
CBMC-GC: An ANSI C Compiler for Secure Two-Party
Computations�

Martin Franz1, Andreas Holzer2, Stefan Katzenbeisser3, Christian Schallhart4, and
Helmut Veith3

1 Deutsche Bank
2 TU Wien

3 TU Darmstadt & CASED
4 Oxford University

Abstract. Secure two-party computation (STC) is a computer security paradigm
where two parties can jointly evaluate a program with sensitive input data, pro-
vided in parts from both parties. By the security guarantees of STC, neither party
can learn any information on the other party’s input while performing the STC
task. For a long time thought to be impractical, until recently, STC has only been
implemented with domain-specific languages or hand-crafted Boolean circuits for
specific computations. Our open-source compiler CBMC-GC is the first ANSI C
compiler for STC. It turns C programs into Boolean circuits that fit the require-
ments of garbled circuits, a generic STC approach based on circuits. Here, the
size of the resulting circuits plays a crucial role since each STC step involves en-
cryption and network transfer and is therefore extremely slow when compared to
computations performed on modern hardware architectures. We report on newly
implemented circuit optimization techniques that substantially reduce the circuit
sizes compared to the original release of CBMC-GC.

Keywords: Secure Computations, Privacy, Compilers, Circuit Optimization

1 Introduction

Imagine Alice and Bob as two millionaires who want to determine the richer one among
them – but without revealing how much they own, neither to the other millionaire nor
to somebody else. This is the “millionaires’ problem”, first described by Yao [17], who
thereby initiated research on secure two party computation (STC). Subsequently it has
been shown that every computable function over two inputs is also computable in the
framework of STC: Two players can evaluate the function on their respective private
inputs so that the result of the computation is available to both, without needing to
share the inputs with each other.

In modern information processing infrastructures, not only data but also code is
becoming more mobile, e.g., in cloud services. Thus, with the increasing amount of
� This work was supported in part by the Austrian National Research Network S11403 and

S11405 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and Technol-
ogy Fund (WWTF) through grant PROSEED, and by CASED.



C Program CBMC-GC Circuit

STC Platform

Party A

Party B

Intermediate
Representation

Loop
Unrolling

AIG
Generation

Circuit
Minimization

Garbled
Circuit

(Network
Transfer)

Intermediate
Representation

Circuit
Minimization

Loop
Unrolling

Fig. 1. STC Tool Chain

sensitive information processed, and facing laws and regulations that are not only hard
to understand but even harder to enforce across national boundaries, the demand for
technical solutions is growing. These solutions, called Privacy Enhancing Technolo-
gies (PETs), assure data secrecy and privacy, even if data is processed on potentially
untrusted platforms. The central cryptographic tool enabling such PETs is Yao’s STC,
allowing two distrusting parties to perform arbitrary computations on sensitive data
without ever exposing their input in the clear. Hence, no information on the other party’s
input is revealed, beyond the information derivable from the commonly computed func-
tion output.

After 30 years of mainly theoretical studies, increased computational power and
advanced cryptographic protocols make it feasible to evaluate reasonably large func-
tions in an STC context [2, 5, 8, 4, 16]. The predominant approach to implement STC
are Garbled Circuits (GCs), as originally proposed by Yao [18], working in two steps:
First, Alice garbles a given circuit and hands this garbled circuit to Bob, together with
a set of keys representing Alice’s input. Using Oblivious Transfer, Bob obtains the set
of keys corresponding to his own input, without obtaining any other key, and such that
Alice does not know which keys Bob took. With these keys, Bob can evaluate the gar-
bled circuit – unable to learn anything on Alice’s input that is not implied by the final
output. We refer to [12] for details.

One main obstacle for practical application of STC was the lack of support for gen-
eral programming languages, as only circuit evaluation [7] or simplified programming
languages [13] were supported. Recently at CCS [6], we presented CBMC-GC, the first
STC compiler for full ANSI C.We argue that practical application of STC should be

1 #include <cbmc-gc.h>

2 void millionaires() {
3 int a, b, result;

4 __CBMC_GC_INPUT_A(1, a);
5 __CBMC_GC_INPUT_B(2, b);

6 result = (a > b)?1:0;

7 __CBMC_GC_OUTPUT(3, result);
8 }

Fig. 2. C code for Yao’s millionaires’ problem.

viewed as a combination of compiler
and security research (cf. Figure 1):
(i) STC compilation, i.e., the STC
compiler translates the source code
into a circuit that is optimized to-
wards its use in STC and (ii) STC
interpretation, i.e., the STC frame-
work evaluates generated circuits in
a way that ensures the STC guaran-
tees. We believe that this separation
of concerns is a crucial step towards
broad practical use of STC.



Figure 1 shows CBMC-GC in the STC tool chain. CBMC-GC translates a C pro-
gram into a circuit which is then deployed to the two STC parties A and B. The STC
framework is essentially an interpreter for the circuit. In our current implementation,
we use the GC construction proposed in [10] with optimizations from [9, 15], allowing
XOR-gates to be evaluated at essentially no cost. After compilation, party A garbles the
circuit including party A’s input and sends the resulting garbled circuit to party B. Due
to the potentially huge size of garbled circuits, party B evaluates the circuit on-the-fly
instead of storing it in memory. We refer to [12] for details and a security proof, only
sketching the STC evaluation.
(1) Garbling. Party A assigns to each circuit wire w two random keys KT

w and KF
w ,

each representing one truth value of w (T = true, F = false). For all binary gates
Gpu, vq � o with input wires u, v and output wire o, party A encrypts each entry
pvalpuq, valpvq, valpoqq of G’s truth table by computing

encrypt
K

valpuq
u

pencrypt
K

valpvq
v

pKvalpoq
o qq,

i.e., Kvalpoq
o gets encrypted using the keys K

valpuq
u and K

valpvq
v . Therein, valpuq is the

evaluation of u, and hence, if G is, say, an or-gate, party A garbles the entry pF, T, T q
by encrypting KT

o with KF
u and KT

v ; finally, A permutes the resulting four encrypted
keys so that the evaluating party does not see which encrypted key corresponds to which
entry of the truth table. If G is an output gate, A encrypts no further key but the plain
truth value from G’s truth table.
(2) Evaluation. The garbled circuit is handed to party B together with the keys corre-
sponding to party A’s input. B obtains the keys corresponding to its own inputs with
Oblivious Transfer, guaranteeing that B only obtains one key per input wire, and guar-
anteeing that A does not know which keys B has chosen. With these keys, B decrypts
inductively the keys for the truth values corresponding to the valuation of the wires in
the circuit under the combined inputs of A and B – and importantly, B can only de-
crypt those. More precisely, for each gate he tries to decrypt all four (permuted) truth
table entries; only one decryption will succeed, giving him the necessary key for the
subsequent gate.

CBMC-GC solves the millionaires’ problem with the source code shown in Fig-
ure 2: The procedure millionaires is a standard C procedure, where only the input
and output variables are specifically marked up, designated as input of party A or B
(Lines 4 and 5) or as output (Line 7). But aside this input/output convention, arbitrary C
computations are allowed to produce the desired result, in this case a simple comparison
(Line 6). This paper presents CBMC-GC v0.9, an improved version of the compiler pre-
sented at CCS [6] which combines various techniques known from logic optimization
to produce substantially smaller circuits.

2 CMBC-GC in a Nutshell

Our compiler CBMC-GC5 is based on the software verification tool CBMC [3]. Since
CBMC is a bounded model checker for ANSI C, it translates any given C program into

5 http://forsyte.at/software/cbmc-gc/



#gates (v0.8) #gates (v0.9)

Benchmark total non-XOR total non-XOR

Hamming distance, 320 bit 19031 6038 4010 924
Hamming distance, 800 bit 47816 15143 10119 2344
Hamming distance, 1600 bit 95791 30318 20356 4738

matrix multiplication, 5x5 797751 221625 401250 148650
matrix multiplication, 8x8 3267585 907776 1636096 600768

2000 arithmetic operations 1531601 405640 938671 319584
3000 arithmetic operations 2298441 608668 1417684 479463

median, merge sort, 21 elements 750471 244720 210727 136154
median, merge sort, 31 elements 1840339 602576 550918 348761

median, bubble sort, 21 elements 346380 112800 67050 40320
median, bubble sort, 31 elements 1066470 349600 147600 89280

XOR gates are evaluated at essentially no cost and therefore non-XOR gates are mentioned explicitly. For details on
the benchmarks see [6].

Table 1. Circuit sizes produced by CBMC-GC v0.8 and v0.9.

a Boolean constraint which represents the program behavior at a bit-precise level up to a
bounded number of steps. In a nutshell, we adapted this capability of CBMC to provide
the circuits needed for STC. The compilation is divided into four steps, where the first
two steps are part of the standard CBMC processing and the second two are specific to
STC tasks. For more details on the first two compilation steps, please see [6].
(1) Intermediate Representation. The C program gets translated into an intermediate
representation—a so-called GOTO program. The only control structures remaining in a
GOTO program are guarded GOTOs.
(2) Loop Unrolling. Loops and recursive function calls are unrolled up to a specific
depth. CBMC-GC tries to compute this depth by a static analysis, but in case of failure,
the depth can be specified by the user. After unrolling, we have a loop-free representa-
tion of the program.
(3) AIG Generation. It remains to translate each program statement into a circuit which
encodes the bit-precise semantics of the computation the statement performs. CBMC-
GC uses and-inverter graphs (AIGs) as an intermediate circuit representation. AIGs
are directed acyclic graphs whose nodes represent logical AND gates. The edges of an
AIG represent wires between gates. Some of these wires can negate the transmitted sig-
nal. Throughout the generation of this intermediate circuit, structural hashing, i.e., the
removal of duplicated gates, and constant propagation are performed to keep the result-
ing circuit small [14]. CBMC-GC incorporates the ABC framework [1] to generate the
intermediate representation.
(4) Circuit Minimization. XOR gates are preferable due to their small computation costs
and therefore the circuit minimization step tries to maximize the number of XOR gates
in the resulting circuit while keeping the overall circuit size small. Here, a repeated



pattern based subcircuit rewriting is performed in combination with structural hashing,
constant propagation, and a simplified version of SAT-sweeping [11].

By compiling the source code with CBMC-GC, we obtain a description of the cir-
cuit performing the computation and a mapping between in- and output identifiers and
the corresponding circuit pins. Table 1 compares the circuit sizes produced by CBMC-
GC v0.8 and CBMC-GC v0.9. The benchmarks were originally used to show the practi-
cality of CBMC-GC v0.8 and are discussed in detail in [6]. We can observe a consider-
able reduction of circuit sizes when using CBMC-GC v0.9 instead of CBMC-GC v0.8.

References

1. Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis
and Verification, Release 30916. http://www.eecs.berkeley.edu/˜alanmi/abc/.

2. P. Bogetoft, I. Damgård, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft. A Practical Imple-
mentation of Secure Auctions Based on Multiparty Integer Computation. In FC’06, 2006.

3. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In TACAS’04.
4. Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-

Preserving Face Recognition. In PETS’09, 2009.
5. B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On secure scalar product computation

for privacy-preserving data mining. In ICISC’04, 2004.
6. A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure Two-Party Computations in

ANSI C. In CCS’12, 2012.
7. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Computation Using

Garbled Circuits. In USENIX’11, 2011.
8. G. Jagannathan and R. N. Wright. Privacy-preserving distributed k-means clustering over

arbitrarily partitioned data. In KDD’05, 2005.
9. V. Kolesnikov, A. Sadeghi, and T. Schneider. Improved Garbled Circuit Building Blocks and

Applications to Auctions and Computing Minima. In CANS’09, 2009.
10. V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and Applica-

tions. In ICALP’08, 2008.
11. A. Kuehlmann. Dynamic transition relation simplification for bounded property checking.

In ICCAD’04, 2004.
12. Y. Lindell and B. Pinkas. A Proof of Security of Yao’s Protocol for Two-Party Computation.

Journal of Cryptology, 22:161–188, 2009.
13. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — A Secure Two-Party Computation

System. In SSYM’04.
14. A. Mishchenko, S. Chatterjee, and R. Brayton. FRAIGs: A Unifying Representation for

Logic Synthesis and Verification. Technical report, 2005.
15. B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure Two-Party Computation Is Prac-

tical. In ASIACRYPT’09, 2009.
16. P. Smaragdis and M. V. S. Shashanka. A framework for secure speech recognition. IEEE

Transactions on Audio, Speech & Language Processing, 15(4):1404–1413, 2007.
17. A. C.-C. Yao. Protocols for Secure Computations (Extended Abstract). In FOCS’82, 1982.
18. A. C.-C. Yao. How to Generate and Exchange Secrets. In FOCS’86, 1986.


