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Abstract. Web extraction is the task of turning unstructured HTML
into structured data. Previous approaches rely exclusively on detecting
repeated structures in result pages. These approaches trade intensive
user interaction for precision.
In this paper, we introduce the Amber (“Adaptable Model-based Extrac-
tion of Result Pages”) system that replaces the human interaction with
a domain ontology applicable to all sites of a domain. It models domain
knowledge about (1) records and attributes of the domain, (2) low-level
(textual) representations of these concepts, and (3) constraints linking
representations to records and attributes. Parametrized with these con-
straints, otherwise domain-independent heuristics exploit the repeated
structure of result pages to derive attributes and records. Amber is im-
plemented in logical rules to allow an explicit formulation of the heuristics
and easy adaptation to different domains.
We apply Amber to the UK real estate domain where we achieve near
perfect accuracy on a representative sample of 50 agency websites.

1 Introduction

While two decades ago electronic information was often unavailable, today, we
more frequently face the challenge to find the relevant information among the
vast amount of published data. If you were looking for an apartment in Oxford,
neither Google nor the major real-estate aggregators can provide you with a
full picture of the market. Even after manually searching through dozens of
real-estate web sites, you never loose the feeling that there still might be a
property even better suited to your needs. Fully automating web data extraction
for individual domains enables a wide range of applications such as object search,
trend analysis, or integration with data from other domains.

As an integral part of automating web data extraction, we have to extract
data records from pages with search results. All approaches addressing this
problem exploit a fundamental property: Records are (visually and structurally)
represented similarly, often based on a template. If we have multiple examples
of records, we can use this property to identify repeating structures and thus
likely record boundaries. The literature of this field includes semi-automated
approaches (that need training for each template, and thus each site) as well
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Fig. 1. Amber Overview

as domain-independent techniques, as surveyed in [2, 6]. Template-dependent,
semi-automated approaches are limited to extraction from a small number of
web sites. Template and domain-independent methods, on the other hand, are
considerably less accurate and perform well mostly in domains with simple en-
tities with few attributes (e.g., news articles with title and body). However,
for domains with multiple types of entities with many attributes (such as real
estate), their accuracy is too low.

For overcoming the template dependence of the first class of approaches, while
maintaining their accuracy, we introduce a third class: template-independent,
but domain-aware. Given an ontology of domain entities and a thin layer of
knowledge about their appearance on web sites, our approach, named Amber
(Adaptable Model-based Extraction of Result Pages), can identify and extract
all records of most sites in the given domain. The system is driven by a set of
domain-independent rules that use the structure of the HTML page and domain-
dependent annotations (such as UK town names) to automatically derive and
verify a model of the attributes and records. For the real estate market in the
UK we are able to extract records with accuracy above 99%.

Amber analyses a web page in three phases, as shown in Figure 1. Each
phase produces a (purely logical) model of the result page, increasingly enriched
by semantic annotations about type and structure of the identified attributes
and records. In the (1) phase, the page model is obtained from a live browser.
It represents all information in the browser’s DOM, the visual rendering, and
both domain-dependent and domain-independent textual annotations (such as
UK locations or currency values). In the (2) phase, the page model is used to
derive the attribute model, which contains potential record attributes and their
basic type (location, price, etc.). In the (3) phase, the page and attribute model
are used to segment the data areas into records exploiting domain specific con-
straints for records (e.g., mandatory fields) and domain-independent heuristics
recognizing repeated structures.

For the extraction of browser facts and the textual annotations we rely on
existing APIs and NLP tools (specifically, GATE). All other mappings, phase
(2) and (3), and models are purely logical, implemented using datalog.

Contributions. Amber is designed around a new trade-off between generality,
automation, and accuracy. Domain knowledge is used for extracting records on
arbitrary sites of the considered domain with almost perfect accuracy:
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(1) The integration of domain knowledge allows for simpler heuristics which do
not rely exclusively on repeated structures for finding records, but construct
records from individually identified attributes.

(2) These heuristics are implemented in datalog rules, using DLV as reasoning
engine, and

(3) achieve almost perfect precision and recall (around 99% for record segmen-
tation on a large sample of UK real estate sites).

(4) Moreover, the declarative implementation enables Amber to be quickly
adaptable to further application domains. We demonstrate the applicabil-
ity and accuracy of our approach with our implementation and evaluation
on the UK real estate market.
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Fig. 2. Zoopla, result page

We exemplify our approach with a
real life example, taken from the
Zoopla UK real estate aggregator
(http://www.zoopla.co.uk). A typical re-
sult page from Zoopla is structured
in two columns, the left with actual
results (Figure 2), the right a side-
bar with refinement form and various
links and advertisements. Results are
grouped in two data areas, one con-
taining featured properties, the other
the regular results.

For the UK real estate domain, we
assume that each record (roughly a
property advertisement) contains at
least one of the mandatory attributes
such as price and location. In Zoopla
each record contains the price of the
property (highlighted with dotted lines in Figure 2). Starting from these at-
tributes, Amber immediately restricts its analysis to the left column only, rather
than also considering areas of the page with no relevant attributes. In our and
in most other approaches, the identification of this area is the first phase of the
analysis of a result page.

The salient parts of the DOM tree for the Zoopla data area are represented
in Figure 3. The specification of the mandatory attributes allows us to detect
multiple data areas (D1 to D3) while most other approaches only consider the
largest one (thus skipping featured properties in this case). Mandatory attributes
may yield false positives, however, that must be identified in a later phase. In
the Zoopla case, D1 contains the average price of the properties (M1,1) and the
average price paid for a property (M1,2). These are considered as potential price
attributes since the two prices belong to similar DOM structures. However, the
domain knowledge again comes to rescue since this area misses all of the other
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Fig. 3. Results on Zoopla

typical attributes for a property such as the location of the property and the
number of bedrooms.

The most challenging step of the analysis is the segmentation phase. As a
first step of the segmentation, we identify the candidate data areas, i.e., those
DOM structures that potentially represent sets of data records. Amber locates
all nodes representing mandatory attributes and clusters them by structural
similarity. Because records may slightly differ in structure, e.g., due to optional
information, we consider a tolerance factor when testing for similarity. Clusters
with a low number of nodes are dropped as false-positives. For each cluster we
use the least common ancestor node as the root of that candidate data area.

Figure 3 shows the identified clusters for the Zoopla case: one rooted at D2

for featured properties, one at D3 for standard properties. The clustering pro-
cedure also identifies the area rooted at D1 containing “spurious” prices. These
clusters contain nodes at similar depth, but the pairwise distance between nodes
in different clusters (e.g., M2,i w.r.t. M3,j) differs significantly. The idea is that
each data area contains repeated similar substructures that differ significantly
from other substructures of other data areas.

Data areas must be then segmented into data records by identifying the
elements that act as separators among them, i.e., DOM nodes with no content. To
that end, for every data area, we start by determining the candidate leading node
of each records, i.e., the beginning of a record. For pages of medium complexity
like those on Zoopla, recognizing leading nodes is already sufficient to obtain the
correct record segmentation (see nodes Li,j in Figure 3). However, often web
pages are more complex in structure. In particular, it might be the case that
sibling nodes between those selected as leading are not empty, but rather part
of the records. Finding the record boundaries and grouping nodes of the same
record requires more sophisticated heuristics, see Section 3.

The final phase is the alignment of attributes with the reference structure
of the records provided by the background knowledge. In the Zoopla case, the
nodes of D1 miss the required structure since they do not contain attributes such
as the number of bedrooms and the location of the property.
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1.2 Related Work

For an overview on web data extraction, covering many of the older tools dis-
cussed here, see [2, 6].

There exists a large body of supervised approaches to web data extraction,
e.g. Wien [5], SoftMealy [3], or LiXto [1]. These tools require the user to
annotate example pages from each target site by marking the attributes to be
extracted. In contrast to these approaches, we obtain the necessary annotations
automatically from our domain knowledge.

Among unsupervised tools, we classify the existing methods according to their
domain-dependence: (1) Domain-independent approaches, such as Depta [13],
Viper [9], VIDE [7], or FiVaTech [4], rely on repeated structures in the HTML
encoding or on the visual rendering of the analyzed web pages. In contrast to
our own approach, these tools align record attributes based on their syntactic
position within the discovered records, and derive a labeling—if any—from this
alignment information [12]. While we search for repeated structure as well, we
first label potential record attributes, based on some domain knowledge, and sec-
ond search for a repeated structure to explain the potential attribute occurrences
in terms of records. This allows us to extract records with higher precision, yet
using less complex and easier to adapt heuristics. (2) Less frequent, but more
recent, domain-specific approaches exploit specific properties to detect records
on result pages. For example, the machine learning approach in [11] extracts
story titles and bodies from news pages, using only a single site for training.
However, the features involved for recognizing news titles and bodies are inher-
ently domain-dependent, and the approach does not deal with more fine-grained
story properties, such as author names or publication dates. Hence, most ideas
in [11] cannot be generalised to other domains. In contrast, Amber extracts de-
tailed properties from result pages and is easily adaptable to different domains.
(3) As Amber, some tools are domain-aware, i.e., they are parametrized with
a specific application domain but maintain a domain-independent framework.
During its initial learning phase, ODE [10] constructs a domain ontology auto-
matically while analyzing a number of sites with domain-independent techniques.
The learned ontology is exploited during data area identification and attribute
labeling. However, ODE ignores its ontology during record segmentation—in
contrast to our own approach, which is guided by semantic annotations during
the entire result page analysis.

Closest in spirit to Amber is the approach in [8]. However, it is primarily a
proof of concept with very low accuracy (40%-80% according to their own exper-
iments). Furthermore, their approach used for record segmentation, conditional
random fields, is fairly involved and far harder to adapt to differing observations
than logical rules used in Amber.

All existing unsupervised web extraction tools are implemented imperatively.
Amber is the first fully automated data extraction tool where the entire analysis
is realised with logical rules.
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2 Data Model

We divide our data model into three individual submodels, namely page, at-
tribute, and data area model, as shown in Figure 1. We process any given web
page in three phases, each producing one of these models.

2.1 Page Model

A rule-based web page analysis requires a logical data model for representing
web pages as rendered by a browser engine: Each node has an arbitrary number
of child nodes and a field text for the textual content of the subtree rooted at this
node. Element nodes have additionally an arbitrary number of attribute nodes
and a tag, while attributes have only a name and a value. Moreover, each element
has an arbitrary number of CSS attributes from the live DOM, which have—
similar to attributes—a name and a value. Different relations between nodes
can be queried through relations named after XPath’s axes, such as ancestor,
descendant, and following.

The textual content of a web site is annotated with domain-independent
and domain-specific annotations. These annotations are of several types, e.g.,
textual or visual, and are produced by imperative analysis components. Some of
the annotations are reusable across various domains, e.g., email addresses or city
names, while others are specific to a certain domain, such as the abbreviation
“STC” in the UK real estate domain, meaning “subject to contract”. Currently, we
compute these annotations with GATE, using gazetteers and regular expression
as specifications but any other annotation tool can be adopted for such a task.
Like the basic DOM information, we wrap the output of GATE into logical facts.

Annotations are attached to nodes from the browser page model (in an n : m-
relationship): a node can contain several annotations, e.g., if its textual content
contains a price and a postcode. On the other hand, annotations can spawn
several nodes, e.g. with inline content such as link anchors or emphasized texts.

Thus, the only domain dependent parts of the page model are the categories
(and features) of annotations specific to that domain, e.g., UK locations.

Predicates. We represent nodes and their position in the DOM tree, using a start-
end encoding, yielding the fact html_node(nodeID,start,end,parentStart) to represent
the node nodeID whose start and end tags are the start-th and end-th tags in the
document, respectively, and whose parent node is parentID. The textual content
of these nodes is given by the relation content(nodeID,clobID,start,end) where the
textual contents of the node nodeID is stored in the character large object clobID,
starting and ending at character start and end. The further attributes of more
specific node types are added with corresponding facts, not shown here. For
example, the following two facts describe a link, its parent paragraph, and their
textual contents:

html_node(e_504_p,504,509,503).

2 content(e_504_p,elclob_d1,42045,42579).
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Fig. 4. Attribute Model

html_node(e_505_a,505,508,504).

4 content(e_505_a,elclob_d1,42144,42178).

The relations between nodes such as child and descendant, are straightfor-
wardly computed by rules exploiting the start-end encoding. For example, the
following rule computes the descendant relation:

descendant(N1,N2)⇐ html_node(N1,Start1,End1,_) ∧ html_node(N2,Start2,End2,_)

2 ∧ Start1< Start2 ∧ End2< End1.

For representing annotations, we use the following predicates:
– annotation(annotationID,typeID): the annotation annotationID is of type typeID.
– referredNode(annotationID,nodeID): annotationID occurs in the text of node nodeID.
– annotationFeature(annotationID,featureType,featureValue) associates further features

and their value with the annotation annotationID.
For example, a text fragment GBP 70,000 is annotated as follows:

annotation(ann1,price).

2 referredNode(ann1,t_1).

annotationFeature(ann1,value,70000).

4 annotationFeature(ann1,currency,GBP).

The first fact defines the annotation with id ann1 of type price, and the second
fact relates the annotation to the text node t_1. The final two facts state the
price value and currency, i.e., 70.000 British pound sterling (GBP).

2.2 Attribute Model

Based on the page model, we derive the attribute model which describes potential
record attributes, as shown in Figure 4. As annotations, attributes are associated
with nodes from the page model. For each annotation type, one or more attribute
constraints specify whether instances of that attribute should be created. The
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constraints are conditioned on the presence or absence of certain annotations:
To satisfy all criteria of a constraint, we require that there exists a single node,
which (1) is referred to by all required annotations, and (2) is not referred to by
disallowed annotations. Each attribute constraints can be easily seen as a first-
order formula and therefore checking it can be reduced to answering a boolean
query over the predicates of the attribute model.

The attribute model is represented by
– attribute(attributeID,typeID): the attribute attributeID belongs to type typeID.
– referredNode(attributeID,nodeID): nodeID is a node satisfying the attribute con-

straint for the attribute type of attributeID.
– attributeConstraint(constraintID,typeID): the constraint constraintID triggers the

creation of an attribute of type typeID.
– requiredAnnotation(constraintID,typeID): an annotation of type typeID must be present

to satisfy the constraint constraintID.
– disallowedAnnotation(constraintID,typeID): an annotation of type typeID prevents

the satisfaction of constraintID.
The attribute model provides abstract and domain-independent entities that

are then “instantiated” by concrete and domain-independent entities. This sep-
aration of concerns enables an easy adaptation of the domain-dependent part of
the attribute model to different domains.

2.3 Data Area Model

In the data area model, we describe data areas, records and their attributes.
Each page, represented with the predicate page(pageID), is associated with data
areas through the predicate dataArea(areaID,pageID). A data area may contain sev-
eral components such as result records and separators, specified by the predicates
record(recordID,areaID) and separator(separatorID,areaID), respectively. All these enti-
ties are associated with nodes from the page model, i.e., the model contains
predicates such as referredNode(recordID,nodeID), if the node nodeID is the root of
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recordID. recordAttribute(attributeID,recordID) associates records with attributes. In
analogy to the attribute model, record creation is based on the satisfaction of
record constraints which are controlled by criteria such as required and excluded
attributes. We omit the predicates as symmetric to the attribute model case.

3 Rules

Logical rules play a key role in Amber, enabling a declarative specification of
the analysis steps that makes the entire process transparent and traceable.

We start from the attribute relation of the attribute model introduced in
Section 2, that represents the mapping between the attributes of a record in a
Web page (e.g., price or a location) and the corresponding DOM node in the
page model. The output of the analysis is an instance of the data area model
representing the optimal record segmentation of the data areas.

The proposed technique proceeds in three phases. In the (1) identification
phase, we locate the candidate data areas in the web page and we hand them over
to the (2) understanding phase, which produces a record-oriented segmentation
of each data area, maximising record similarity. The (3) record disambiguation
and alignment phase ensures that the structure of a record is mapped to a
unique DOM structure and that the record’s attributes are coherent with the
record constraints (e.g., apartments must have at least one room).

3.1 Identification phase

During this phase we identify the data areas on a Web page. The analysis starts
by identifying DOM nodes corresponding tomandatory attributes (hencemanda-
tory nodes); each mandatory node is a clue for the presence of a record and, in
the majority of the cases, appears as a leaf of the DOM tree. The notion of
mandatory attributes is part of the background domain knowledge and is de-
rived from the required annotations of record constraints (that are also used in
the final verification phase below).

The next step is the clustering of the mandatory nodes. Each cluster repre-
sents a potential data area and must enjoy the following three properties:

(1) Continuity, i.e., given any two nodes in a cluster, there is no mandatory
node between those two nodes in document order that is not in the cluster.
Continuity of two mandatory nodes can be easily encoded using the following
rule that produces all the non continuous pairs (N1, N2) of mandatory nodes in
the DOM by establishing the presence of a third node N3 that falls between N1

and N2 in document order.

interleaved(N1,N2)⇐ mandatory(N1) ∧ mandatory(N2) ∧ mandatory(N3)

2 ∧ htmlElement(N1,P1,_,_,_,_) ∧ htmlElement(N2,P2,_,_,_,_)

∧ htmlElement(N3,P3,_,_,_,_) ∧ P1< P3 ∧ P3< P2.

(2) Similar depth, i.e., all the nodes have depth d±δ where d is the distance
from the DOM root node and δ is the tolerance (currently 1). This property is
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captured by the following rules, where the first two compute the depth of each
mandatory node in the DOM, and the third constructs the pairs of nodes at
similar depth by testing that the difference in depth is less than δ.

nodeDepth(N,1) ⇐ htmlElement(N,_,_,root,_,_).

2 nodeDepth(N,D) ⇐ +(1,PD,D) ∧ nodeDepth(P,PD) ∧ htmlElement(N,_,_,P,_,_).

simDepth(N1,N2)⇐ nodeDepth(N1,D1) ∧ nodeDepth(N2,D2) ∧−(D1,D2,DIFF) ∧ DIFF ≤ δ
4 ∧ N1 6= N2 ∧ mandatory(N1) ∧ mandatory(N2).

(3) Similar distance, i.e., the tree distance between any two nodes in the
cluster is k ± ε, where ε is the tolerance (currently 1). This property is also
easily encoded as rules as shown below. The first rule computes the tree distance
between two nodes where the predicate lca represents the least commons ancestor
of two nodes N1 and N2. The second rule computes the incompatible pairs of
nodes: if N1 and N2 belong to the cluster C, then N3 and N4 cannot belong
to C, if the pairwise tree distance between N1 and N2 and between N3 and N4

differs by more than ε.

treeDistance(N1,N2,D)⇐ lca(LCA,N1,N2) ∧ nodeDepth(LCA,LD) ∧ nodeDepth(N1,D1)

2 ∧ nodeDepth(N2,D2) ∧−(D1,LD,DIFF1) ∧−(D2,LD,DIFF2)
∧+(DIFF1,DIFF2,D) ∧ mandatory(N1) ∧ mandatory(N2).

4 bad_quad(N1,N2,N3,N4)⇐ treeDistance(N1,N2,D12) ∧ treeDistance(N3,N4,D34)

∧−(D12,D34,DIFF) ∧ DIFF > ε ∧ N1 6= N2 ∧ N3 6= N4

6 ∧ mandatory(N1) ∧ mandatory(N2) ∧ ...

The identification of the candidate data areas is based on the clusters gen-
erated at the previous step. The analysis proceeds differently depending on the
number of elements inside each cluster. If only one mandatory node appears on
the page, we consider the one cluster containing it as a candidate data area. How-
ever, when more than one mandatory node is identified on the page, we consider
only clusters containing at least two mandatory nodes. The above strategies have
been derived from the empirical analysis of the structure of real web-pages.

3.2 Understanding phase

The goal of the understanding phase is to produce the best record segmentation
for each data area. The segmentation assumes that the records are modeled with
repeated structures possibly interleaved by separators.

We first locate the root node of each data area, the least common ancestor
among the mandatory nodes in the cluster. Then, determine the nodes repre-
senting the main part of each record (called leading nodes). We say that a DOM
node is a candidate leading node if it is an ancestor of a mandatory node (in-
cluding the node itself) and it is a child of the data area’s root node. The rules
are encoded as follows.

leading(ROOT,LN)⇐dataArea(_,ROOT) ∧ child(ROOT,LN) ∧ mandatory(N) ∧ ancestorOrSelf(LN,N).

An iterative pruning procedure is then applied to determine whether some
of the candidate leading nodes can be discarded. Indeed, it might be possible
to have false positive mandatory attributes that are not part of the repeated
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structure within the data area. To this end, we compute the sibling-distance
for each pair of adjacent candidate leading nodes as the number of non-leading
sibling nodes between them. Next, the following elimination procedure is applied
until a fix-point is reached: Consider the first (resp. last) two candidate leading
nodes n1 and n2 (resp. nk−1, nk) in the data area. If no other pair of candidate
leading nodes in the data area shares the tags of n1 and n2 (resp. nk−1 and nk)
or their sibling-distance d(n1, n2) differs from d(ni, ni+1) for all i ∈ [2, k − 1],
then discard n1 (resp. nk).

For instance, in the DOM tree of Figure 6—taken from a result-page of
Church Gribben (http://www.churchgribben.co.uk/)—the first candidate leading node
is discarded since the sibling-distance between the first two candidate leading
nodes is 2, and differs from the distance among all the other pairs of candidates
(3). The same principle applies to the last candidate leading node of the data
area, that is at distance 1 from its adjacent candidate leading nodes.

The last step of the understanding phase is the identification of the separators
between the records. We start by computing the length of a record as one plus the
number of sibling nodes between two consecutive leading nodes. If this number
is greater than one, it means that either (1) the content of the record consists
of more than one node, (2) there exists a separator consisting of one or more
nodes, or (3) there is a combination of the previous two cases. In the Church
Gribben case, the data areas do not start with the candidate leading node, as in
data area D2 in the Zoopla case. In Figure 6, the data area starts with the nodes
of type a representing a link to other pages. To address such cases, Amber’s
segmentation heuristic proceeds as follows: (1) merge all the adjacent separators
that appear between two leading nodes into a unique separator. (2) if the length
of the records is still greater than one, we are in the situation where the records
consist of one or more nodes containing data. As a matter of fact, it might be the
case that the leading nodes are not the real starting nodes for the records and,
therefore, we must “shift” our segments in order to find the optimal segmentation
while considering the length of the record as fixed. Each segmentation induces
a set of forests where each element of the set is the forest of DOM subtrees of
the data area corresponding to a record. The optimal segmentation is the one
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with maximum shallow tree similarity between the trees in the different forests.
Shallow tree similarity compares only the tags of the first level in the sub-trees.

Segmentation is also encoded as rules as shown below. The first two rules
generate all segmentations as sequences of consecutive nodes that are children
of the data area. The third and fourth rule prune segmentations that do not
contain mandatory nodes and whose length does not match the record length.

segment(X,X,1)⇐dataArea(_,ROOT) ∧ child(ROOT,X).

2 segment(X,Z,P)⇐segment(X,Y,P) ∧+(Pos,P,1) ∧ recordLen(R) ∧ nextSibling(AREA,Y,Z)

∧ siblingDistance(AREA,X,Z,DIST) ∧ DIST< R.

4 goodSegment(X)⇐segment(X,Y,_) ∧ mandatory(Y) ∧ recordLen(L) ∧ L=#count{V:segment(X,V,_)}.

record(R,M,P) ⇐goodSegment(R) ∧ segment(R,M,P).

Each predicate record(R,M,P) encodes each record with its root R, its members
M , and the member’s position P within R. Among these, we have to identify
the one(s) with maximum shallow tree similarity. To this end, we compute the
pairs of records such that, in some position the spanned nodes have a different
HTML tag (mismatch):

mismatch(R1,R2)⇐ record(R1,X1,P) ∧ record(R2,X2,P) ∧ tag(X1,T1) ∧ tag(X2,T2) ∧ T1 6= T2.

2 similar(R1,R2) ⇐ record(R1,X1,_) ∧ record(R2,X2,_) ∧ R2 > R1 ∧ ¬ mismatch(R1,R2).

Since we now know how many records are produced by each segmentation,
we can select those that show the highest number as final record segmentation.
The effect of the above heuristics in the Church Gribben example is to shift
the record segmentation determined by the candidate leading nodes to the left
(see Figure 6). This maximizes the shallow tree similarities between the induced
forests and, as a result, allows a correct identification of the records.

3.3 Disambiguation and alignment phase

After the understanding phase, it is possible to have inconsistent mappings be-
tween the intended record structure and the DOM tree, e.g., we might miss the
assignment for a mandatory attribute (apartment with no rooms). This is due to
the unavoidable uncertainty introduced by the textual annotations and by the
heuristic analysis rules. In these cases some form of data-reconciliation process
must be applied. We leverage the constraints of the data area model to filter
records that violate these constraints or to reconcile records with minor flaws.

When it is not possible to use background knowledge to disambiguate a
multiple assignment, we adopt a scoring mechanism that takes into account the
position within the record of the node associated to the attribute’s value and
the length (in characters) of the value. In particular we privilege nodes at the
beginning of records (considering the DOM document order) and nodes with
short content. The reason is that meaningful content usually appears in the top
left corner of the records and that short content gives higher confidence that the
entire content is a value for the attribute.
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Site Areas Records Attributes Price Location Site Areas Records Attributes Price Location
1 100 100 100 100 100 26 100 100 100 100 100
2 100 100 99.0 100 100 27 100 100 94.9 100 73.3
3 100 100 100 100 100 28 100 100 100 100 100
4 100 100 97.1 100 100 29 100 100 99.3 100 96.7
5 100 100 100 100 100 30 100 100 99.7 100 100
6 100 100 90.9 100 92.9 31 100 100 100 100 100
7 100 100 97.0 100 100 32 100 100 99.3 100 96.7
8 100 90.9 94.7 90.9 90.9 33 100 100 100 100 100
9 100 100 98.5 100 100 34 100 100 98.7 100 93.3
10 100 100 100 100 100 35 100 100 100 100 100
11 100 100 100 100 100 36 100 100 100 100 100
12 100 100 100 100 100 37 100 100 100 100 100
13 100 100 100 100 100 38 100 100 100 100 100
14 100 100 100 100 100 39 100 100 97.9 100 87.5
15 100 100 100 100 100 40 100 100 100 100 100
16 100 100 99.2 100 98.0 41 100 100 99.2 100 96.5
17 100 100 99.2 100 100 42 100 96.3 93.9 96.3 80.0
18 100 100 98.8 100 100 43 100 100 100 100 100
19 100 100 98.2 100 100 44 100 100 100 100 100
20 100 100 98.1 100 100 45 100 100 99.6 100 98.3
21 100 100 100 100 100 46 100 100 100 100 100
22 100 100 100 100 100 47 100 100 100 100 100
23 100 100 100 100 100 48 100 100 96.6 100 76.0
24 100 100 100 100 100 49 100 100 100 100 100
25 100 100 100 100 100 50 100 100 99.8 100 100

Avg. 100 99.7 99.0 99.7 97.6

Table 1. F1-Scores for 148 pages from 50 websites

4 Evaluation

The current prototype of Amber uses an embedded Mozilla Firefox browser, to
access a live DOM and extract the structural, visual, and textual content of a
web site as logical facts. We use GATE to annotate the content and wrap its
output in logical facts ( Section 2.1). All remaining steps, i.e., the identification,
disambiguation and alignment, are performed by DLV with datalog rules which
are extended with finite domains and non-recursive aggregation.

We evaluate Amber on 50 UK real-estate web sites, randomly selected from
2810 web sites extracted from the yellow pages. For each site, we submit its
main form with a fixed sequence of fillings until we obtain a result page with
records. If the same query produces more than one result page, we take the first
two pages into our sample. The validation set consists of manually-labeled data
areas, records, and attributes on selected result pages.

Table 1 summarizes the results of our evaluation: For each of the 50 sites,
we show the F1-score (harmonic mean of precision and recall) for the extracted
data areas, records, and their attributes. For the two major attributes, price
and location, we also show the individual F1-scores. The averages for all scores
provide a summary of the evaluation at the bottom of the table. The experiment
takes on average about 5 seconds per page (Intel Core2 Q9650 3GHz with 8GB
RAM), including page rendering of the browser.
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The analyzed pages contain 128 data areas, 1477 records, and 7033 attributes.
Amber extracts all data areas correctly and achieves on records perfect accuracy
with nearly perfect F1-score (99.7% on average). For attributes, Amber reaches
on average 99.4% and 98.6% precision and recall, respectively. Amber misses
almost no price attributes and has near perfect accuracy (99.7%). It is, however,
harder to identify locations, whose descriptions are variant. Nevertheless, Amber
still achieves an accuracy of precision 99.2% and recall 96.5% for locations. We
also extract postcodes, detail page links, bedroom numbers, and the legal status
(sold, for sale, etc.). We do not show the results individually, but consider them
in the cumulative numbers for attributes, e.g., for site 4 the legal status is not
always identified, causing a drop in accuracy to 97.1%.

These results are comparable or better than those published for other un-
supervised systems. For example, Viper [9], applied to search engine results,
reaches F1-scores between 98.0% and 98.2% for the extracted records. More re-
cently, the system in [11] extracts a single news story from any suitable page,
reaching an accuracy of 99.6%, but only considers one title and one body per web
page. Compared to manually inserted offerings on a small real estate agency’s
site, search engine results and news stories are particularly well-structured do-
mains. Also the larger number of attributes in the real-estate domain significantly
complicates the task. On more similar domains, e.g., publication records from
sites such as Google scholar, DBLP, or ACM, [8] reports much lower accuracy
than our approach (50− 80%).

We strongly believe that the Amber approach, which already competes and
outperforms existing systems, has the potential to reach 99%−100% accuracy on
a properly configured domain with four further improvements: (1)Amber’s abil-
ity to recognize mandatory attributes depends on the quality of the gazetteers
and annotation rules. Depending on the attribute, our textual annotators al-
ready reach near perfect accuracy—but some of them still fail for specific sites,
e.g., if they offer properties at some out-of-the-way location not covered by ded-
icated gazetteers. (2) More interestingly, Amber does not attempt to identify
attributes which have been missed by the annotators. But this would be possible,
e.g., assuming that the same attribute appears (roughly) at the same position
within the record. (3) Amber is deterministic and in some cases has to choose
between low-confidence alternatives—premature choices that prevent better re-
sults in later stages. We have started to investigate the careful use of probabilistic
reasoning to address this issue. (4) Amber relies solely on the HTML structure.
We plan to integrate heuristics use visual information, e.g., the bounding boxes
of HTML elements, fonts, or colours.

5 Conclusion

Amber’s performance demonstrates the effectiveness of its rule- and knowledge-
based approach in unsupervised web data extraction—with all the advantages of
a declarative implementation. In future work, we plan to improve Amber follow-
ing the ideas (1-4) outlined at the end of the previous section. We are currently
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devising a methodology for the application of Amber to different domains. Am-
ber is quickly adaptable to further application domains. The identification phase
and understanding phase are domain independent. Since the structure of result
pages in different domains are similar, all we need is to find a mandatory field
of the domain, e.g. price. We also plan to use machine learning to identify titles
of records, which is a mandatory field for all records in all domains. The only
domain-dependent components of Amber are the gazetteers built by regular
expressions and the domain-specific entities of the attribute model. These arte-
facts can be seen as parameters for Amber, therefore their modification does
not require any change at algorithmic level.
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