How the Minotaur turned into Ariadne:
Ontologies in Web Data Extraction*

Tim Furche, Georg Gottlob, Xiaonan Guo, Christian Schallhart,
Andrew Sellers and Cheng Wang

Department of Computer Science, University of Oxford, UK
{firstname.lastname}@cs.ox.ac.uk

Abstract. Humans require automated support to profit from the wealth
of data nowadays available on the web. To that end, the linked open
data initiative and others have been asking data providers to publish
structured, semantically annotated data. Small data providers, such as
most UK real-estate agencies, however, are overburdened with this task—
often just starting to move from simple, table- or list-like directories to
web applications with rich interfaces.

We argue that fully automated extraction of structured data can help
resolve this dilemma. Ironically, automated data extraction has seen a
recent revival thanks to ontologies and linked open data to guide data
extraction. First results from the DIADEM project illustrate that high
quality, fully automated data extraction at a web scale is possible, if
we combine domain ontologies with a phenomenology describing the
representation of domain concepts. We briefly summarise the DIADEM
project and discuss a few preliminary results.

1 Introduction

The web has changed how we do business, search for information, or entertain
ourselves to such a degree that saying so has become a platitude. The price for
that success is that every business must maintain a website to stay operational.
For example, even the smallest real estate agency' needs a searchable website
and must spend considerable effort to be both found on Google and integrated
into the major real estate aggregators. Businesses have reluctantly accepted this
cost for doing business as a price for higher visibility—reluctantly, as aggregators
present long list of normalised results from all agencies. Thus, agencies have be-
come dependent on dominant aggregators where it is hard to distinguish oneself
by reputation, service, or novel features rather than price. Google, on the other
hand, is able to pick up on reputation of agencies to some extent, but does very

* The research leading to these results has received funding from the European Re-
search Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no. 246858 (DIADEM).

1 Of which there are over ten thousand in the UK alone, some offering just a handful
of properties, e.g., focused on a single burrow of Oxford.

poorly on property searches. This observation holds nowadays for many product
domains, with price comparison systems becoming dominant.

One of the goals of the semantic web, linked open data and similar initia-
tives is to address this dependency on few, dominant aggregators: Let real estate
agencies publish their data in a structured format such as RDF with an appro-
priate ontology describing the schema of that data. Then, search engines can
be adapted for object search, i.e., finding the property best fitting specific crite-
ria (such as price range and location). In contrast to aggregators, object search
engines should be able to pick up any properly structured data published on
the web, just as search engines pick up any properly published HTML page.
To publish structured data, an agency has to find a suitable business vocabu-
lary (possibly extending it for novel features of its properties) and mark up its
properties according to that schema.

For most agencies, the burden of maintaining and promoting a traditional,
HTML web page already incurres considerable cost, requiring expensive train-
ing and specialised personnel. Publishing high quality structured data using the
most relevant ontologies is a task well beyond the expertise of most agencies:
First, there are still few good standardised domain ontologies. In the real es-
tate domain, previous attempts at standardising the vocabulary (e.g., as XML
schemata for interchange and use in aggregators) have largely failed, partially as
properties are not quite commodities yet. Second, small agencies often manage
their properties in an ad-hoc fashion and have little or no knowledge (or need)
for proper information management. These concerns are reflected in the fact that
the growth of linked open data is certainly driven by adoption in governments,
large nonprofits, and major companies.

The availability of structured data from all these agencies promises a fairer,
more competitive property market—but with considerable sacrifice. We are stuck
in a labyrinth of vocabularies, semantic technologies and standards. Every busi-
ness will be forced to spend considerable resources on publishing proper struc-
tured data, even more than they already do for maintaining their web sites.
What begins as a call for everyone to participate, may further harm the com-
petitiveness of small businesses.

We argue that the very same reason that makes the labyrinth scary—the
ontologies for annotating structured data—can also direct us out of the labyrinth.
What is needed is a “red thread” program that automatically finds a path
for each given website to relevant domain objects. With such a program, we can
analyse the pages that people and businesses are publishing, rather than everyone
annotating their objects (and solving the related problems again and again).
We consider how to turn such pages into structured data along the following
questions:

How are these objects represented in web sites (object phenomenology)?
How do humans find these objects (search phenomenology)?
How to turn that information into a “red thread” program.

= L=

How to extract all the data from relevant pages at scale.

In the DTADEM project we are working on answering these questions based
on a fundamental observation: If we combine domain with phenomenological
(object and search) knowledge in an ontology of a domain’s web objects, we
can automatically derive an extraction program for nearly any web page in the
domain. The resulting program produces high precision data, as we use domain
knowledge to improve recognition and alignment and to verify the extraction
program based on ontological constraints.

DIADEM’s “red thread” program is a large set of analysis rules combined with
low-level annotators providing a logical representation of a webpage’s DOM,
including the visual rendering and of textual annotations (based on GATE).
Section 2 gives a brief overview of the DIADEM system and its components,
including the ontologies and phenomenologies used for web form (Section 3) and
object analysis (Section 4).

We generate an extraction program describing the paths through a web site
(and individual pages) to get to the actual data. These programs are formu-
lated in OXPath (Section 5), a careful extension of XPath for simulating user
interactions with a web site.

More details on DIADEM are available at diadem-project.info.

2 Overview DIADEM Prototype

Figure 1 gives a simplified overview on DIADEM prototype architecture. Every
web page is processed in a single sequential pipeline. First we extract the page
model from a live rendering of the web page. This model represents logically
the DOM, information on the visual rendering, and textual annotations. The
textual annotations are generated partially by domain-specific gazetteers and
rules, but otherwise this part is domain-independent. In the next step, we do
an initial classification of web blocks, such as navigation links, advertisements
etc. to separate general structures from domain-specific structures and to provide
additional clues to object and form analysis. In the third step we use the AMBER
prototype, discussed in Section 4 to identify and classify any objects of the
domain that may occur on the page. This is done before the form analysis in stage
four (using the OPAL prototype from Section 3), as we use the information from
the object analysis together with the block classification to decide if navigation
links on the page may lead to further data. If the form analysis can identify
a form belonging to the target domain, we proceed to fill that form (possibly
multiple times). Finally, we extract and crawl links for further exploration of the
web site.

Once a site is fully explored, all collected models are passed to the OXPath
generator that uses simple heuristics to create a generalised OXPath expression
that to be executed with the OXPath prototype for large scale extraction (see
Section 5).

This analysis only needs to be repeated if the analyzed site has changed
significantly, otherwise the resulting OXPath expression can be used for repeated
extraction from the web site.

>

URL I

v 1.
next links form submissions

Link
Extraction

Extract Block Record Form Model
Page Model Classification Extraction Extraction

>|

s (@)
2 | g \v g =
p | = \'a 2 z
(g [k L c =
12 g o) S =
LRSS
IR T Y e
lg -
5 |2 g
HIRE i
=]
(/
Web Access
(2

Fig. 1. Overview of the DIADEM 0.1 System

3 Ontologies for Form Analysis

Form understanding, as the gate-way process in automated web data extraction,
has been addressed in the context of deep web search [1-4|, web querying [5,
6], and web extraction [7]. These approaches focus on observing commonalities
of general web forms and exploiting the arising patterns in specifically tailored
algorithms and heuristics. However, trying to define a general approach capable
of producing high precision results in all domains is not an easy task. Further-
more, by generalizing the assumptions made about web forms, these approaches
cannot exploit domain-specific patterns.

To overcome these limitations, we designed an ontology-assisted approach,
OPAL (Ountology-based web Pattern Analysis with Logic), for domain-aware
form understanding. OPAL analyzes and manipulates on form elements us-
ing both general assumptions and domain ontological knowledge. The former
adopts several heuristics to provide segmentation and labeling for a form. Form
elements and segments are then annotated, classified, and verified using the do-
main ontology. The link between general form understanding and logical form
representation is referred to as the phenomenology, which describes how onto-
logical concepts appear on the web. We have implemented a prototype system
for UK real-estate domain, and conducted extensive evaluation of the system on
a sampled domain dataset.

OPAL represents information at three successive levels connected by two
mappings. Firstly, the page model represents a rendered DOM of a web page
through an embedded browser, enriched with visual properties, e.g., bounding

ToBuy: © ToRent:

Area: Nailsea / Backwell [e-320 tnput] | 22]
Portishead / Pill 8‘ [e_326_input] [t_328 |
Clevedon Z [e332input] | t_334 |
Yatton / Congresbury o' [c338_imput] [t_340]
Bristol / Weston-super-mare [e_338_input] [t_346 |

Min. beds Select ~

Min. price - [t400] [e_515_select |

Max. price - 591] [e_705_select |

View order: L

—
Find Properties

(a) (b)

Fig. 2. Form on Heritage with its Page Model

boxes of HTML elements. The page model is also expanded with linguistic an-
notations and machine learning based classifications, relying on domain-specific
knowledge. Secondly, the segmentation model describes conceptual relationships
between form elements and associates them with texts that are potential labels.
This is obtained from the page model through the segmentation mapping, which
employs a number of heuristics to build a conceptual segmentation by choosing
proper structural and visual relationships among fields and texts. Thirdly, the
domain model describes the form as a tree of domain-specific elements, such
as price elements. We construct it by joining the domain annotations from the
page model with the segmentation results from the segmentation model. The
joining process, called phenomenological mapping, is guided by the domain on-
tology. To adapt OPAL for another domain, one only needs to configure the
relevant annotations, define domain specific elements, and instantiate rules for
the phenomenological mappings from a set of common templates.

In the following paragraphs, we discuss the OPAL system using http://www.
heritage4homes.co.uk as our running example (see Figure 2).

3.1 Page Model

The page model represents the structural, textual, and visual properties of the
web page as rendered by a browser engine. We represent the DOM tree (including
element, text, comment, and attribute) in structural relations and encode the
tree structure using the start/end encoding, see Figure 2.

Relying on domain-specific knowledge, the page model is expanded with lin-
guistic annotations and machine learning based classifications on texts appearing
on web pages.

3.2 Segmentation Model

Taking the page model, the segmentation mapping labels and groups form ele-
ments, such as fields and texts. This mapping exploits heuristics on structural

IS

M)

~

and visual properties and yields the segmentation model. Groups are derived
from similarities in the HTML design and in the visual appearance of form fields.
A consecutive list of segments makes a group (parent segment) if they satisfy
the similarity conditions and their least common ancestor contains no other seg-
ments. We translate this and other similar conditions into rules as shown below
(where Es refers to a list of segments).

group(Es) <= similarFieldSequence(Es) A leastCommonAnc(A,Es) A

not hasAdditionalField(A,Es).
leastCommonAnc(A,Es) <= commonAnc(A,Es) Anot(child(C,A) /A commonAnc(C,Es)).
partOf(E,A) <= group(Es) Amember(E,Es) A leastCommonAnc(A,Es).

Labeling, e.g. label assignment to form segments, is achieved through three
heuristics, such that hasLabel(E,L,T) is true if segment E is assigned with label
node L which contains text T. The three heuristics are as follows: (1) HTML
label, which extracts HTML labels from web forms. (2) Greatest unique ancestor,
which finds the greatest unique ancestor of a segment and associates all its
text descendants with the segment. (3) Segment alignment, which does label
assignment based on the position of segment and text members. In the last
heuristics, we identify the list of all text groups in the parent segment, partitioned
by each occurring child segment. If an interleaving situation is encountered, we
perform one-to-one assignments between text groups to child segments. We show
a fragment of the results produced by the three heuristics below.

hasLabel(e_320_input,t_322,"Nailsea / Backwell").
hasLabel(e_326_input,t_328,"Portishead / Pill").
hasLabel(e_515_select,t_400,"Min Price").
hasLabel(e_705_select,t_594, "Max Price").
hasLabel(e_319_td,t_316,"Area").

3.3 Domain Model

This model describes conceptual entities on forms as defined in the domain
ontology. The ontology provides a reference description of how such forms occur
in practice on the considered websites. Figure 3 presents three relevant fragments
of our ontology for the UK real estate domain. (A) the top concepts defining
how a real-estate web form is constructed, (B) the price segments, modeling the
structure of a price input/selection facility, and (C) the area/branch segment
describing a search facility based on location information, i.e. a geographic area
(e.g. London). In the ontology, classes (or concepts) are represented as unary
first-order predicates, denoting the type of an object in the form. The “part of”
relation encodes the hierarchical structure of the form segments. Attributes are
represented as binary relations between concepts and DOM nodes. For example,
it may represent the fact that a price field is a minimum/maximum price field
or that an order-by input field is ordering in ascending or descending order.
Furthermore, additional constraints are modeled for attributes (defining domains
for attribute values) and relations (cardinality and compatibility constraints). To

discuss the ontology, we explain (B) as an example. A price segment is composed
by an optional currency element and one or more price elements. The price-Type
attribute is used to denote different price-input facilities occurring in real-estate
web forms, e.g. price range selection, a pair composed by a minimum and a
maximum price, etc. In case of such a range, the price elements must agree on
the value of the purpose attribute (the compatibility constraint). Each price
element consists of a label and a price input field.

From the ontology, we derive a phenomenological mapping to classify the
form elements and derive the domain form model. This mapping is called phe-
nomenological as it connects the abstract concepts of the ontology (e.g. price
element) with observable phenomena on the web pages, e.g., a select box with
a text label. For example, we annotated “Nailsea” as a location in the extended
page model and obtain the result that “Nailsea / Backwell” is associated with
the first radio button in the “Area” segment. Hence we conclude that this radio
button should be classified as an area/branch element. In this fashion, we as-
sociate an area/branch element to the five radio buttons. The second and third
dropdown lists are identified as price elements with minimum and maximum for
price-type value. It is interesting to note that in some cases, the annotations
for form elements can be associated with existing DOM nodes, while in other
cases—when a corresponding HTML element does not exist—the phenomeno-
logical rules generate an artificial bounding box for such elements which is then
annotated using the ontology.

Ezxperiments. We conducted experiments for OPAL up to the segmentation
model on a publicly available dataset (ICQ dataset) to test its domain inde-
pendence and the complete OPAL on a sampled UK real-estate dataset to show
the enhancement of ontology. In the former case, we covered 100 query inter-
faces from 5 domains and achieved 94% F1-score for field labeling and 93% for
correct segmentation. For the latter case, where there are 50 randomly selected
UK real-estate web sites, we achieved over 97% in field labeling and 95% for the
segmentation.

4 Ontologies for Object Recognition and Analysis

We introduce AMBER (“Adaptable Model-based Extraction of Result Pages”) to
identify result page records and extract them as objects. AMBER is param-
eterized with a domain ontology which models knowledge on (i) records and
attributes of the domain, (ii) low-level (textual) representations of these con-
cepts, and (iii) constraints linking representations to records and attributes.
Parametrized with these constraints, domain-independent heuristics exploit the
repeated structure of a result page to derive attributes and records. AMBER is
implemented to allow an explicit formulation of the heuristics and easy adapta-
tion to different domains.

" e) e O (] e |
(4]

61 \ua
11 0. o1 11 fo

oo (e P = Ay e
- @ pricetlement rice tlement

{price Element | | Price element

Fig. 3. The Real-Estate Web-Form Ontology (fragment).

4.1 Background

There have been a number of approaches for extracting records from result pages,
but they were mostly either semi-automated or domain-independent, as sur-
veyed e.g. in [8,9]. In contrast, and as in case of web form analysis, we follow
a domain-aware approach: Based on domain-specific annotations in the result
page, e.g. marking all occurring rent prices, we identify the occurring data ar-
eas, segment the records, and align the attributes of the found records.

Our approach works in four steps: During the (i) retrieval and (ii) annota-
tion stage, the page and annotation model are obtained to represent the DOM of
a live browser and relevant domain-specific markup. (iii) The phenomenolog-
ical mapping constructs an attribute model which summarizes the annotations
into potential record attributes occurring on the analyzed web page. (iv) The
segmentation mapping uses the structural and visual information from the
browser model and the attributes identified in the attribute model to locate data
areas and segment these areas into individual data records. As a result, we obtain
the result page model for the given page.

4.2 Algorithm Description

Due to different representations for the same content on different web sites, au-
tomatic data extraction usually results in a complex and time-consuming task.
Existing approaches mostly try to detect those repeated structural patterns in
the DOM tree that represent data records. This approach has the advantage of
being domain independent because it relies only on the structural similarities be-
tween different records (within the same or among different pages). However, we
can safely say that all past domain-independent attempts describing all possibly
occurring page structures have failed.

In our approach, we combine the detection of repeated structures with back-
ground knowledge of the domain. We provide the analysis process with a seman-
tic description of the data that we expect to find on the web page, plus a set of

<html>

Fig. 4. Results on Zoopla

“constraints” that are known to hold in the domain. Our experiments show that
this combination results in a much more precise analysis and enables a simple
consistency check over the extracted data.

Data Area Identification. A data area in a result page is identified by leveraging
mandatory elements. A mandatory element is a domain concept that appears in
all records of a given data area, e.g., the location in a real-estate website. Since
in this phase the records are yet to be discovered, the mandatory elements are
identified by matching the content of the text nodes with a domain ontology.

Since the matching process is intrinsically imperfect, we allow false-positives
during the identification of mandatory nodes. To reduce the false-positives among
the matched mandatory nodes (MD-nodes) , we group MD-nodes with same (or
similar) depth in the DOM and similar relative position among their siblings. We
then consider only MD-nodes belonging to the largest group and discard other
nodes. The least common ancestor in the DOM tree of all identified MD-nodes
is considered the data area root.

Because it is possible that a result page contains several data areas, we repeat
the data area identification process and choose the largest group as a data area
until the largest group contains only one record (probably noise) or we eliminate
all groups. In Figure 4, D; and D, are data areas.

Record Segmentation. The records within a data area are identified as sub-trees
rooted at children of the data area root. The segmentation process uses record
separators, i.e., sub-trees interleaved with records, typically containing neither
text nor a URL. As a first step, each subtree in the DOM containing a single
MD-node and rooted at a direct child of the data area root is considered a

candidate record. A subsequent step tries to “expand” the candidate record to
adjacent subtrees in the DOM. We therefore consider the siblings of the candidate
record. If they are record separators, we consider each candidate record as a
proper record; otherwise we apply the following steps: (1) Compute the distance
| between two candidate records as the number of siblings between their root
nodes. (2) Consider all possible 2 x (I —1) offsets for record boundaries, compute
the similarity between the identified records, and choose the one with highest
similarity. (3) Whenever several expansions have the same similarity, we choose
the one with the highest structural similarity among records. To break ties, we
pick the one delimited by the largest number of record separators.

Data Alignment. After the segmentation phase, it is possible to have inconsistent
mappings between the intended record structure and the DOM tree. For example,
we might have multiple assignments for functional attributes (e.g., two prices for
the same apartment) or we might miss the assignment for a mandatory attribute
(e.g., apartments with no rooms). This is due to the unavoidable uncertainty
introduced by the textual annotations and by the heuristic analysis rules. In
these cases some form of data-reconciliation process must be applied. Since data
cleaning and reconciliation is out of the scope of this work, we rely on state-
of-the-art techniques for these tasks [10]. In particular, since we already exploit
domain knowledge during the analysis, we will leverage on the constraints of
the result-page model and of the domain ontology to disambiguate multiple
assignments and identify missing attributes.

When it is not possible to use background knowledge to disambiguate a
multiple assignment, we adopt a scoring mechanism that takes into account
the position within the record of the node associated to the attribute’s value
and the length (in characters) of the value. In particular we privilege nodes
at the beginning of the records (considering the DOM document order) and
nodes with synthetic content (i.e., the text-node length). The reason is that
meaningful content usually appears in the top left corner of the records (i.e., the
corresponding nodes will appear early in document order) and they appear in
the form of synthetic text.

4.3 Evaluation

We report on our preliminary statistical analysis of the current state of result
pages in this section. We illustrate the result of an experimental evaluation of
the AMBER approach. AMBER has been evaluated on 50 randomly selected
UK real-estate web sites from 2,810 UK real-estate web sites from yellow page.
In order to evaluate both precision and recall of our technique, after randomly
chosen 50 web sites, we chose one or two result pages from each site (some
sites have only one result page), and annotated them manually. For each result
page, we annotated both the position and content of data area, the position and
content of each record and the position and content of each data attributes.
AMBER reaches 100% on both precision and recall of 126 data areas, and
100% precision and 99.8% recall for 2101 records, 99.4% precision and 99.0%

recall for 6733 data attributes. While this result itself shows the effectiveness
of AMBER, it is worth noting that our program could not perfectly identify all
records on only 2 web sites. Although the extraction of data attributes is based
on a raw, incomplete ontology, we still achieve a very high rate of 99.4% precision
and 99.0% recall for 6733 data attributes.

5 Web Scale Extraction with OXPath

OXPath is the DIADEM formalism for automating web extraction tasks, capable
of scaling to the size of the web. A properly specified OXPath expression out-
puts structured web objects adhering to knowledge encoded in domain-specific
ontologies consistent with a known phenomenology.

Extracting and aggregating web information is not a new challenge. Previous
approaches, in the overwhelming majority, either (1) require service providers
to deliver their data in a structured fashion (e.g. the Semantic Web); or, (2)
“wrap” unstructured information sources to extract and aggregate relevant data.
The first case levies requirements that service providers have little incentive to
adopt, which leaves us with wrapping. Wrapping a website, however, is often
tedious, since many AJAX-enabled web applications reveal the relevant data
only through user interactions. Previous work does not adequately address web
page scripting. Even when scripting is considered, the simulation of user actions
is neither declarative nor succinct, but rather relies on imperative scripts.

5.1 Language

OXPath extends XPath 1.0 with four conceptual extensions: Actions to navigate
the user interface of web applications, exposure to rendered visual information,
extraction markers to specify data to extract, and the Kleene star to facilitate
iteration over a set of pages with an unknown extent.

Actions For simulating user actions such as clicks or mouse-overs, OXPath intro-
duces contextual, as in {click}, and absolute action steps with a trailing slash, as
in {click /3. Since actions may modify or replace the DOM, we assume that they
always return a new DOM. Absolute actions return DOM roots, contextual ac-
tions return the nodes in the new DOM matched by the action-free prefix of the
performed action, which is obtained from the segment starting at the previous
absolute action by dropping all intermediate contextual actions and extraction
markers.

Style Axis and Visible Field Access We introduce two extensions for lightweight
visual navigation: a new axis for accessing CSS DOM node properties and a new
node test for selecting only visible form fields. The style axis navigates the actual
CSS properties as returned by the DOM style object. For example, it is possible
to select nodes based on their (rendered) color or font size.

To ease field navigation, OXPath introduces the node-test field(), which relies
on the style axis to access the computed CSS style to exclude fields that are not
visible, e.g., /descendant: : field() [1] selects the first visible field in document order.

Extraction Marker In OXPath, we introduce a new kind of qualifier, the extrac-
tion marker, to identify nodes as representatives for records as well as to form
attributes for these records. For example,

doc("news.google.com")//div[contains(@class, "story")]:<story>
[.//h2:<title=string(.)>]
[.//span[style::color="#767676"]:<source=string(.)>]

extracts a story element for each current story on Google News, along with its
title and sources (as strings), producing:

<story><title >Tax cuts ...</title>
<source>Washington Post</source>
<source>Wall Street Journal</source> ... </story>

The nesting in the result mirrors the structure of the OXPath expression:
extraction markers in a predicate (title, source) represent attributes to the last
marker outside the predicate (story).

Kleene Star Finally, we add the Kleene star, as in [11]. For example, the following
expression queries Google for “Oxford”; traverses all accessible result pages and
extracts all links.

doc("google.com")/descendant::field()[1]/{"Oxford"}
/following: :field()[1]/{click /}
/(/descendant: :a:<Link=(@href)>[.#="Next"]/{click /})x*

To limit the range of the Kleene star, one can specify upper and lower bounds
on the multiplicity, e.g., (...)*{3,8}.

5.2 Example Expression

The majority of OXPath notation is familiar to XPath users. In the previous
section, we carefully extend XPath to achieve desired automation and extrac-
tion features. Consider now a full expression, shown in Figure 5. In this ex-
ample, we define an OXPath expression that extracts prices of properties from
rightmove.co.uk. We begin in line 1 by retrieving the first HTML page via the
doc(url) function, which OXPath borrows from XQuery. We continue through
line 3 by simulating user action for many different form input fields, spread
over multiple HTML pages. Note here that OXPath allows the use of the CSS
selectors # and ., which allows selection of nodes based on their id and class
attributes, respectively. Line 4 uses the Kleene star to specify extraction from
all possible result pages, which are traversed by clicking on hyperlinks contain-
ing the word “next”. Finally, line 5 identifies all relevant properties and extracts
their corresponding prices. This example could be extended to incapsulate all at-
tributes relevant to each found web object, which in this example are all rentable
properties from this site that satisfy our criteria.

Did you know? You can draw your,

g r|ghtm0ve For Sale ToRent New Homes Find Agents House Prices Overseas

see more properties for sale or to rent in the UK

Find property in | @EZZEED €

e.g. 'York', 'NW3', 'NW3 5TY" or 'Waterloo station’

For sale

More than one place matched 'oxford' in the UK switch

™
Choose your location
or change your location

Oxford, Oxfordshire
Oxfordshire
Oxford Circus Station, London

Added to site:

Anytime !)
_No preference]

|

Retirement properties:

Oxford, Stoke-On-Trent, Staffordshire < O Include Let Agreed properties @)
Oxford Airport, Kidlington, Oxfordshire . . =
Search radius: M Lk I3 3 Find properties
{c\lc
LProRertitile e e e e [V ===
£12,500 pcm
6 bedroom detached house to rent ‘
Norham Road Central North Oxford
r

mature south facing gardens with swimming pool The accommodation is well proportioned
and presented in excellent order with charm and character

More details, 8 photos and floorplan |Save property |Contact agent

A stunning detached house bt n 1880 to a design by FJConnell The property is setin |

£2,500 pw

5 bedroom town house to rent
Banbury Road Oxford

SHORT LET ACCOMMODATION A beautifully presented family house presented in
excellent order throughout, light and spacious with contemporary finishing's

More details and 7 photos |Save property |Contact agent
Marketed by Penny & Sinclair, Oxford - Lettings. Telephone: 0843 313 1892 BT 4p/min

doc("rightmove.co.uk")/descendant::field()[1]/{"0xford"}

2 /following: :input#rent/{click/}//select#minBedrooms/{"2"/}
//select#maxPrice/{"1,750 PCM"/}//input#submit/{click/}

4 /(//alcontains(.,"next")1/{click/})*
//ol#summaries/li:<property>[//p.price:<price=string(.)>1;

[Embedd

Ine

| Web Access HOXPath Eng

Fig. 5. OXPath for Rental Properties in Oxford

Visual
0XPath

XPath Variables for Form Filling |
Y e —
OXPath API{ JAXP XPath AP } Rty

[OXPath Parser & Rewriting J

¥ |

~

PAAT Algorithm |

Basic 0XPath B
Evaluator ’

Page Buffer

v

Node Manager

HtmlUnit 8

Web Access API

{SWTMozila |

Fig. 6. OXPath System Architecture

5.3 System

OXPath uses a three layer architecture as shown in Figure 6:

(1) The Web Access Layer enables programmatic access to a page’s DOM
as rendered by a modern web browser. This is required to evaluate OXPath ex-
pressions which interact with web applications or access computed CSS style
information. The web layer is implemented as a facade which promotes inter-
changeability of the underlying browser engine (Firefox and HTMLUnit).

(2) The Engine Layer evaluates OXPath expressions.Basic OXPath steps,
i.e., subexpressions without actions, extraction markers and Kleene stars, are
directly handled by the browser’s XPath engine.

(3) The Embedding Layer facilitates the integration of OXPath within
other systems and provides a host environment to instantiate OXPath expres-
sions. The host environment provides variable bindings from databases, files, or
even other OXPath expressions for use within OXPath. To facilitate OXPath
integration, we slightly extend the JAXP API to provide an output stream for
extracted data.

Though OXPath can be used in any number of host languages such as Java,
XSLT, or Ruby, we designed a lightweight host language for large-scale data
extraction. It is a Pig Latin[12]-like query language with OXPath subqueries,
grouping, and aggregation. We separate these tasks, as well as the provision of
variable bindings, from the core language to preserve the declarative nature of
OXPath and to guarantee efficient evaluation of the core features.

OXPath is complemented by a visual user interface, a Firefox add-on that
records mouse clicks, keystrokes, and other actions in sequence to construct an
equivalent OXPath expression. It also allows the selection and annotation of
nodes used to construct a generalised extraction expression. We are actively
improving the visual interface and developing a visual debugger for OXPath.

5.4 Further Reading

We have limited the scope of the discussion here to fundamental aspects of
the OXPath formalism. For further details, please see [13]. In particular, this
work introduces the PAAT (page-at-a-time) algorithm that evaluates OXPath
expressions with intelligent page caching without sacrificing the efficiency of
regular XPath. In this way, PAAT guarantees polynomial evaluation time and
memory use independent of the number of visited pages. Further, this work
highlights experimental results of the current prototype. These experimental
results validate our strong theoretical time and memory guarantees. OXPath
performs faster than comparable systems by at least an order of magnitude in
experiments where a constant memory footprint for OXPath can be empirically
observed. No observed competitor managed memory as intelligently as PAAT:
either all target pages were cached (requiring linear memory w.r.t. pages visited)
or a fixed number of pages were cached (requiring pages to be revisited in the
general case). For example applications of OXPath over real-world web data,
please see [14, 15].

References

10.

11.
12.

13.

14.

15.

. Nguyen, H., Nguyen, T., Freire, J.: Learning to Extract From Labels. In: Proc. of

the VLDB Endowment (PVLDB). (2008) 684-694

Su, W., Wang, J., Lochovsky, F.H.: ODE: Ontology-Assisted Data Extraction.
ACM Transactions on Database Systems 34(2) (2009)

Kushmerick, N.: Learning to invoke web forms. In: CoopIS/DOA/ODBASE.
Volume 2888 of Lecture Notes in Computer Science. (2003) 997-1013

Shadbolt, N., Hall, W., Berners-Lee, T.: The Semantic Web Revisited. IEEE
Intelligent Systems 21(3) (2006) 96-101

Wu, W., Doan, A., Yu, C., Meng, W.: Modeling and Extracting Deep-Web Query
Interfaces. In: Advances in Information & Intelligent Systems. (2009) 65-90
Dragut, E.C., Kabisch, T., Yu, C., Leser, U.: A Hierarchical Approach to Model
Web Query Interfaces for Web Source Integration. In: Proc. Int’l. Conf. on Very
Large Data Bases (VLDB). (2009) 325-336

Raghavan, S., Garcia-Molina, H.: Crawling the Hidden Web. In: Proc. Int’l. Conf.
on Very Large Data Bases (VLDB). (2001) 129-138

Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE Trans. Knowl. Data Eng. 18(10) (2006) 1411-1428
Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey
of web data extraction tools. SIGMOD Record 31(2) (2002) 84-93

Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques. Springer-Verlag (2006)

Marx, M.: Conditional xpath. ACM Trans. Database Syst. 30(4) (2005) 929-959
Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. SIGMOD ’08, New York, NY,
USA, ACM (2008) 1099-1110

Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: Oxpath: A lan-
guage for scalable, memory-efficient data extraction from web applications. In:
Proc. of the VLDB Endowment (PVLDB). (2011) To appear

Sellers, A., Furche, T., Gottlob, G., Grasso, G., Schallhart, C.: Taking the ox-
path down the deep web. In: Proceedings of the 14th International Conference on
Extending Database Technology. EDBT/ICDT ’11, New York, NY, USA, ACM
(2011) 542-545

Sellers, A.J., Furche, T., Gottlob, G., Grasso, G., Schallhart, C.: Oxpath: little
language, little memory, great value. In: Proceedings of the 20th international
conference companion on World wide web. WWW ’11, New York, NY, USA, ACM
(2011) 261-264

