. Koch. Xpath leashed. CSUR, 41(1):3:1-3:54,
20009.

M. K. Bergman. The deep web: Surfacing hidden value. J. Elec-
tronic Publishing, 7(1):1-17, 2001.

J. P. Bigham, A. C. Cavender, R. S. Kaminsky, C. M. Prince, and
T. S. Robison. Transcendence: enabling a personal view of the
deep web. In U1, 2008.

P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: a
scalable fully distributed web crawler. Software: Practice and Ex-
perience,, 34(711-726), 2004.

. M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller. Au-

tomation and customization of rendered web pages. In UIST,
2005.

S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, 30(1-
7):107 — 117, 1998.

M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wy, and Y. Zhang.
WebTables: exploring the power of tables on the web. PVLDB,
1(1):538 — 549, 2008.

V. L. Centeno, C. D. Kloos, L. S. Fernandez, and N. F. Garcia. In-
telligent automated navigation through the deep web. In Advances
in Web Intelligence, 2004.

C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A sur-
vey of web information extraction systems. TKDE, 18(10):1411-
1428, 2006.

V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: automatic
data extraction from data-intensive web sites. In SIGMOD, 2002.
M. J. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soder-
land, D. S. Weld, and A. Yates. Unsupervised named-entity extrac-
tion from the Web: An experimental study. Artificial Intelligence,
165(1):91-134, 2005.

T. Furche, G. Gottlob, G. Grasso, O. Gunes, X. Guo,
A. Kravchenko, G. Orsi, C. Schallhart, A. Sellers, and C. Wang.
DIADEM: Domain-centric, Intelligent, Automated Data Extrac-
tion Methodology. In WWW, 2012.

T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and A. Sellers.
Oxpath: A language for scalable, memory-efficient data extraction
from web applications. In PVLDB, 4(11):1016-1027, 2011 2011.
G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Pro-
cessing XPATH Queries. TODS, 2005.

D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak,
A. Tomkins, and J. Zien. How to build a webfountain: An archi-
tecture for very large-scale text analytics. IBM Syst. J., 43:64-77,
January 2004.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the
deep web. Commun. ACM, 50(5):94-101, 2007.

A. Heydon and M. Najork. Mercator: A scalable, extensible web
crawler. World Wide Web, 2(4):219-229, 1999.

J. Kranzdorf, A. Sellers, G. Grasso, C. Schallhart, and T. Furche.
Spotting the tracks on the oxpath. In WWW, 2012.

G. Leshed, E. M. Haber, T. Matthews, and T. Lau. Coscripter:
automating & sharing how-to knowledge in the enterprise. In CHI,
2008.

J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user
programming of mashups with vegemite. In /U1, 2009.

L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled wrapper con-

struction system for web information sources. In /CDE, 2000.
M. Liu and T. W. Ling. A rule-based query language for html. In

DASFAA, 2001.

M. Marx. Conditional XPath.
30(4):929-959, 2005.

M. Marx and M. de Rijke. Semantic Characterizations of Naviga-
tional XPATH. ACM SIGMOD Record, 2005.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the world
wide web. Int. J. on Digital Libraries, 1(1):54-67, 1997.

S. Mir, S. Staab, and 1. Rojas. Web-Prospector — An Automatic,
Site-Wide Wrapper Induction Approach for Scientific Deep-Web
Databases. In BTW, 2009.

P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. Lépez. Automating
navigation sequences in ajax websites. In /ICWE, 2009.

J. Myllymaki. Effective web data extraction with standard xml
technologies. Computer Networks, 39(5):635 — 644, 2002.

D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
Forward. In EDBT-XML-Based Data Management, LNCS 2490,
2002.

J. Raposo, A. Pan, M. Alvarez, J. Hidalgo, and A. Vifia. The wargo
system: Semi-automatic wrapper generation in presence of com-
plex data access modes. In DEXA, 2002.

A. Safonov. Web macros by example: users managing the www
of applications. In CHI, pages 71-72, 1999. ACM.

A. Sahuguet and F. Azavant. Building light-weight wrappers for
legacy web data-sources using w4f. In VLDB, pages 738-741,
1999.

N. Sawa, A. Morishima, S. Sugimoto, and H. Kitagawa. Wraplet:
Wrapping your web contents with a lightweight language. In
SITIS, pages 387-394, 2007.

W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declar-
ative information extraction using datalog with embedded extrac-
tion predicates. In VLDB, 2007.

J.-Y. Su, D.-J. Sun, 1.-C. Wu, and L.-P. Chen. On design of
browser-oriented data extraction system and plug-ins. J. of Ma-
rine Science and Tech., 18(2):189-200, 2010.

Y. Wang and T. Hornung. Deep web navigation by example. Scal-
able Computing: Practice and Experience, 9:281-292, 2008.

ACM Trans. Database Syst.,

