
deqa: Deep Web Extraction for Question
Answering?

Jens Lehmann1,2, Tim Furche1, Giovanni Grasso1, Axel-Cyrille Ngonga
Ngomo2, Christian Schallhart1, Andrew Sellers1, Christina Unger3, Lorenz
Bühmann2, Daniel Gerber2, Konrad Höffner2, David Liu1, Sören Auer2

1 Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk
2 Institute of Computer Science,

University of Leipzig, 04103 Leipzig
lastname@informatik.uni-leipzig.de

3 Bielefeld University, CITEC,
Universitätsstraße 21–23, 33615 Bielefeld

cunger@cit-ec.uni-bielefeld.de

Abstract. Despite decades of effort, intelligent object search remains
elusive. Neither search engine nor semantic web technologies alone have
managed to provide usable systems for simple questions such as “find me
a flat with a garden and more than two bedrooms near a supermarket.”
We introduce deqa, a conceptual framework that achieves this elusive
goal through combining state-of-the-art semantic technologies with ef-
fective data extraction. To that end, we apply deqa to the UK real
estate domain and show that it can answer a significant percentage of
such questions correctly. deqa achieves this by mapping natural lan-
guage questions to Sparql patterns. These patterns are then evaluated
on an RDF database of current real estate offers. The offers are obtained
using OXPath, a state-of-the-art data extraction system, on the major
agencies in the Oxford area and linked through Limes to background
knowledge such as the location of supermarkets.

1 Introduction

Answering questions such as “find me a flat to rent close to Oxford University
with a garden” is one of the challenges that has haunted the semantic web vision
since its inception [3]. Question answering has also been the holy grail of search
engines, as recently illustrated by both Google and Bing touting “structured
data” search and “query answering”.

Though both of these efforts have made great strides in answering questions
about general, factual knowledge, they have fallen short for more transient in-
formation such as real estate, tickets, or other product offerings. Vertical search
? The research leading to these results has received funding under the European Com-
mission’s Seventh Framework Programme (FP7/2007–2013) from ERC grant agree-
ment DIADEM, no. 246858, and IP grant agreement LOD2, no. 257943.

engines and aggregators also fail to address such questions, mostly due to a lack
of natural language understanding and limited background knowledge.

This is true even though data extraction and semantic technologies aim to
address this challenge from quite opposite directions: On the one hand, the aim
of web extraction is to obtain structured knowledge by analyzing web pages.
This does not require publishers to make any changes to existing websites, but
requires re-engineering the original data used to generate a website. On the other
hand, semantic technologies establish the means for publishers to directly provide
and process structured information, avoiding errors in extracting ambiguously
presented data, but placing a considerable burden on publishers. Despite this
chasm in how they approach question answering, neither has succeeded in pro-
ducing successful solutions for transient, “deep” web data (in contrast to general,
Wikipedia-like knowledge and web sites).

In this paper, we show that in this very dichotomy lies the solution to ad-
dressing deep web question answering: We present deqa, a system that allows
the easy combination of semantic technologies, data extraction, and natural lan-
guage processing and demonstrate its ability to answer questions on Oxford’s
real estate market. The data is extracted from the majority of Oxford’s real
estate agencies, despite the fact that none publishes semantic (or other struc-
tured) representations of their data, and combined with background knowledge,
e.g., to correlate real estate offers with points of interest such as the “Ashmolean
Museum” or close-by supermarkets.

deqa is the first comprehensive framework for deep web question answering
approaching the problem as a combination of three research areas: (1) Web
data extraction – to obtain offers from real estate websites, where no structured
interface for the data is available (which happens to be the case for all Oxford
real estate agencies). (2) Data integration – to interlink the extracted data with
background knowledge, such as geo-spatial information on relevant points of
interest. (3) Question answering – to supply the user with a natural language
interface, capable of understanding even complex queries. For example a query
like “find me a flat to rent close to Oxford University with a garden” can be
answered by deqa. However, this cannot be achieved without adaptation to the
specific domain. The unique strength of deqa is that it is based not only on
best-of-breed data extraction, linking, and question answering technology, but
also comes with a clear methodology specifying how to adapt deqa to a specific
domain. In Section 3, we discuss in detail what is required to adapt deqa to a
new domain and how much effort that is likely to be.

deqa Components We developed deqa as a conceptual framework combining
three technologies for the above problems developed by the three groups involved
in deqa: DIADEM at Oxford, AKSW at Leipzig, and CITEC at Bielefeld.

(1) OXPath is a light-weight data extraction system particularly tailored to
quick wrapper generation on modern, scripted web sites. As demonstrated in
[9], OXPath is able to solve most data extraction tasks with just four extensions
to XPath, the W3C’s standard query language for HTML or XML data. Fur-
thermore, through a sophisticated garbage collection algorithm combined with

tight control of the language complexity, OXPath wrappers outperforms existing
data extraction systems by a wide margin [9]. For the purpose of integration
into deqa, we extended OXPath with the ability to direct extract RDF data,
including type information for both entities and relations.

(2) The real estate offers extracted with OXPath contain no or little con-
textual knowledge, e.g., about general interest locations or typical ranges for
the extracted attributes. To that end, we link these extracted offers with ex-
ternal knowledge. This is essential to answer common-sense parts of queries
such as “close to Oxford University”. Specifically, we employ the LIMES [22,
21] framework, which implements time-efficient algorithms for the discovery of
domain-specific links to external knowledge bases such as DBpedia [1].

(3) To apply question answering in a straightforward fashion on the sup-
plied, extracted, and enriched knowledge, we employ the TBSL approach [27]
for translating natural language questions into SPARQL queries. TBSL disam-
biguates entities in the queries and then maps them to templates which capture
the semantic structure of the natural language question. This enables the un-
derstanding of even complex natural language containing, e.g., quantifiers such
as the most and more than, comparatives such as higher than and superlatives
like the highest – in contrast to most other question answering systems that map
natural language input to purely triple-based representations.

Using the combination of these three technologies allows us to adjust to a
new domain in a short amount of time (see Section 3), yet to answer a significant
percentage of questions about real estate offers asked by users (see Section 4).

Contributions. These results validate our hypothesis, that the combination of
these technologies can (and may be necessary to) yield accurate question an-
swering for a broad set of queries in a specific domain. This is achieved without
requiring publishers to provide structured data and at a fairly low effort for
domain adaptation.

Specifically,

(1) deqa is the first comprehensive deep web question answering system for
entire domains that can answer the majority of natural language questions
about objects only available in form of plain, old HTML websites (Section 2).

(2) These websites are turned into structured RDF data through an extension
of OXPath for RDF output, providing a concise syntax to extract object and
data properties (Section 2.1).

(3) By extracting this data into RDF and linking it with background knowledge,
it can answer not only queries for specific attributes (“in postcode OX1”),
but also queries using common-sense criteria (“close to Oxford University”),
see Section 2.2.

(4) With TBSL, we are able to map such queries to Sparql expressions even
if they include complex natural language expressions such as “higher than”.

(5) deqa provides a methodology and framework that can be rapidly instanti-
ated for new domains, as discussed in Section 3.

URI1

"x y z..."

some:Class

rdf:type

123,45
1

URI1

"x y z..." some:Class

rdf:type

123,45

URI3
URI4URI2

Question
Answering

Web-
Application2

3 4

Data Integration and Enrichment

Extraction from Unstructured
and Structured Data

Search

Structured
Query/Answer

Fallback

Regular
Answer

Fig. 1: Overview of the deqa conceptual framework.

(6) As a case study, we instantiate deqa to Oxford’s entire real estate market,
involving the 20 largest real estate agents and all of their properties on sale,
and illustrate the necessary effort.

(7) A user-centric evaluation demonstrates that deqa is able to answer many
of the natural language questions asked by users (Section 4).

With these contributions, deqa is the first comprehensive framework for deep
web query answering, covering the extraction and data collection process as well
as the actual query answering, as elaborated in Section 5.

2 Approach

deqa provides a conceptual framework for enhancing classic information re-
trieval and search techniques using recent advances in web extraction, data inte-
gration and question answering. The overall approach is illustrated in Figure 1:
Given a particular domain, such as real estate, the first step consists of identi-
fying relevant websites and extracting data from those. This previously tedious
task can now be reduced to the rapid creation of OXPath wrappers as described
in Section 2.1. In deqa, data integration is performed through a triple store
using a common base ontology. Hence, the first phase may be a combination
of the extraction of unstructured and structured data. For instance, websites
may already expose data as RDFa, which can then be transformed to the tar-
get schema, e.g. using R2R [4], if necessary. This basic RDF data is enriched,
e.g. via linking, schema enrichment [15, 6], geo-coding or post-processing steps on
the extracted data. This is particularly interesting, since the LOD cloud contains
a wealth of information across different domains which allows users to formulate
queries in a more natural way (e.g., using landmarks rather than postcodes or
coordinates). For instance, in our analysis of the real estate domain, over 100k
triples for 2, 400 properties were extracted and enriched by over 100k links to
the LOD cloud. Finally, question answering or semantic search systems can be
deployed on top of the created knowledge. One of the most promising research
areas in question answering in the past years is the conversion of natural lan-
guage to SPARQL queries [27, 18, 26], which allows a direct deployment of such
systems on top of a triple store. Finally, deqa first attempts to convert a natural

Kindergarden_B

White_Road

1,499,950 £

gr :Offering

rdf:type

dd:hasPrice

Kindergarden_Adbp:near

Domain Specific
Triple Store

Question:
House near a Kindergarden under 2,000,000 £?

OXPath

OXPath

TBSL

White_Road

Answer:

15

dd:bedrooms

1,499,950 £
dd:hasPrice

dbp:near Kindergarden_A

Linking-Metric
OXPath

Fig. 2: Implementation of deqa for the real-estate domain.

language query to SPARQL, yet can fall back to standard information retrieval,
where this fails.

The domain-specific implementation of the conceptual framework, which we
used for the real estate domain, is depicted in Figure 2. It covers the above
described steps by employing state-of-the-art tools in the respective areas, OX-
Path for data extraction to RDF, Limes for linking to the linked data cloud,
and TBSL for translating natural language questions to Sparql queries. In the
following, we briefly discuss how each of these challenges are addressed in deqa.

2.1 OXPath for RDF extraction

OXPath is a recently introduced [9] modern wrapper language that combines
ease-of-use (through a very small extension of standard XPath and a suite of
visual tools [14]) with highly efficient data extraction. Here, we illustrate OXPath
through a sample wrapper shown in Figure 3.

This wrapper directly produces RDF triples, for which we extended OXPath
with RDF extraction markers that generate both data and object properties
including proper type information and object identities. For example the extrac-
tion markers <:(gr:Offering> and <gr:includes(dd:House)> in Figure 3 produce –
given a suitable page – a set of matches typed as gr:Offering, each with a set of
dd:House children. When this expression is evaluated for RDF output, each pair
of such matches generates two RDF instances related by gr:includes and typed
as above (i.e., three RDF triples).

doc("http://wwagency.co.uk/")//input[@name=’search’]/{click/}/

2 (descendant::a[@class=’pagenum’]

[text()=’NEXT’][1]/{click[wait=1]/})*
4 /descendant::div.proplist_wrap:<(gr:Offering)>

[?.//span.prop_price:<dd:hasPrice(xsd:double)=

6 substring-after(.,’£’)>]

[?.//a[@class=’link_fulldetails’]:<foaf:page=string(@href)>]

8 [?.:<gr:includes(dd:House)>

[?.//h2:<gr:name=string(.)>]

10 [?.//h2:<vcard:street_address=string(.)>]

[?.//div.prop_maininfo//strong[1]:<dd:bedrooms=string(.)>]

12 [? .//img:<foaf:depiction=string(@src)>]

Fig. 3: OXPath RDF wrapper

To give a more detailed impression of an OXPath RDF wrapper assuming
some familiarity with XPath, we discuss the main features of Figure 3:

(Line 1) We first load the web site wwagency.co.uk, a real estate agency
serving the Oxford area, and click on their search button without restricting the
search results. Therein, {click/} is an action which clicks on all elements in the
current context set, in this case, containing only the search button. This action
is absolute, i.e., after executing the action, OXPath continues its evaluation at
the root of the newly loaded document.

(Lines 2–3) Next, we iterate through the next links connecting the pagi-
nated results. To this end, we repeat within a Kleene star expression the fol-
lowing steps: we select the first link which is of class ’pagenum’ and contains
the text ’NEXT’. The expression then clicks on the link in an absolute action
{click[wait=1]/} and waits for a second after the onload event to ensure that the
heavily scripted page finishes its initialization.

(Line 4) On each result page, we select all div nodes of class proplist_wrap

and extract an gr:Offering instance for each such node. Aside from the CSS-
like shorthand for classes (analogously, we provide the # notation for ids), this
subexpression uses the first RDF extraction marker: This extraction marker
:<gr:Offering> produces an object instance, because it does not extract a value
necessary to produce a data property. The remainder of the expression adds
object and data properties to this instance, detailing the offering specifics.

(Lines 5–6) We extract the price of the offering by selecting and extracting
the span of class prop_price within the offering div. In particular, the marker
:<dd:hasPrice(xsd:double)=substring-after(.,’£’)> specifies the extraction of a
dd:hasPrice data property of type xsd:double with the value stated after the ’£’

character. The nesting of RDF properties follows the predicate nesting structure,
and thus, as the price is extracted inside a predicate following the extracted of-
fering, this price is associated with the offering. We use an optional predicate,
[?φ], to ensure that the evaluation continues, even if an offering does not name
a price and the predicate extraction fails.

(Line 7) Links to details pages are extracted as foaf:page data properties.

(Lines 8–12) Aside having a price, an offering also needs to refer to a
property, extracted next. In Line 8, with :<gr:includes(dd:House)>, we extract an
instance of the dd:House class as object property of the previous offering (because
of the predicate nesting), related via gr:include. The remaining four lines extract
the name, address, the number of bedrooms, and the property images as data
properties belonging to the dd:House instance, as all those properties are extracted
within nested predicates.

This wrapper produces RDF triples as below, describing two instances, the
first one dd:g31g111 representing a house with 4 bedrooms in Marston, and the
second one dd:g31g109 representing an offer on this house at GBP 475000.

dd:g31g111

2 a dd:House ; dd:bedrooms 4 ;

gr:name "William Street, Marston OX3" ;

4 vcard:street-address "William Street, Marston OX3" ;

foaf:depiction "http://www.wwagency.com/i_up/111_1299510028.jpg" .

6 dd:g31g109

a gr:offering ; dd:hasPrice "475000"^^xsd:double ;

8 gr:includes dd:g31g111 .

For more details on OXPath, please refer to [9]. We also provide the full set
of wrappers on the project home page.

2.2 Limes

We discuss the Limes specification used to link and integrate the RDF data
extracted by OXPath with LinkedGeoData – a vast knowledge base extracted
from OpenStreetMaps containing spatial data including points-of-interest such
as schools. The following listing shows an excerpt of the specification that links
houses extracted by OXPath with nearby schools. Every link discovery process
requires a set S of source and T target instances that are to be linked. In Limes,
these can be defined by specifying the restrictions on the instances as well as the
set of properties that these instances must possess to be linked. In our example,
the set S (specified by the tag <SOURCE>) consists of oxford:House which possess
a longitude and a latitude. Similarly, the set T (which is omitted in the listing
for brevity) was defined as all the schools whose latitude lies between 50 and 52
degrees and whose longitude lies between -2 and -1 degrees. For instances a ∈ S
and b ∈ T , the similarity is set to

1

1 +
√
(a.wgs:lat− b.wgs:lat)2 + (a.wgs:long− b.wgs:long)2)

. (1)

Two instances are then considered close to each other (described by the predicate
dbp:near) if their similarity was at least 0.95.

<SOURCE> <ID>oxford</ID>

2 ...

<VAR>?a</VAR>

4 <RESTRICTION>?a a oxford:House</RESTRICTION>

<PROPERTY>wgs:lat AS number</PROPERTY>

6 <PROPERTY>wgs:long AS number</PROPERTY> </SOURCE>

...

8 <METRIC>euclidean(a.wgs:lat|wgs:long, b.wgs:lat|wgs:long)</METRIC>

<ACCEPTANCE> <THRESHOLD>0.9975</THRESHOLD>

10 <FILE>allNear.ttl</FILE>

<RELATION>dbp:near</RELATION> </ACCEPTANCE>

12 ...

The property values of all schools from LinkedGeoData that were found to be
close to houses extracted by OXPath were subsequently retrieved by Limes and
loaded into the deqa triple store.

2.3 TBSL Question Answering

Natural
Language
Question

Semantic
Representaion

SPARQL
Query

Templates

Templates
with URI slots

Ranked SPARQL
Queries

Answer

LOD

Entity identification

Entity and Query Ranking

Query
Selection

Resources
and Classes

SPARQL
Endpoint

Type Checking
and Prominence

BOA Pattern
Library

Properties

Tagged
Question

Domain Independent
Lexicon

Domain Dependent
Lexicon

Parsing

Corpora?

!
Loading

State

Process

Uses

Fig. 4: Overview of the TBSL question answering engine (source: [27]).

Figure 4 gives an overview of our TBSL (template based SPARQL query
generator) question answering approach [27]. The system takes a natural lan-
guage question as input and returns a SPARQL query and the corresponding
answer(s) as output. First, the natural language question is parsed on the basis
of its part-of-speech tags and a few domain-independent lexical entries com-
prising wh-words, determiners, numerals, and so on. The result is a semantic
representation of the natural language query, which is then converted into a
SPARQL query template. This template fixes the overall structure of the target
query, including aggregation functions such as filters and counts, but leaves open

slots that still need to be filled with URIs corresponding to the natural language
expressions in the input question. For example, the question “Give me all flats
near Oxford University” yields a template that contains a class slot for some
URI corresponding to “houses”, a resource slot for some URI corresponding to
“Oxford University”, and a property slot to express the “near” relation. In order
to fill these slots, entity identification approaches are used to obtain appropriate
URIs, relying both on string similarity as well as on natural language patterns
which are compiled from existing structured data in the Linked Data cloud and
text documents. This yields a range of different query candidates as potential
translations of the input question. Those candidates are ranked on the basis of
string similarity values, prominence values, and schema conformance checks. The
highest ranked queries are then tested against the underlying triple store and
the best answer is returned to the user.

3 Domain Adaption Costs

deqa requires instantiation for a specific domain, however, through advances
in semantic and web extraction technologies this adaptation involves far less
efforts than in the past and is now feasible even with very limited resources. We
substantiate this claim by discussing the resources required for our case study
on Oxford’s real estate for (1) system setup and domain adaptation and for and
(2) maintaining the wrappers and links to background knowledge.

The first step in adapting deqa to a new domain is the creation or adaption
of a suitable domain ontology in RDFS. In our case, the ontology consists of 5
object properties, 7 data properties, 9 classes, and 10 individuals, all specified in
less than 150 lines of turtle code. We were cautious to capture all relevant cases.
Hence we build the ontology iteratively while fitting a dozen representative offers
from 4 different agencies into the ontology – reaching already a saturation. The
entire process of ontology creation took four domain experts a couple of hours.

Web extraction. Having the ontology, we need to develop wrappers to
extract the data from the relevant sites. The process consists of identifying the
relevant DOM features to frame the data to be extracted, and running sufficiently
many tests to check the wrapper’s behavior on other pages from the same site.
The wrappers we employ in our case study took on average 10 minutes each to
create, such that it took an OXPath expert less than a day to identify the 20 most
relevant web sites and write appropriate wrappers. To ease OXPath wrapper
generation, we relied on Visual OXPath [14], a supervised wrapper induction
system that generates highly robust wrappers from few examples: The system
embeds a real browser, and records user interaction on the page (e.g., navigation,
click, form filling). Once, the relevant data has been reached, the user marks the
data to extract (e.g., price), and checks whether Visual OXPath generalizes the
selection correctly, in case refining the selection. In our user study [14], we show
that even users without prior knowledge of OXPath can create a wrapper in less
than three minutes (not counting testing and verification) on average.

Linking. Creating Limes link specifications can be carried out in mani-
fold ways. For example, Limes provides active learning algorithms for the semi-
automatic detection of link specifications that have been shown to require only
a small number of annotations (i.e., 10 − 40 depending on the data quality) to
detect high-quality link specifications [23, 20]. Given that we had clear definition
of the two predicates near (for distances up to 2km) and atWalkingDistance (for
distances up to 500m) to be computed for the domain at hand, we chose to
create link specifications manually for each of these predicates.

Question Answering The component for parsing a user question and con-
structing query templates requires only very little domain adaptation. The core
part of the lexicon that is used for parsing comprises domain-independent ex-
pressions that can be re-used, all other entries are built on the fly. The only part
that was added for deqa were lexical entries covering some typical tokens with
fixed mappings to URIs in the given domain, e.g. “near”. This has been done for
six mappings, resulting in 20 domain-specific entries. The required manual effort
amounts to less than an hour.

System Maintenance

The frequency to which a wrapper needs to be updated is directly correlated to
its robustness. Robustness measures the degree of a wrapper to still select the
same nodes after changes on the page. Both [14, 11] show that wrappers without
robustness consideration have limited lifespan, but Visual OXPath implements a
number of techniques to prolong the fitness of its wrappers. In particular, given
only a single example, Visual OXPath suggests a list of expressions ranked by ro-
bustness of the generated wrapper. We have evaluated the top-ranked suggested
wrappers over 26 weeks, showing that they fail only after 26 weeks in contrast
to average wrappers that fail in 9− 12 weeks. In Oxford real estate, we estimate
that wrapper maintenance will involve about one failing wrapper per week.

Linking and Question Answering The system maintenance for the Limes
link specifications is minimal. If the schema is not altered, the specifications
created can simply be reran when the data endpoints are updated. In case of an
alteration of the schema, the PROPERTY and METRIC tags of the specification need
to be altered. This is yet a matter of minutes is the schema of both endpoints
is known. If the new schema is not known, then the link specification has to
be learned anew. Previous work [20] has shown that even on large data sets,
learning such a specification requires only about 5 min. For question answering,
no regular maintenance effort is usually required. An exception, both for linking
and question answering, are schema changes. Such changes can in rare cases
invalidate specifications, in which case they have to be altered manually. TBSL
is flexible in terms of schema changes as long as entities use appropriate labels or
URIs. For instance, in [27] was applied to the DBpedia ontology with hundreds of
classes and properties without requiring manual configuration for adapting it to
this schema. However, previously manually added domain-specific configuration
entries for improving the performance of TBSL may require updates in case of
schema changes.

number of questions 100
—SPARQL queries created 71
—SPARQL queries returning results 63
—SPARQL queries with correct results 49
—exactly intended SPARQL query 30
—SPARQL queries with incorrect results 14

(a) Evaluation results

failures
—data coverage 9
—linguistic coverage 18
—POS tagging 2
—other reasons 6

(b) Failure reasons

Table 1: Evaluation results and failures

4 Evaluation

The components comprising the deqa platform have been evaluated in the re-
spective reference articles, in particular [9] for OXPath, [22] for LIMES, and [27]
for TBSL. Hence, we are mostly interested in an evaluation of the overall sys-
tem, as well as specific observation for the Oxford real estate case study. The
main benefit of deqa is to enhance existing search functionality with question
answering. Therefore, we evaluate the overall system for the real-estate domain
by letting users ask queries and then verifying the results.

First deqa was instantiated for Oxford real-estate as described in Section 3.
The OXPath wrappers, the LIMES specs and the TBSL configuration are all
publicly available at http://aksw.org/projects/DEQA. Our dataset consists of
more than 2400 offers on houses in Oxfordshire, extracted from the 20 most
popular real estate agencies in the area. The wrappers extract spatial information
from 50% of the agencies, typically extracted from map links. For all properties
in our dataset, we extract street address and locality. The full postcode (e.g.,
OX27PS) is available in 20% of the cases (otherwise only the postcode area, e.g.,
OX1 for Oxford central is available). 96% of all offers expose directly the price,
the remaining 4% are “price on inquiry”. Images and textual descriptions are
available for all properties, but not all agencies publish the number of bathrooms,
bedrooms and reception rooms. These offers are enriched by LIMES with 93, 500
links to near (within 2 kilometres) and 7, 500 links to very near (within 500
metres) spatial objects. The data is also enriched by loading 52, 500 triples from
LinkedGeoData describing the linked objects. Domain specific spatial mappings
were added to TBSL, e.g. “walking distance” is mapped to “very near”.

We asked 5 Oxford residents to provide 20 questions each. They were told
to enter questions, which would typically arise when searching for a new flat or
house in Oxford. We then checked, whether the questions could be parsed by
TBSL, whether they could successfully be converted to a SPARQL query on the
underlying data and whether those SPARQL queries are correct.

4.1 Results and Discussion

It turned out that most questions would be impossible to answer by only em-
ploying information retrieval on the descriptions of properties in Oxford. Many

questions would also not be possible to answer via search forms on the respective
real-estate websites, as they only provide basic attributes (price, bedroom num-
bers), but neither more advanced ones (such as “Edwardian”, with garden) nor
have a concept of close-by information (such as close to a supermarket). Even
if they can be answered there, the coverage would be low as we extracted data
using over 20 wrappers. While some questions had similar structures, there is
little overlap in general.

The results of our experiment are depicted in Tables 1a and 1b. Most ques-
tions can be converted successfully to SPARQL queries and many of those are
the SPARQL queries intended by users of the system. Hence, deqa provides
significant added value in the real estate domain in Oxford despite the relatively
small effort necessary for setting up the system. For the questions, which were
not correctly answered, we analysed the reasons for failure and summarise them
in Table 1b. If questions were not correctly phrased, such as “house with immedi-
ately available”, they lead to part-of-speech tagging problems and parse failure.
For some questions TBSL fails to construct a proper parse due to incomplete
linguistic coverage, i.e., syntactic constructions or part of speeches that cannot
be handled yet, e.g. adverbs like “recently” or certain types of relative clauses.
We are currently extending the parse procedure in order to add these missing
constructions. In some cases TBSL could not answer the question because it
lacks certain features, e.g. negation such as “not in Marston” or aggregates such
as average prices in some area. But since TBSL uses a first order logical rep-
resentation of the input query internally, those features can be added to the
QA engine in the future. Support for some aggregates such as COUNT already
exists. In some cases, on the other hand, data was insufficient, e.g. users asking
for data that was neither extracted by OXPath nor available through the links to
LinkedGeoData, e.g. “house in a corner or end-of-terrace plot”. Moreover, some
questions contain vague, subjective criteria such as “cheap”, “recently” or even
“representative”, the exact meaning of which heavily depends on the user’s ref-
erence values. In principle, such predicates could be incorporated in TBSL by
mapping them to specific restrictions, e.g. cheap could be mapped to costs for
flats less than 800 pounds per month.

An example of a successful query is “all houses in Abingdon with more than
2 bedrooms”:

SELECT ?y WHERE {

2 ?y a <http://diadem.cs.ox.ac.uk/ontologies/real-estate#House> .

?y <http://diadem.cs.ox.ac.uk/ontologies/real-estate#bedrooms> ?y0 .

4 ?y <http://www.w3.org/2006/vcard/ns#street-address> ?y1 .

FILTER(?y0 > 2) .

6 FILTER(regex(?y1,’Abingdon’,’i’)) .

}

In that case, TBSL first performs a restriction by class (“House”), then it finds
the town name “Abingdon” from the street address and it performs a filter on the
number of rooms. Note that most QA systems would not be sufficiently powerful
to include such filters.

Another example is “Edwardian houses close to supermarket for less than
1,000,000 in Oxfordshire”, which was translated to the following query:

SELECT ?x0 WHERE {

2 ?x0 <http://dbpedia.org/property/near> ?y2 .

?x0 a <http://diadem.cs.ox.ac.uk/ontologies/real-estate#House> .

4 ?v <http://purl.org/goodrelations/v1#includes> ?x0 .

?x0 <http://www.w3.org/2006/vcard/ns#street-address> ?y0 .

6 ?v <http://diadem.cs.ox.ac.uk/ontologies/real-estate#hasPrice> ?y1 .

?y2 a <http://linkedgeodata.org/ontology/Supermarket> .

8 ?x0 <http://purl.org/goodrelations/v1#description> ?y .

FILTER(regex(?y0,’Oxfordshire’,’i’)) .

10 FILTER(regex(?y,’Edwardian ’,’i’)) .

FILTER(?y1 < 1000000) .

12 }

In that case, the links to LinkedGeoData were used by selecting the “near” prop-
erty as well as by finding the correct class from the LinkedGeoData ontology.

4.2 Performance Evaluation

We conclude this evaluation with a brief look at the system performance, fo-
cusing on the resource intensive background extraction and linking, which re-
quire several hours compared to seconds for the actual query evaluation. For
the real-estate scenario, the TBSL algorithm requires 7 seconds on average for
answering a natural language query using a remote triple store as backend. The
performance is quite stable even for complex queries, which required at most 10
seconds. So far, the TBSL system has not been heavily optimised in terms of
performance, since the research focus was clearly to have a very flexible, robust
and accurate algorithm. Performance could be improved, e.g., by using fulltext
indices for speeding up NLP tasks and queries.

Extraction. In [9] we show that OXPath ’s memory requirements are inde-
pendent of the number of pages visited: For deqa, the average execution time
of our wrappers amounts to approximately 30 pages/min. As we do not want to
overtax the agencies’ websites, this rate is high enough to crawl an entire web-
site in few minutes. For OXPath this rate is quite slow, but is rooted in inherent
characteristics of the domain: (1) Many real estate websites are unable to serve
requests at higher rates, and (2) supply heavily scripted pages, containing many
images or fancy features like flash galleries. Indeed, the evaluation of OXPath
is dominated by the browser initialisation and rendering time [9], amounting to
over 80% in the real estate case.

Linking. LIMES implements a number of very time-efficient algorithms for
linking and has been shown to outperform the state of the art in this respect.
The runtime of the link discovery depends largely on the amount of data to link.
In our use case, fetching all data items for linking from the endpoints required
less than 3 minutes while the link discovery process itself was carried out in 0.6
seconds for discovering the near-by entities and 0.3 seconds for the entities at

walking distance. The extraction of the data to integrate from LinkedGeoData
lasted 9.5 minutes.

In summary, the data extraction and linking can be easily done in a few
minutes per agency and can be run in parallel for multiple agencies. This allows
us to refresh the data at least once per day, without overtaxing the resources of
the agencies.

5 Related Work

deqa is, to the best of our knowledge, the first comprehensive deep web question
answering system addressing the whole process from data extraction to ques-
tion answering. In contrast, previous approaches have been limited either with
respect to their access to deep web data behind scripted forms [19] by targeting
only common-sense, surface web data, or by requiring user action for form nav-
igation (Morpheus, [10]). Though “federated” approaches that integrate data
from different forms have been considered [16], none has integrated the extracted
data with existing background knowledge, limiting the types of questions that
can be answered. In the following, we briefly discuss related work for each of
deqa’s components to illustrate why we believe this is the right combination.

Web Extraction. To extract the relevant data from the real estate agencies,
we can resort essentially to three alternatives in web data information extrac-
tion [7], namely traditional information extraction, unsupervised data extrac-
tion, or supervised data extraction, with OXPath falling into the last category.
Information extraction systems, such as [8, 2], focus on extraction from plain text
which is not suitable for deep web data extraction of product offers, where most of
the data is published with rich visual and HTML structure, yielding much higher
accuracy than IE systems. Unsupervised data extraction [29, 12] approaches can
use that structure, but remain limited in accuracy mostly due to their inability
to distinguish relevant data from noise reliably. Thus, the only choice is a super-
vised approach. In [9] OXPath and related supervised approaches are discussed
at length. In summary, OXPath presents a novel trade-off as a simpler, easier
language with extremely high scalability at the cost of more sophisticated data
analysis or processing capabilities. As shown in deqa, such abilities are better
suited for post-processing (e.g., through Limes for linking).

Linking. LIMES [23] offers a complex grammar for link specifications, and
relies on a hybrid approach for computing complex link specifications. In contrast
to LIMES, which employs lossless approaches, [25] uses a candidate selection
approach based on discriminative properties to compute links very efficiently
but potentially loses links while doing so. Link Discovery is closely related with
record linkage and deduplication [5]. Here, the database community has de-
veloped different blocking techniques to address the complexity of brute force
comparison [13] and very time-efficient techniques to compute string similarities
for record linkage (see e.g., [28]. In recent work, machine learning approaches
have been proposed to discover link specifications.For example [20] combine ge-

netic programming and active learning while [24] learns link specifications in an
unsupervised manner.

Question Answering. There is a range of approaches to QA over structured
data, for an overview see [18]. Here we discuss TBSL in contrast to two prominent
systems to exemplify two opposite key aspects: PowerAqua [17], a purely data-
driven approach, and Pythia [26], which heavily relies on linguistic knowledge.
TBSL specifically aims at combining the benefits of a deep linguistic analysis
with the flexibility and scalability of approaches focusing on matching natural
language questions to RDF triples. This contrasts with PowerAqua [17], an open-
domain QA system that uses no linguistic knowledge and thus fails on questions
containing quantifiers and comparisons, such as the most and more than. Pythia
[26], on the other hand, is a system that relies on a deep linguistic analysis, yet
requires an extensive, manually created domain-specific lexicon.

6 Conclusion

deqa is a comprehensive framework for deep web question answering, which
improves existing search functionality by combining web extraction, data inte-
gration and enrichment as well as question answering. We argue that recent ad-
vances allow the successful implementation of the deqa framework and consider
this to be one of the prime examples for benefits of semantic web and artificial
intelligence methods. We instantiate deqa for the real estate domain in Oxford
and show in an evaluation on 100 user queries that deqa is able to answer a
significant percentage correctly. In addition, we provided a cost analysis which
describes the setup and maintenance effort for implementing deqa in a particu-
lar domain. All used software components as well as the actual queries and used
configuration files are freely available (http://aksw.org/projects/DEQA).

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. In: ISWC (2008) 722–735

2. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open
information extraction from the web. In: IJCAI (2007) 2670–2676

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

4. Bizer, C., Schultz, A.: The R2R framework: Publishing and discovering mappings
on the web. In: COLD. (2010)

5. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1) (2008) 1–41
6. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge

bases. In: EKAW 2012. (2012)
7. Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information

extraction systems. IEEE TKDE 18(10) (2006) 1411–1428
8. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, S.,

Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: an
experimental study. Artif. Intell. 165 (June 2005) 91–134

9. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.: OXPath: A language
for scalable, memory-efficient data extraction from web applications. In: VLDB
(2011) 1016–1027

10. Grant, C., George, C.P., Gumbs, J.d., Wilson, J.N., Dobbins, P.J.: Morpheus: a
deep web question answering system. In: iiWAS (2010) 841–844

11. Gulhane, P., Madaan, A., Mehta, R., Ramamirtham, J., Rastogi, R., Satpal, S.,
Sengamedu, S.H., Tengli, A., Tiwari, C.: Web-scale information extraction with
vertex. In: ICDE (2011) 1209–1220

12. Kayed, M., Chang, C.H.: FiVaTech: Page-level web data extraction from template
pages. IEEE TKDE 22(2) (2010) 249–263

13. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution
approaches with fever. In: VLDB (2009) 1574–1577

14. Kranzdorf, J., Sellers, A., Grasso, G., Schallhart, C., Furche, T.: Spotting the
tracks on the OXPath. In: WWW. (2012)

15. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for
ontology engineering. J. of Web Semantics 9 (2011) 71 – 81

16. Lin, J.: The Web as a resource for question answering: Perspectives and challenges.
In: LREC-2002. (2002)

17. Lopez, V., Fernández, M., Motta, E., Stieler, N.: Poweraqua: supporting users in
querying and exploring the semantic web content. Semantic Web J. (to appear)
Available from http://www.semantic-web-journal.net/.

18. Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the
semantic web? A survey. Semantic Web J. 2 (2011) 125–155

19. Mollá, D., Vicedo, J.L.: Question answering in restricted domains: An overview.
Comput. Linguist. 33(1) (2007) 41–61

20. Ngomo, A.C.N., Lyko, K.: Eagle: Efficient active learning of link specifications
using genetic programming. In: ESWC. (2012)

21. Ngonga Ngomo, A.C.: A time-efficient hybrid approach to link discovery. In:
OM@ISWC. (2011)

22. Ngonga Ngomo, A.C., Auer, S.: A time-efficient approach for large-scale link dis-
covery on the web of data. In: IJCAI. (2011)

23. Ngonga Ngomo, A.C., Lehmann, J., Auer, S., H"offner, K.: Raven – active learning
of link specifications. In: OM@ISWC. (2011)

24. Nikolov, A., D’Aquin, M., Motta, E.: Unsupervised learning of data linking con-
figuration. In: ESWC. (2012)

25. Song, D., Heflin, J.: Automatically generating data linkages using a domain-
independent candidate selection approach. In: ISWC. (2011) 649–664

26. Unger, C., Cimiano, P.: Pythia: Compositional meaning construction for ontology-
based question answering on the Semantic Web. In: NLDB. (2011)

27. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.C.N., Gerber, D., Cimiano, P.:
Template-based question answering over RDF data. In: WWW. (2012) 639–648

28. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate
detection. In: WWW. (2008) 131–140

29. Zhai, Y., Liu, B.: Structured Data Extraction from the Web Based on Partial Tree
Alignment. IEEE TKDE 18(12) (2006) 1614–1628

