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Abstract. What if you could turn all websites of an entire domain into
a single database? Imagine all real estate offers, all airline flights, or
all your local restaurants’ menus automatically collected from hundreds
or thousands of agencies, travel agencies, or restaurants, presented as a
single homogeneous dataset.
Historically, this has required tremendous effort by the data providers
and whoever is collecting the data: Vertical search engines aggregate
offers through specific interfaces which provide suitably structured data.
The semantic web vision replaces the specific interfaces with a single one,
but still requires providers to publish structured data.
Attempts to turn human-oriented HTML interfaces back into their un-
derlying databases have largely failed due to the variability of web sources.
In this paper, we demonstrate that this is about to change: The avail-
ability of comprehensive entity recognition together with advances in
ontology reasoning have made possible a new generation of knowledge-
driven, domain-specific data extraction approaches. To that end, we in-
troduce diadem, the first automated data extraction system that can
turn nearly any website of a domain into structured data, working fully
automatically, and present some preliminary evaluation results.

1 Introduction

Most websites with offers on books, real estate, flights, or any number of other
products are generated from some database. However, meant for human con-
sumption, they make the data accessible only through, increasingly sophisti-
cated, search and browse interfaces. Unfortunately, this poses a significant chal-
lenge in automatically processing these offers, e.g., for price comparison, market
analysis, or improved search interfaces. To obtain the data driving such applica-
tions, we have to explore human-oriented HTML interfaces and extract the data
made accessible through them, without requiring any human involvment.

Automated data extraction has long been a dream of the web community,
whether to improve search engines, to “model every object on the planet”1, or
? The research leading to these results has received funding from the European Re-
search Council under the European Community’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement DIADEM, no. 246858.

1 Bing’s new aim, http://tinyurl.com/77jjqz6.
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Fig. 1: Data extraction with DIADEM

to bootstrap the semantic web vision. Web extraction comes roughly in two
shapes, namely web information extraction (IE), extracting facts from flat text
at very large scale, and web data extraction (DE), extracting complex objects
based on text, but also layout, page and template structure, etc. Data extrac-
tion often uses some techniques from information extraction such as entity and
relationship recognition, but not vice versa. Historically, IE systems are domain-
independent and web-scale [15, 12], but at a rather low recall. DE systems fall
into two categories: domain-independent, low accuracy systems [3, 14, 13] based
on discovering the repeated structure of HTML templates common to a set of
pages, and highly accurate, but site-specific systems [16, 4] based on machine
learning.

In this paper, we argue that a new trade-off is necessary to make highly
accurate, fully automated web extraction possible at a large scale. We trade off
scope for accuracy and automation: By limiting ourselves to a specific domain
where we can provide substantial knowledge about that domain and the repre-
sentation of its objects on web sites, automated data extraction becomes possible
at high accuracy. Though not fully web-scale, one domain often covers thousands
or even tens of thousands of web sites: To achieve a coverage above 80% for typi-
cal attributes in common domains, it does not suffice to extract only from large,



popular web sites. Rather, we need to include objects from thousands of small,
long-tail sources, as shown in [5] for a number of domains and attributes.

Figure 1 illustrates the principle of fully automated data extraction at domain-
scale. The input is a website, typically generated by populating HTML templates
from a provider’s database. Unfortunately, this human-focused HTML interface
is usually the only way to access this data. For instance, of the nearly 50 real
estate agencies that operate in the Oxford area, not a single one provides their
data in structured format. Thus data extraction systems need to explore and
understand the interface designed for humans: A system needs to automatically
navigate the search or browse interface (1), typically forms, provided by the
site to get to result pages. On the result pages (2), it automatically identifies
and separates the individual objects and aligns them with their attributes. The
attribute alignment may then be refined on the details pages (3), i.e., pages that
provide comprehensive information about a single entity. This involves some of
the most challenging analysis, e.g., to find and extract attribute-value pairs from
tables, to enrich the information about the object from the flat text description,
e.g., with relations to known points-of-interest, or to understand non-textual
artefacts such as floor plans, maps, or energy performance charts. All that infor-
mation is cleaned and integrated (4) with previously extracted information to
establish a large database of all objects extracted from websites in that domain.
If fed with a sufficient portion of the websites of a domain, this database provides
a comprehensive picture of all objects of the domain.

That domain knowledge is the solution to high-accuracy data extraction at
scale is not entirely new. Indeed, recently there has been a flurry of approaches
focused on this idea. Specifically, domain-specific approaches use background
knowledge in form of ontologies or instance databases to replace the role of
the human in supervised, site-specific approaches. Domain knowledge comes in
two fashions, either as instance knowledge (that “Georg” is a person and lives
in the town “Oxford”) or as schema or ontology knowledge (that “town” is a
type of “location” and that “persons” can “live” in “locations”). Roughly, existing
approaches can be distinguished by the amount of schema knowledge they use
and whether instances are recognised through annotators or through redundancy.
One of the dominant issues when dealing with automated annotators is that text
annotators have low accuracy. Therefore, [6] suggests the use of a top-k search
strategy on subsets of the annotations provided by the annotators. For each
subset a separate wrapper is generated and ranked using, among others, schema
knowledge. Other approaches exploit content redundancy, i.e., the fact that there
is some overlapping (at least on the level of attribute values) between web sites
of the same domain. This approach is used in [11] and an enumeration of possible
attribute alignments (reminiscent of [6]). Also [2] exploits content redundancy,
but focuses on redundancy on entity level rather than attribute level only.

Unfortunately, all of these approaches are only half-hearted: They add a
bit of domain knowledge here or there, but fail to exploit it in other places.
Unsurprisingly, they remain stuck at accuracies around 90− 94%. There is also
no single system that covers the whole data extraction process, from forms over
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Fig. 2: DIADEM knowledge

result pages to details pages, but rather most either focus on forms, result or
details pages only.

To address these shortcomings, we introduce the diadem engine which
demonstrates that through domain-specific knowledge in all stages of data ex-
traction we can indeed achieve high accuracy extraction for entire domain.
Specifically, diadem implements the full data extraction pipeline from Figure 1
integrating form, result, and details page understanding. We discuss diadem,
the way it uses domain knowledge (Section 2) and performs an integrated anal-
ysis (Section 3) of a web site of a domain in the rest of this paper, concluding
with a set of preliminary results (Section 4).

2 diadem Knowledge

diadem is organised around knowledge of three types, see Figure 2:
1. What to detect? The first type of knowledge is all about detecting in-

stances, whether instances of domain entities or their attributes, or instances
of a technical concept such as a table, a strongly highlighted text, or an adver-
tisement. We call such instances phenomena and distinguish phenomena into
those that can be directly observed on a page, e.g., by means of text annotators
or visual saliency algorithms, and those inferred from directly observed ones,
e.g., that similar values aligned in columns, each emphasising its first value,
constitute a table with a header row.

2. How to interpret? However, phenomena alone are fairly useless: They are
rather noisy with accuracy in the 70−80% range even with state of the art tech-
niques. Furthermore, they are not what we are interested in: We are interested
in structured objects and their attributes. How we assemble these objects and
assign their attributes is described in the phenomenology that is used by a
set of reasoners to derive structured instances of domain concepts from the phe-
nomena. Thus a table phenomenon may be used together with price and location



annotations on some cell values and the fact that there is a price refinement form
to recognise that the table represents a list of real estate offers for sale. Similarly,
we assemble phenomena into instances of high-level interaction concepts such as
real-estate forms or floor plans, e.g., to get the rooms and room dimensions from
edge information and label annotations of a PDF floor plan.

3. How to structure? Finally, the domain knowledge guides the way we struc-
ture the final data and resolve conflicts between different interpretations of the
phenomena (e.g., if we have one interpretation that a flat has two bedrooms and
one that it has 13 bedrooms, yet the price is rather low, it is more likely a two
bedroom flat).

For all three layers, the necessary knowledge can be divided into domain-
specific and domain-independent. For quick adaptability of diadem to new do-
mains, we formulate as much knowledge as possible in general, domain inde-
pendent ways, either as reusable components, sharing knowledge, e.g., on the
UK locations between domains, or as domain independent templates which are
instantiated with domain specific parameters. Thus, to adapt diadem to a given
domain, one needs to select the relevant knowledge, instantiate suitable tem-
plates, and sometimes provide additional, truly domain specific knowledge.

Where phenomena (usually only in the form of textual annotators) and on-
tological knowledge are fairly common, though never applied to this extent in
data extraction, diadem is unique in the use of explicit knowledge for the map-
ping between phenomena. These mappings (or phenomenology) are described in
Datalog±,¬ rules and fall, roughly, into three types that illustrate three of the
most profligate techniques used in the diadem engine:

1. Finding repetition. Fortunately, most database-backed websites use tem-
plates that can be identified with fair accuracy. Exploiting this fact is, indeed,
the primary reason why DE systems are so much more accurate that IE that do
not use this information. However, previous approaches are often limited by their
inability to distinguish noise from actual data in the repetition analysis (and thus
get, e.g., confused by different record types or irregular advertisements). Both
is addressed in diadem by focusing the search for repetition carrying relevant
phenomena (such as instances of domain attributes).

2. Identifying object instances through context. However, for details pages not
enough repetition may be available and thus we also need to be able to identify
singular object occurrences. Here, we exploit context information, e.g., from the
search form or from the result page through which a details page is reached.

3. Corroboration of disparate phenomena. Finally, individual results obtained
from annotations and patterns must be corroborated into a coherent model,
building not only a consistent model of individual pages but of an entire site.

3 diadem Engine

All this knowledge is used in the diadem engine to analyse a web site. It is
evident that this analysis process is rather involved and thus not feasible for
every single page on a web site. Fortunately, we can once again profit from the
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template structure of such sites: First, diadem analyzes a small fraction of a
web site to generate a wrapper, and second, diadem executes these wrappers
to extract all relevant data from the analyzed sites at high speed and low cost.
Figure 3 gives an overview of the high-level architecture of diadem. On the left,
we show the analysis, on the right the execution stage. In practice, there are
far more dependencies and feedback mechanisms, but for space reasons we limit
ourselves to a sequential model.

In the first stage, with a sample from the pages of a web site, diadem gen-
erates fully automatically wrappers (i.e., extraction program). This analysis is
based on the knowledge from Section 2, while the extraction phase does not
require any further domain knowledge. The result of the analysis is a wrapper
program, i.e., a specification how to extract all the data from the website without
further analysis. Conceputally, the analysis is divided into three major phases,
though these are closely interwoven in the actual system:

(1) Exploration: diadem automatically explores a site to locate relevant
objects. The major challenge here are web forms: diadem needs to understand
such forms sufficiently to fill them for sampling, but also to generate exhaustive
queries for the extraction stage, such that all the relevant data is extracted
(see [1]). diadem’s form understanding engine opal [8] uses an phenomenology
of relevant domain forms for these tasks.

(2) Identification: The exploration unearths those web pages that contain
actual objects. But diadem still needs to identify the precise boundaries of these
objects as well as their attributes. To that end, diadem’s result page analysis
amber [9] analyses the repeated structure within and among pages. It exploits
the domain knowledge to distinguish noise from relevant data and is thus far
more robust than existing data extraction approaches.

(3) Block analysis: Most attributes that a human would identify as struc-
tured, textual attributes (as opposed to images or flat text) are already identified
and aligned in the previous phase. But diadem can also identify and extract at-
tributes that are not of that type by analysing the flat text as well as specific,
attribute-rich image artefacts such as energy performance charts or floor plans.
Finally, we also aim to associate “unknown” attributes with extracted objects, if



these attributes are associated to suitable labels and appear with many objects
of the same type,
At the end of this process, we obtain a sample of instance objects with rich
attributes that we use to generate an OXPath wrapper for extraction. Some of
the attributes (such as floor plan room numbers) may require post-processing
also at run-time and specific data cleaning and linking instructions are provided
with the wrapper.

The wrapper generated by the analysis stage can be executed indepen-
dently. We have developed a new wrapper language, called OXPath [10], the
first of its kind for large scale, repeated data extraction. OXPath is powerful
enough to express nearly any extraction task, yet as a careful extension of XPath
maintains the low data and combined complexity. In fact, it is so efficient, that
page retrieval and rendering time by far dominate the execution. For large scale
execution, the aim is thus to minimize page rendering and retrieval by storing
pages that are possibly needed for further processing. At the same time, memory
should be independent from the number of pages visited, as otherwise large-scale
or continuous extraction tasks become impossible. With OXPath we obtain all
these characteristics, as shown in Section 4.

4 diadem Results

To give an impression of the diadem engine we briefly summarise results on
three components of diadem: its form understanding system, opal; its result
page analysis, amber; and the OXPath extraction language.

Figures 4a and 4b report on the quality of form understanding and result
page analysis in diadem’s first prototype. Figure 4a [8] shows that opal is able
to identify about 99% of all form fields in the UK real estate and used car do-
main correctly. We also show the results on the ICQ and Tel-8 form benchmarks,
where opal achieves > 96% accuracy (in contrast recent approaches achieve at
best 92% [7]). The latter result is without use of domain knowledge. With do-
main knowledge we could easily achieve close to 99% accuracy as well. Figure 4b
[9] shows the results for data area, record, and attribute identification on re-
sult pages for amber in the UK real estate domain. We report each attribute
separately. amber achieves on average 98% accuracy for all these tasks, with a
tendency to perform worse on attributes that occur less frequently (such as the
number of reception rooms). amber is unique in achieving this accuracy even in
presence of significant noise in the underlying annotations: Even if we introduce
an error rate of over 50%, accuracy only drops by 1 or 2%.

For an extensive evaluation on OXPath, please see [10] . It easily outperforms
existing data extraction systems, often by a wide margin. Its high performance
execution leaves page retrieval and rendering to dominate execution (> 85%) and
thus makes avoiding page rendering imperative. We minimize page rendering by
buffering any page that may still be needed in further processing, yet manage
to keep memory consumption constant in nearly all cases including extraction
tasks of millions of records from hundreds of thousands of pages.



0.97

0.98

0.99

1

Precision Recall F-score

0.93

0.94

0.95

0.96

UK Real Estate (100) UK Used Car (100) ICQ (98) Tel-8 (436)

(a) opal

unannotated instances (328) total instances (1484)

rnd. aligned corr. prec. rec. prec. rec.

1 226 196 86.7% 59.2% 84.7% 81.6%
2 261 248 95.0% 74.9% 93.2% 91.0%
3 271 265 97.8% 80.6% 95.1% 93.8%
4 271 265 97.8% 80.6% 95.1% 93.8%

Table 1: Total learned instances

rnd. unannot. recog. corr. prec. rec. terms

1 331 225 196 86.7% 59.2% 262
2 118 34 32 94.1% 27.1% 29
3 79 16 16 100.0% 20.3% 4
4 63 0 0 100.0% 0% 0

Table 2: Incrementally recognized instances and learned terms

As an example, consider the webpage of Figure 3 taken from
rightmove.co.uk. The page shows properties in a radius of 15
miles around Oxford. AMBER uses the content of the seed gazetteer
to identify the position of the known terms such as locations. In par-
ticular, AMBER identifies three potential new locations, videlicet.
“Oxford”, “Witney” and “Wallingford” with confidence of 0.70,
0.62, and 0.61 respectively. Since the acceptance threshold for new
items is 50%, all the three locations are added to the gazetteer.

We repeat the process for several websites and show how AMBER
identifies new locations with increasing confidence as the number
of analyzed websites grows. We then leave AMBER to run over
250 result pages from 150 sites of the UK real estate domain, in a
configuration for fully automated learning, i.e., g = l = u = 50%,
and we visualize the results on sample pages.

Starting with the sparse gazetteer (i.e., 25% of the full gazetteer),
AMBER performs four learning iterations, before it saturates, as it
does not learn any new terms. Table 1 shows the outcome of each of
the four rounds. Using the incomplete gazetteer, we initially fail to
annotate 328 out of 1484 attribute instances. In the first round, the
gazetteer learning step identifies 226 unannotated instances. 197
of those instances are correctly identified, which yields a precision
and recall of 87.2% and 60.1% of the unannotated instances, 84.3%
and 81.3% of all instances. The increase in precision is stable in
all the learning rounds so that, at the end of the fourth iteration,
AMBER achieves a precision of 97.8% and a recall of 80.6% of the
unannotated instances, and an overall precision and recall of 95.1%
and 93.8%, respectively.

Table 2 shows the incremental improvements made in each
round. For each round, we report the number of unannotated in-
stances, the number of instances recognized through attribute align-
ment, and the number of correctly identified instances. For each
round we also show the corresponding precision and recall met-
rics, as well as the number of new terms added to the gazetteer.
Note that the number of learned terms is larger than the number of
instances in round 1, as splitting them yields multiple terms. Con-
versely, in rounds 2 to 4, the number of terms is smaller than the
number of instances, due to terms occurring in multiple instances
simultaneously or already blacklisted.

We also show the behavior of AMBER with different settings for
the threshold g. In particular, increasing the value of g (i.e., the
support for the discovered attributes) leads to higher precision of
the learned terms at the cost of lower recall. The learning algorithm
also converges faster for higher values of g.

Figure 4 illustrates our evaluation of AMBER on the real-estate
domain. We evaluate AMBER on 150 UK real-estate web sites, ran-
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Figure 4: AMBER Evaluation on Real-Estate Domain

domly selected among 2810 web sites named in the yellow pages.
For each site, we submit its main form with a fixed sequence of
fillings to obtain one, or if possible, two result pages with at least
two result records and compare AMBER’s results with a manually
annotated gold standard. Using a full gazetteer, AMBER extracts
data area, records, price, detailed page link, location, legal status,
postcode and bedroom number with more than 98% precision and
recall. For less regular attributes such as property type, reception
number and bathroom number, precision remains at 98%, but re-
call drops to 94%. The result of our evaluation proves that AMBER
is able to generate human-quality examples for any web site in a
given domain.

(b) amber
Fig. 4: diadem results
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