
DIADEM: Domain-centric, Intelligent, Automated Data
Extraction Methodology∗

Tim Furche, Georg Gottlob, Giovanni Grasso, Ömer Gunes, Xiaonan Guo,
Andrey Kravchenko, Giorgio Orsi, Christian Schallhart, Andrew Sellers, Cheng Wang

Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD
firstname.lastname@cs.ox.ac.uk

ABSTRACT
Search engines are the sinews of the web. These sinews have be-
come strained, however: Where the web’s function once was a mix
of library and yellow pages, it has become the central marketplace
for information of almost any kind. We search more and more for
objects with specific characteristics, a car with a certain milage, an
affordable apartment close to a good school, or the latest accessory
for our phones. Search engines all too often fail to provide reason-
able answers, making us sift through dozens of websites with thou-
sands of offers—never to be sure a better offer isn’t just around the
corner. What search engines are missing is understanding of the
objects and their attributes published on websites.

Automatically identifying and extracting these objects is akin to
alchemy: transforming unstructured web information into highly
structured data with near perfect accuracy. With DIADEM we
present a formula for this transformation, but at a price: DIADEM
identifies and extracts data from a website with high accuracy. The
price is that for this task we need to provide DIADEM with ex-
tensive knowledge about the ontology and phenomenology of the
domain, i.e., about entities (and relations) and about the represen-
tation of these entities in the textual, structural, and visual language
of a website of this domain. In this demonstration, we demonstrate
with a first prototype of DIADEM that, in contrast to alchemists,
DIADEM has developed a viable formula.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line Information
Services—Web-based services

General Terms
Languages, Experimentation

Keywords
data extraction, deep web, knowledge

∗The research leading to these results has received funding from the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant agree-
ment DIADEM, no. 246858, http://diadem-project.info/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WWW’12 Apr 16-20, 2012 Lyon, France.
Copyright 2012 ACM XXX ...$10.00.

Figure 1: Exploration: Form

1. INTRODUCTION
Search is failing. In our society, search engines play a crucial

role as information brokers. They allow us to find web pages and by
extension businesses, articles, or information about products wher-
ever they are published. Visibility on search engines has become
mission critical for most companies and persons. However, for
searches where the answer is not just a single web page, search en-
gines are failing: What is the best apartment for my needs? Who of-
fers the best price for this product in my area? Such object queries
have become an exercise in frustration: we users need to manually
sift through, compare, and rank the offers from dozens of web-
sites returned by a search engine. At the same time, businesses
have to turn to stopgap measures, such as aggregators, that pro-
vide customers with search facilities in a specific domain (vertical
search). This endangers the just emerging universal information
market, “the great equalizer” of the Internet economy: visibility de-
pends on deals with aggregators, the barrier to entry is raised, and
the market fragments. Rather than further stopgap measures, the
“publish on your website” model that has made the web such a suc-
cess and so resilient against control by a few (government agents or
companies) must be extended to object search: Without additional
technological burdens to publishers, users should be able to search
and query objects such as properties or laptops based on attributes
such as price, location, or brand. Increasing the burden on publish-
ers is not an option, as it further widens the digital divide between
those that can afford the necessary expertise and those that can not.

DIADEM, an ERC advanced investigator grant, is developing a
system that aims to provide this bridge: Without human supervi-
sion it finds, navigates, and analyses websites of a specific domain
and extracts all contained objects using highly efficient, scalable,
automatically generated wrappers. The analysis is parameterized
with domain knowledge that DIADEM uses to replace human an-
notators in traditional wrapper induction systems and to refine and
verify the generated wrappers. This domain knowledge describes
the ontology as well as the phenomenology of the domain: what are
the entities and their relations as well as how do they occur on web-
sites. The latter describes that, e.g., real estate properties include a
location and a price and that these are displayed prominently.

Figures 1 and 2 show examples (screenshots from the current
prototype) of the kind of analysis required by DIADEM for fully

Figure 2: Identification: Result Page

automated data extraction: Web sites needs to be explored to locate
relevant data, here real estate properties. This includes in particular
forms as in Figure 1 which DIADEM automatically classifies such
that each form field is associated with a type from the domain on-
tology such as “minimum price” field in a “price range” segment.
These form models are then used for filling the form for further
analysis, but also to generate exhaustive queries for latter extrac-
tion of all relevant data. Figure 2 illustrates a (partial) result of the
analysis performed on a result page, i.e., a page containing relevant
objects of the domain: DIADEM identifies the objects, their bound-
aries on the page, as well as their attributes. Objects and attributes
are typed according to the domain ontology and verified against the
domain constraints. In Figure 2, e.g., we identify real estate prop-
erties (for sale) together with price, location, legal status, number
of bed and bathrooms, pictures, etc. The identified objects are gen-
eralised into a wrapper that can extract such objects from any page
following the same template without further analysis.

In the first year and a half, DIADEM has progressed beyond
our expectations: The current prototype is already able to gener-
ate wrappers for most UK real estate and used car websites with
higher accuracy than existing wrapper induction systems. In this
demonstration, we outline the DIADEM approach, first results, and
describe the live demonstration of the current prototype.

2. DIADEM—THE METHODOLOGY
DIADEM is fundamentally different from previous approaches.

The integration of state-of-the-art technology with reasoning using
high-level expert knowledge at the scale envisaged by this project
has not yet been attempted and has a chance to become the corner-
stone of next generation web data extraction technology.

Standard wrapping approaches [16, 6] are limited by their depen-
dence on templates for web pages or sites and their lack of under-
standing of the extracted information. They cannot be generalised
and their dependence on human interaction prevents scaling to the
size of the Web. Several approaches that move towards fully au-
tomatic or generic wrapping of the existing World Wide Web have
been proposed and are currently under active development. Those
approaches often try to iteratively learn new instances from known
patterns and new patterns from known instances [5, 18] or to find
generalised patterns on web pages such as record boundaries. Al-
though current web harvesting and automated information extrac-

DIADEM

Glue

Ontology

Extraction

M
AL
AC

H
IT
E

O
P

A
L

Exploration

A
M

B
E

R

Identification

O
xtractor

Reasoning

G
L
U

E

Datalog±

Phenomenology

O
XP

at
h

O
x
La

tin

In the Cloud

Ontology

Figure 3: DIADEM Overview

tion systems show significant progress, they still lack the combined
recall and precision necessary to allow for very robust queries. We
intend to build upon those approaches, but add deep knowledge
into the extraction process and combine them in a new manner into
our knowledge-based approach; we propose to use them as low-
level fact finders, whose output facts may be revised in case more
accurate information arises from other sources.

DIADEM focuses on a dual approach: at the low level of web
pattern recognition, we use machine-learning complemented by lin-
guistic analysis and basic ontological annotation. Several of these
approaches, in addition to newly developed methods, are imple-
mented as lower level building blocks (fact finders) to extract as
much knowledge as possible and integrate it into a common knowl-
edge base. At a higher level, we use goal-directed domain-specific
rules for reasoning on top of all generated lower-level knowledge,
e.g. in order to identify the main input mask and the main extrac-
tion data structure, and to finalize the navigation process.

DIADEM approaches data extraction as a two stage process: In
a first stage, we analyse a small fraction of a web site to generate a
wrapper that is then executed in the second stage to extract all the
relevant data on the site at high speed and low cost. Figure 3 gives
an overview of the high-level architecture of DIADEM. On the left,
we show the analysis, on the right the execution stage.

(1) Sampling analysis: In the first stage, a sample of the web
pages of a site are used to fully automatically generate wrappers
(i.e., extraction program). The analysis is based on domain knowl-
edge that describes the objects of interest (the “ontology”) and how
they appear on the web (the “phenomenology”). The result of the
analysis is a wrapper program, i.e., a specification how to extract
all the data from the website without further analysis.
Conceputally, it is divided into two major phases, though these are
closely interwoven in the actual analysis:

(i) Exploration: DIADEM automatically explores a site to locate
relevant objects. The major challenge here are web forms: DI-
ADEM needs to understand such forms enough to fill them for
sampling, but also to generate exhaustive queries for the ex-
traction stage such that all the relevant data is extracted (see
[1]). DIADEM’s form understanding engine OPAL [9] is uses
an phenomenology of forms in the domain to classify the form
fields.
The exploration phase is supported by the page and block clas-
sification in MALACHITE where we identify, e.g., next links
in paginate results, navigation menus, and irrelevant data such
as advertisements. We further cluster pages by structural and
visual similarity to guide the exploration strategy and to avoid
analysing many similar pages. Since such pages follow a com-
mon template, the analysis of one or two pages from a cluster
usually suffices to generate a high confidence wrapper.

(ii) Identification: The exploration unearths those web pages that
contain actual objects. But DIADEM still needs to identify the
precise boundaries of these objects as well as their attributes.
To that end, DIADEM’s result page analysis AMBER [10]
analyses the repeated structure within and among pages. It

0.97

0.98

0.99

1

Precision Recall F-score

0.93

0.94

0.95

0.96

UK Real Estate (100) UK Used Car (100) ICQ (98) Tel-8 (436)

(a) OPAL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

tim
e

 [
se

c]

#pages

OXPath
Web Content Extractor

Lixto
Visual Web Ripper

Web Harvest
Chickenfoot

(a) Evaluation time, <150 p.

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140

tim
e

 w
/o

 p
a

g
e

 lo
a

d
in

g
 [

se
c]

#pages

OXPath
Web Content Extractor

Lixto
Visual Web Ripper

Web Harvest
Chickenfoot

(b) Norm. evaluation time, <150 p.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600 700 800

tim
e

 w
/o

 p
a

g
e

 lo
a

d
in

g
 [

se
c]

Number of pages

OXPath
Lixto

Web Harvest
Chickenfoot

(c) Norm. evaluation time, <850 p.

Figure 7: Comparison.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800

m
e

m
o

ry
 [

M
B

]

#pages

OXPath
Lixto

Web Harvest
Chickenfoot

Figure 8: Comparison: Memory (<850 p.).

tion graph to a depth of 3 for papers on “Seattle” (see Appendix F).
We record evaluation time and memory for each system. In Fig-

ure 7(a), we show the (averaged) evaluation time for each system up
to 150 pages. Though Chickenfoot and Web Harvest do not man-
age page and browser state or do not render pages at all, OXPath
still outperforms them. Systems that manage state similar to OX-
Path are between two and four times slower than OXPath even on
this small number of pages. Figure 7(b) show the evaluation time
discounting the page loading, cleaning, and rendering time. This
allows for a more balanced comparison as the different browser en-
gines or web cleaning approaches used in the systems affect the
overall runtime considerably. Figure 7(c) shows the same evalua-
tion time up to 850 pages, but omits WCE and VWR as they were
not able to run these tests. Again both figures show a considerable
advantage for OXPath (at least one order of magnitude). Finally,
Figure 8 illustrates the memory use of these systems. Again WCE
and VWR are excluded, but they show a clear linear trend in mem-
ory usage in the tests we were able to run. Among the systems in
Figure 8, only Web Harvest comes close to the memory usage of
OXPath, which is not surprising as it does not render pages. Yet,
even Web Harvest shows a clear linear trend. Chickenfoot exhibits
a constant memory use just as OXPath, though it uses about ten
times more memory in absolute terms. The constant memory is
due to Chickenfoot’s lack of support for multi-way navigation that
we compensate by using the browser’s history. This forces reload-
ing when a page is no longer cached and does not preserve page
state, but requires only a single active DOM instance at any time.
We also tried to simulate multi-way navigation in Chickenfoot, but
the resulting program was too slow for the tests shown here.

6. CONCLUSION AND FUTURE WORK
To the best of our knowledge, OXPath is the first web extrac-

tion system with strict memory guarantees, which reflect strongly
in our experimental evaluation. We believe that it can become an
important part of the toolset of developers interacting with the web.

We are committed to building a strong set of tools around OX-
Path. We provide a visual generator for OXPath expressions and

a Java API based on JAXP. Some of the issues raised by OXPath
that we plan to address in future work are: (1) OXPath is amenable
to significant optimization and a good target for automated gener-
ation of web extraction programs. (2) Further, OXPath is perfectly
suited for highly parallel execution: Different bindings for the same
variable can be filled into forms in parallel. The effective parallel
execution of actions on context sets with many nodes is an open
issue. (3) We plan to further investigate language features, such as
more expressive visual features and multi-property axes.

7. REFERENCES
[1] G. O. Arocena and A. O. Mendelzon. WebOQL: Restructuring

documents, databases, and webs. In ICDE, 24–33, 1998.
[2] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web

information extraction with Lixto. In VLDB, 119–128, 2001.
[3] M. Benedikt and C. Koch. XPath Leashed. CSUR,

41(1):3:1–3:54, 2007.
[4] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller.

Automation and customization of rendered web pages. In
UIST, 163–172, 2005.

[5] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A
survey of web information extraction systems. TKDE,
1411–1428, 2006.

[6] V. Crescenzi and G. Mecca. Automatic information extraction
from large websites. JACM, 51(5):731âĂŞ779, 2004.

[7] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. TODS, 30(2):444âĂŞ491, 2005.

[8] G. Leshed, E. M. Haber, T. Matthews, and T. Lau. CoScripter:
automating & sharing how-to knowledge in the enterprise. In
CHI, 1719–1728, 2008.

[9] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-
user programming of mashups with Vegemite. In IUI, 97–106,
2009.

[10] L. Liu, C. Pu, and W. Han. XWRAP: An XML-enabled
wrapper construction system for web information sources. In
ICDE, 611–621, 2000.

[11] M. Liu and T. W. Ling. A rule-based query language for
HTML. In DASFAA, 6–13, 2001.

[12] M. Marx. Conditional XPath. TODS, 30(4):929–959, 2005.
[13] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the

World Wide Web. In DIS, 80–91, 1996.
[14] A. Sahuguet and F. Azavant. Building light-weight wrappers

for legacy web data-sources using W4F. In VLDB, 738–741,
1999.

[15] N. Sawa, A. Morishima, S. Sugimoto, and H. Kitagawa.
Wraplet: Wrapping your web contents with a lightweight
language. In SITIS, 387–394, 2007.

[16] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. In VLDB, 1033–1044, 2007.

[17] J.-Y. Su, D.-J. Sun, I.-C. Wu, and L.-P. Chen. On design of
browser-oriented data extraction system and plug-ins. JMST,
18(2):189–200, 2010.

1023

(b) OXPath Comparative

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450
 0

 200

 400

 600

 800

 1000

 1200

m
e
m

o
ry

 [
M

B
]

p
a
g
e
s

time [sec]

memory
visited pages

(a) Many pages.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12
 0

20

40

60

80

100

120

140

160

m
e
m

o
ry

 [
M

B
]

#
p
a
g
e
s

[1
0
0
0
]
/
#
re

su
lts

 [
1
0
0
,0

0
0
]

time [h]

memory
extracted matches

visited pages

(b) Millions of results.

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100

m
e
m

o
ry

 [
M

B
]

#
m

a
tc

h
e
s

[1
0
0
]
/
#
p
a
g
e
s

time [sec]

memory
extracted matches

visited pages

(c) Large pages.
Figure 5: Scaling OXPath: Memory, visited pages, and output size vs. time.

PAAT (2%)
browser initialization (13%)
page rendering (85%)

(a) Profiling OXPath (avg.).

 0

 10

 20

 30

 40

 50

D1 D2 D3 D4 D5

tim
e

 [
se

c]

query set

browser initialization

page rendering

PAAT evaluation

(b) Profiling OXPath (per query).

 0

 0.1

 0.2

 0.3

 0.4

1 2 3 4 5 6

tim
e

 [
se

c]

#actions

absolute
contextual

(c) Contextual actions.

Figure 6: Profiling OXPath’s components.

5. EVALUATION
In this section, we confirm the scaling behaviour of OXPath:
(1) The theoretical complexity bounds from Section 4.3 are con-

firmed in several large scale extraction experiments in diverse set-
tings, in particular the constant memory use even if extracting mil-
lions of records from hundreds of thousands of web pages.

(2) We illustrate that OXPath’s evaluation is dominated by the
browser rendering time, even for complex queries on small web
pages. None of the extensions of OXPath (Section 1.2) significantly
affects the scaling behaviour or the dominance of page rendering.

(3) In an extensive comparison with commercial or academic
web extraction tools, we show that OXPath outperforms previous
approaches by at least an order of magnitude, although they are
more limited. Where OXPath requires memory independent of the
number of accessed pages, most others use linear memory.

Scaling: Millions of Results at Constant Memory. We
validate the complexity bounds for OXPath’s PAAT algorithm and
illustrate its scaling behaviour by evaluating three classes of queries
that require complex page buffering. Figure 5(a) shows the results
of the first class, which searches for papers on “Seattle” in Google
Scholar and repeatedly clicks on the “Cited by” links of all results
using the Kleene star operator. The query descends to a depth of
3 into the citation graph and is evaluated in under 9 minutes (93
pages/min). Pages retrieved are linear w.r.t. time, but memory size
remains constant even as the number of pages accessed increase.
The jitter in memory use is due to the repeated ascends and de-
scends of the citation hierarchy. Figure 5(b) shows the same test
simulating Google Scholar pages on our web server (to avoid overly
taxing Google’s servers). The number in brackets indicate how we
scale the axes. OXPath extracts over 7 million pieces of data from
140,000 pages in 12 hours (194 pages/min) with constant memory.

We conduct similar tests (repeatedly clicking on all links) for
tasks with different characteristics: one on very large pages (Wiki-
pedia) and one on pages with many results (product listings on
Google) from different web shops. Figures 5(c) and 12 (in Ap-
pendix E) again show that memory is constant w.r.t. to pages visited
even for the much larger pages on Wikipedia and the often quite
visually-involved pages reached by the Google product search.

Profiling: Page Rendering is Dominant. We profile each
stage of OXPath’s evaluation performing five sets of queries on the
following web sites: apple.com (D1), diadem-project.info (D2),
bing.com (D3), www.vldb.org/2011/ (D4), and the Seattle page
on Wikipedia (D5). On each, we click on all links and extract the
html tag of each result page. Figures 6(a) and 6(b) show the total
average and the individual averages for each site, respectively. For
bing.com, the page rendering time and the number of links is very
low, and thus also the overall evaluation time. Wikipedia pages,
on the other hand, are comparatively large and contain many links,
thus the overall evaluation time is high.

The second experiment analyses the effect of OXPath’s actions
on query evaluation, comparing time performance of contextual
and absolute actions. Our test performs actions on pages that do
not result in new page retrievals. Figure 6(c) shows the results with
queries containing one to six actions on Google’s advanced prod-
uct search form. Contextual actions suffer a small but insignificant
penalty to evaluation time compared to their absolute equivalents.

Comparison: Order-of-Magnitude Improvement. OX-
Path is compared to four commercial web extraction tools, Web
Content Extractor (WCE), Lixto, Visual Web Ripper (VWR), the
academic web automation and extraction system Chickenfoot and
the open source extraction toolkit Web Harvest. Where the first
three can express at least the same extraction tasks as OXPath (and,
e.g., Lixto goes considerably beyond), Chickenfoot and Web Har-
vest require scripted iteration and manual memory management for
many extraction tasks, in particular where multi-way navigation is
needed. We do not consider tools such as CoScripter and iMacros
as they focus on automation only and offer no iterative constructs
as required for extraction tasks. We also do not consider tools such
as RoadRunner [6] or XWRAP [10] as they work on single pages
and lack the ability to traverse to new web pages.

In contrast to OXPath, many of these tools cannot process
scripted websites easily. Thus, we compare using an extraction
task on Google Scholar, which does not require scripted actions.
On heavily scripted pages, the performance advantage of OXPath
is even more pronounced. With each system, we navigate the cita-

1022

(c) OXPath Scaling

Figure 4: Exploration and Execution

exploits the domain knowledge to distinguish noise from rele-
vant data and is thus far more robust than existing data extrac-
tion approaches. AMBER is complemented by Oxtractor, that
analysis the free text descriptions. It benefits in this task from
the contextual knowledge in form of attributes already iden-
tified from AMBER and of background knowledge from the
ontology.

(2) Large-scale extraction: The wrapper generated by the anal-
ysis stage can be executed independently and repeatedly. We have
developed a new wrapper language, called OXPath [12], the first
wrapper language for large scale, repeated (or even continuous)
data extraction. OXPath is powerful enough to express nearly any
extraction task, yet as a careful extension of XPath maintains the
low data and combined complexity. In fact, it is so efficient, that
page retrieval and rendering time by far dominate the execution.
For large scale execution, the aim is thus to minimize page ren-
dering and retrieval by storing pages that are possibly needed for
further processing. At the same time, memory should be indepen-
dent from the number of pages visited, as otherwise large-scale or
continuous extraction tasks become impossible. With OXPath we
manage to obtain all these characteristics, as shown in Section 3.
For a more detailed description of DIADEM’s stages, see [11].

DIADEM’s analysis uses a knowledge driven approach based on
a domain ontology and phenomenology. To that end, most of the
analysis is implemented in logical rules on top of a thin layer of
fact finders. For the reasoning in DIADEM we are currently de-
veloping a reasoning language targeted at highly dynamic, modu-
lar, expressive reasoning on top of a live browser. This language,
called GLUE, builds on Datalog± [4, 15, 2, 3, 17] , DIADEM’s
ontological query language. Datalog± allows us to reason on top
of fairly complex ontologies including value invention and equality
dependencies with little performance loss over basic datalog (see
[7] for a current state of datalog engines). We are also working on
probabilistic extensions [13, 14] of Datalog± for use in DIADEM.

3. FIRST RESULTS
To give an impression of the achievements of DIADEM in its

first year, we briefly summarise results on three components of DI-
ADEM: its form understanding system, OPAL; its result page anal-
ysis, AMBER; and the OXPath extraction language.

Figures 4a and 5 report on the quality of form understanding
and result page analysis in DIADEM’s first prototype. Figure 4 [9]
shows that OPAL is able to identify about 99% of all form fields
in the UK real estate and used car domain correctly. We also show
the results on the ICQ and Tel-8 form benchmarks, where OPAL
achieves > 96% accuracy (in contrast recent approaches achieve at

unannotated instances (328) total instances (1484)

rnd. aligned corr. prec. rec. prec. rec.

1 226 196 86.7% 59.2% 84.7% 81.6%
2 261 248 95.0% 74.9% 93.2% 91.0%
3 271 265 97.8% 80.6% 95.1% 93.8%
4 271 265 97.8% 80.6% 95.1% 93.8%

Table 1: Total learned instances

rnd. unannot. recog. corr. prec. rec. terms

1 331 225 196 86.7% 59.2% 262
2 118 34 32 94.1% 27.1% 29
3 79 16 16 100.0% 20.3% 4
4 63 0 0 100.0% 0% 0

Table 2: Incrementally recognized instances and learned terms

As an example, consider the webpage of Figure 3 taken from
rightmove.co.uk. The page shows properties in a radius of 15
miles around Oxford. AMBER uses the content of the seed gazetteer
to identify the position of the known terms such as locations. In par-
ticular, AMBER identifies three potential new locations, videlicet.
“Oxford”, “Witney” and “Wallingford” with confidence of 0.70,
0.62, and 0.61 respectively. Since the acceptance threshold for new
items is 50%, all the three locations are added to the gazetteer.

We repeat the process for several websites and show how AMBER
identifies new locations with increasing confidence as the number
of analyzed websites grows. We then leave AMBER to run over
250 result pages from 150 sites of the UK real estate domain, in a
configuration for fully automated learning, i.e., g = l = u = 50%,
and we visualize the results on sample pages.

Starting with the sparse gazetteer (i.e., 25% of the full gazetteer),
AMBER performs four learning iterations, before it saturates, as it
does not learn any new terms. Table 1 shows the outcome of each of
the four rounds. Using the incomplete gazetteer, we initially fail to
annotate 328 out of 1484 attribute instances. In the first round, the
gazetteer learning step identifies 226 unannotated instances. 197
of those instances are correctly identified, which yields a precision
and recall of 87.2% and 60.1% of the unannotated instances, 84.3%
and 81.3% of all instances. The increase in precision is stable in
all the learning rounds so that, at the end of the fourth iteration,
AMBER achieves a precision of 97.8% and a recall of 80.6% of the
unannotated instances, and an overall precision and recall of 95.1%
and 93.8%, respectively.

Table 2 shows the incremental improvements made in each
round. For each round, we report the number of unannotated in-
stances, the number of instances recognized through attribute align-
ment, and the number of correctly identified instances. For each
round we also show the corresponding precision and recall met-
rics, as well as the number of new terms added to the gazetteer.
Note that the number of learned terms is larger than the number of
instances in round 1, as splitting them yields multiple terms. Con-
versely, in rounds 2 to 4, the number of terms is smaller than the
number of instances, due to terms occurring in multiple instances
simultaneously or already blacklisted.

We also show the behavior of AMBER with different settings for
the threshold g. In particular, increasing the value of g (i.e., the
support for the discovered attributes) leads to higher precision of
the learned terms at the cost of lower recall. The learning algorithm
also converges faster for higher values of g.

Figure 4 illustrates our evaluation of AMBER on the real-estate
domain. We evaluate AMBER on 150 UK real-estate web sites, ran-

94.0%!

96.0%!

98.0%!

100.0%!

da
ta

 a
re

a!
re

co
rd

s!
pr

ice
!

de
ta

ils
 U

RL
!

loc
at

ion
!

leg
al!

po
stc

od
e!

be
dr

oo
m
!

pr
op

er
ty

typ
e!

re
ce

pt
ion
!

ba
th
!

precision! recall!

Figure 4: AMBER Evaluation on Real-Estate Domain

domly selected among 2810 web sites named in the yellow pages.
For each site, we submit its main form with a fixed sequence of
fillings to obtain one, or if possible, two result pages with at least
two result records and compare AMBER’s results with a manually
annotated gold standard. Using a full gazetteer, AMBER extracts
data area, records, price, detailed page link, location, legal status,
postcode and bedroom number with more than 98% precision and
recall. For less regular attributes such as property type, reception
number and bathroom number, precision remains at 98%, but re-
call drops to 94%. The result of our evaluation proves that AMBER
is able to generate human-quality examples for any web site in a
given domain.

Figure 5: Identification: in UK real estate

best 92% [8]). The latter result is without use of domain knowl-
edge. With domain knowledge we could easily achieve close to
99% accuracy also in these cases. Figure 5 [10] shows the results
for data area, record, and attribute identification on result pages
for AMBER in the UK real estate domain. We report each at-
tribute separately. AMBER achieves on average 98% accuracy for
all these tasks, with a tendency to perform worse on attributes that
occur less frequently (such as the number of reception rooms).

Figures 4b and 4c summarise the results for OXPath: It easily
outperforms existing data extraction systems, often by a wide mar-
gin. Its high performance execution leaves page retrieval and ren-
dering to dominate execution (> 85%) and thus makes avoiding
page rendering imperative. We minimize page rendering by buffer-
ing any page that may still be needed in further processing, yet
manage to keep memory consumption constant in nearly all cases,
as evidenced by Figure 4c where we show OXPaths memory use
over a 12h extraction task extracting millions of records from hun-
dreds of thousands of pages. For more details see [12].

4. DIADEM DEMONSTRATION
As its approach, the demonstration of DIADEM is split into two

parts. The first part illustrates its analysis using the current DIA-
DEM prototype. The second part illustrates wrapper execution with
OXPath using a combination of web demos and visual wrapper de-
velopment tools. To give the audience a better understanding of
wrappers and the challenges in automatically identifying wrappers,
we start the demonstration with the execution.

The demonstration starts with Visual OXPath, a visual IDE for
OXPath, shown in Figure 6b and illustrated further in the screen-
cast at diadem-project.info/oxpath/visual. With this UI, we

(a) OPAL

1

2

3

4

5

6

(b) OXPath

Figure 6: Demonstration UIs

demonstrate how a human would construct a wrapper supported by
a visual interface and how a supervised wrapper generator can gen-
eralize a wrapper from just a few examples. We provide a number
of standard examples, but are also open to suggestions for the audi-
ence. Once the wrapper is created we submit it and let it run in the
background while we continue with the rest of the demonstration.

In the second part of the demonstration, we focus on the DI-
ADEM prototype. A screencast of the demo is available from
diadem-project.info/screencast/diadem-01-april-2011.mp4.
In the demonstration, we let the prototype run on several pages
from the UK real estate and used car domain. The prototype runs
in interactive mode, i.e., it visualizes its deliberations and conclu-
sions and prompts the user before continuing to a new page, so that
the user can inspect the results on the current page. With this, we
can demonstrate first how DIADEM analyses forms and explores
web sites based on these analyses. In particular, we show how DI-
ADEM deals with form constraints such as mandatory fields, multi
stage forms and other advanced navigation structures. The demo
fully automatically explores the web site until it finds result pages
for which it performs a selective analysis sufficient to generate the
intended wrapper. As before, the demonstration discusses a number
of such result pages and shows in the interactive prototype how DI-
ADEM extracts objects from these result pages as well as identifies
further exploration steps.

We conclude the demonstration with a brief outlook into ap-
plications of DIADEM technology beyond data extraction: The
screencast at diadem-project.info/opal shows how we use DI-
ADEM’s form understanding to provide advanced assistive form
filling: where current assistive technologies are limited to simple
keyword matching or filling of already encountered forms, DIA-
DEM’s technology allows us to fill any form of a domain with val-
ues from a master form with high precision.

5. REFERENCES
[1] M. Benedikt, G. Gottlob, and P. Senellart. Determining

relevance of accesses at runtime. In PODS, 2011.
[2] A. Calì, G. Gottlob, and A. Pieris. New expressive languages

for ontological query answering. In AAAI, 2011.
[3] A. Calì, G. Gottlob, and A. Pieris. Querying conceptual

schemata with expressive equality constraints. In ER, 2011.

[4] A. Calì, G. Gottlob, and A. Pieris. Query answering under
non-guarded rules in datalog±. In RR, 2010.

[5] V. Crescenzi and G. Mecca. Automatic information
extraction from large websites. J. ACM, 51(5), 2004.

[6] N. N. Dalvi, R. Kumar, and M. A. Soliman. Automatic
wrappers for large scale web extraction. In VLDB, 2011.

[7] O. de Moor, G. Gottlob, T. Furche, and A. Sellers, eds.
Datalog Reloaded, Revised Selected Papers, LNCS. 2011.

[8] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser. A hierarchical
approach to model web query interfaces for web source
integration. In VLDB, 2009.

[9] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, and
C. Schallhart. Real understanding of real estate forms. In
WIMS, 2011.

[10] T. Furche, G. Gottlob, G. Grasso, G. Orsi, C. Schallhart, and
C. Wang. Little knowledge rules the web: Domain-centric
result page extraction. In RR, 2011.

[11] T. Furche, G. Gottlob, X. Guo, C. Schallhart, A. Sellers, and
C. Wang. How the minotaur turned into Ariadne: Ontologies
in web data extraction. ICWE, (keynote), 2011.

[12] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and
A. Sellers. OXPath: A language for scalable,
memory-efficient data extraction from web applications. In
VLDB, 2011.

[13] G. Gottlob, T. Lukasiewicz, and G. I. Simari. Answering
threshold queries in probabilistic datalog+/- ontologies. In
SUM, 2011.

[14] G. Gottlob, T. Lukasiewicz, and G. I. Simari. Conjunctive
query answering in probabilistic datalog+/- ontologies. In
RR, 2011.

[15] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries:
Rewriting and optimization. In ICDE, 2011.

[16] N. Kushmerick. Wrapper induction: efficiency and
expressiveness. AI, 118, 2000.

[17] G. Orsi and A. Pieris. Optimizing query answering under
ontological constraints. In VLDB, 2011.

[18] A. Yates, M. Cafarella, M. Banko, O. Etzioni, M. Broadhead,
and S. Soderland. Textrunner: open information extraction
on the web. In NAACL 2007.

