
Visual OXPath: Robust Wrapping by Example∗

Jochen Kranzdorf, Andrew Sellers, Giovanni Grasso, Christian Schallhart, Tim Furche
Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

ABSTRACT
Good examples are hard to find, particularly in wrapper induction:
Picking even one wrong example can spell disaster by yielding
overgeneralized or overspecialized wrappers. Such wrappers ex-
tract data with low precision or recall, unless adjusted by human
experts at significant cost.

Visual OXPath is an open-source, visual wrapper induction sys-
tem that requires minimal examples and eases wrapper refinement:
Often it derives the intended wrapper from a single example through
sophisticated heuristics that determine the best set of similar exam-
ples. To ease wrapper refinement, it offers a list of wrappers ranked
by example similarity and robustness. Visual OXPath offers ex-
tensive visual feedback for this refinement which can be performed
without any knowledge of the underlying wrapper language. Where
further refinement by a human wrapper is needed, Visual OXPath
profits from being based on OXPath, a declarative wrapper lan-
guage that extends XPath with a thin layer of features necessary for
extraction and page navigation.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services

General Terms
Languages, Algorithms

Keywords
Web extraction, Web automation, XPath, AJAX

1. INTRODUCTION
The web has enabled choice on a scale never seen before: We

are no longer limited to the products available in local stores, but
can choose from products and offers from shops all over the world.
However, the “paradox of choice” is that this has actually made it

∗The research leading to these results has received funding from the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant agree-
ment DIADEM, no. 246858.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

harder for us to make a satisfying choice—never knowing if further
searching would have yielded a better offer. A first step towards
addressing this paradox is to provide users with a comprehensive,
detailed view of the available choices that can be automatically pro-
cessed further, e.g., to match with user preferences.

Decision support is just one example, where web pages need to
be turned into actionable data fit for automatic processing. This
data extraction process is driven by examples: Human annotators
provide examples of data to be extracted, which are used to gener-
ate extraction programs (or wrappers). Most existing wrapper in-
duction systems, however, face two severe limitations: They need
many examples for accurate data extraction and couple wrapper in-
duction and wrapper language tightly. The former significantly in-
creases human effort and the likelihood for errors in the examples.
The latter has hampered progress in data extraction, as wrapper lan-
guages are created ad hoc as part of wrapper induction systems and
often not amenable to further refinement by a human user.

OXPath [1] is a novel, lightweight wrapper language that aims
to provide a broad base for wrapper induction systems. It extends
XPath with four features necessary for wrappers: navigation be-
tween pages through actions, iteration over many similar pages,
e.g., to navigate paginated results, extraction of multiple related
items, and access to visual features of a website. Though OXPath
has already been adopted for easy manual development of wrap-
pers, there are, so far, no wrapper induction systems for OXPath.

To that end, we present Visual OXPath, a supervised wrapper
induction system for OXPath that generates highly robust wrappers
from few examples. For most wrapper tasks, the user can define a
wrapper in Visual OXPath visually without any knowledge of OX-
Path: Given only a single example, Visual OXPath suggests a list of
wrappers among which the user can choose based on visual feed-
back on what will be extracted. The list is ranked by similarity,
coverage, and robustness of the generated wrapper. (1) Similarity
allows us to extend the single example to all other DOM nodes that
are somewhat similar with the given example. (2) Coverage biases
towards wrappers that extract more examples. (3) Robustness pro-
motes wrappers that we judge likely to be robust to minor changes
in the layout or structure of the web page. In a user study, we show
that Visual OXPath suggests the most desirable wrapper in over
90% of the cases. In nearly all remaining cases, the most desirable
wrapper is contained in the list of suggested wrappers, but not top
ranked. We also show that over an evaluation period of 6 months
high robustness ranking clearly correlates with wrapper robustness.

In this demonstration in particular, we demonstrate Visual OX-
Path on a set of prepared examples as well as pages chosen by the
audience. We guide the user through the definition of a wrapper
for extraction flights from Skyscanner, as well as publication on
Google Scholar that cite one of her papers, see Section 5 for details.

We demonstrate, how Visual OXPath gives the user full freedom in
which order to provide examples: For example, to extract a prop-
erty with its price and location, we could start with one location and
price, from which Visual OXPath automatically derives similar lo-
cations and prices on the page, as well as which locations and prices
are part of the same property. We also show, how to deal with the
few cases, where Visual OXPath does not find the desired wrapper,
but offers the option to edit the generated expressions. Such edits
are almost always in purely XPath parts of an expression, as there
is little room for error in the OXPath specific parts.

2. OXPATH IN A NUTSHELL
OXPath is a superset of XPath, which is extended for declarative

specification of interactions with web applications for data extrac-
tion. To this end, OXPath introduces (1) the action location step
for simulating user interaction such as mouse events, form filling;
(2) the style axis for selecting nodes and fields based on actual vi-
sual attributes as rendered by the browser; (3) the extraction marker
predicate, for marking data to be extracted, and (4) the Kleene star
operator, for iterating expressions.

Actions such as clicks or mouse-overs can be explicitly exe-
cuted in OXPath on a set of DOM nodes. To enter “OXPath” into
Google Scholar’s search form and click the search button:

doc("scholar.google.com")/descendant::field()[1]/{"OXPath"}
2 /following::field()[1]/{click/}

OXPath allows two types of action steps, namely contextual actions
steps, such as {click} or {OXPath}, and absolute actions steps with
a trailing slash, as in {click /}. An absolute action step returns
the DOM root of the page after action execution, while contextual
actions continue from the same context as the action, if possible.

The Style Axis allows selecting elements based on either CSS
properties, e.g., only the visible fields (denoted as field()). The
style axis uses the computed CSS properties and can not be ex-
pressed in XPath. To select all paper links on Google Scholar:

//a[style::color="blue"][style::font-size="16px"]

Extraction markers are used in OXPath to allow the extrac-
tion of many related data items and of nested data items. In con-
trast, XPath returns a single node set. To extract from Google
Scholar each paper with its title and authors:

..//div[@class=’gs_r’]:<publication>[.//h3:<title=string(.)>]
2 [.//span[@class=’gs_a’]:<authors=string(.)>]

OXPath supports many output formats, as XML this produces:

<publication><title>OXPath: A Language for ...</title>
2 <authors>Tim Furche, ...</authors> ... </publication>

Kleene stars are borrowed from Regular XPath [2] to repeat an
expression. By including an action that triggers a page change into
the expression, OXPath can navigate over an unbounded number of
pages. To traverse all result pages on Google scholar and extract
the publication titles:

.../(//a[contains(string(.),’Next’)]/{click/})*//h3:<title>

O
XP
at
h

G
en

er
at

io
n

Web Access API

Similarity Ranking

User
Interface

OXPath
Execution

Visualization

Robustness Ranking

Interaction Recording

Figure 1: Architecture

1

2

3

4

5

6

Figure 2: Visual OXPath UI

3. VISUAL OXPATH
Visual OXPath combines frameworks for similarity, robustness

and visualization with browser interaction recording and OXPath
expression generation. Figure 1 shows the architecture of Visual
OXPath. The front-end is based on the Eclipse Rich Client Plat-
form framework and is shown in Figure 2. It is build around a life
browser (1) where the user can interact with web pages (recorded
by the system) and pick examples of data to be extracted. The
browser is surrounded by views for
(2) automatically recorded actions that can be refined or grouped

into Kleene stars for repetition at any time. Here we also dis-
play extraction markers, subtly distinguished through different
icons, to avoid confronting the user with two dependent lists.

(3) the generated OXPath expression (updated live).
(4) the DOM structure of the page for finding and highlighting spe-

cific elements, useful when manually refining expressions.
(5) the list of currently highlighted elements.
(6) the list of records that will be extracted from this page.

The user interface interacts with the three other primary compo-
nents, the web access API for controlling the embedded browser;
the OXPath execution engine; and the OXPath generation frame-
work. In the OXPath generation framework we generate OXPath
wrappers from user provided examples. To identify, e.g., the list of
prices on a result page from a single example, Visual OXPath needs
to find a set of possible XPath expressions that describe a suitable
list of DOM nodes containing the example. “Suitable” is defined by
the similarity and robustness ranking: In the similarity phase, we
adapt tree pattern generalization techniques (see, e.g., [3]). These
involve manipulating or removing predicates, deleting node tests,
relaxing the child axis or the deletion of entire steps. All heuristics
try to optimize similarity while also maximizing coverage. This
ranking is refined by the robustness ranking where we identify al-
ternative, but more robust means to address the same nodes. Visual
OXPath prefers, e.g., nodes identifiable only through a unique at-
tribute over those using lengthy location paths with positional se-

93%!

94%!

95%!

96%!

97%!

98%!

99%!

100%!

ka
ya

k!
bb

c!

ran
do

m r.e
.!

am
az

on
!

ran
do

m u.
c.!

ree
d!

av
era

ge
!

A
cc

ur
ac

y
refinement! automatic!

Figure 3: User Study on Expression Similarity

lection. Robustness is defined recursively, i.e., we also prefer nodes
that are in a simple relative position to a robust anchor node [4].

4. USER STUDY
To demonstrate the effectiveness of the similarity and robustness

heuristics, we have conducted a user with a group of 9 novice and
experience users, each extracting 4 fields, from a list of six website,
four of them fixed and two randomly chosen by each user in the real
estate and used car domains. As shown in Figure 3, the similarity
ranking captures user intent correctly in most cases: Of all 216
OXPath expressions suggested by Visual OXPath, 91% of the cases
yield perfect accuracy. Overall, we obtain 97.4% average accuracy
(depicted to the last bar on the right side) with a minimum of 94%,
where accuracy is the F1-score on the extracted vs. desired data
items. For the remaining 9%, users needed to refine the expression,
but mostly by selecting another generated OXPath expression. This
increases the average accuracy to 99.7% and the overall minimum
to 99.3%. There is no significant difference in expression quality
between novice and experienced users. All users reported that the
tool is easy or very easy to use. Even users without prior exposure
to OXPath can create a wrapper in less than 3 minutes on average.

Robustness is automatically evaluated over a 6 month time-frame:
Figure 3 shows the accuracy drop over time. The canonical XPath
(in red), i.e., a unique path of child steps with position, fails quickly.
The wrapper ranked best by Visual OXPath (in green), however, re-
mains at 100% for nearly the entire period and drops only slightly
at the end. None of the lower ranked expressions performs as well,
their average shown in the blue line.

5. DEMO DESCRIPTION
In the demonstration we focus on highlighting the main con-

tributions of Visual OXPath: (1) wrapper induction from a sin-
gle example through similarity; (2) ease of use of Visual OXPath

0%!

20%!

40%!

60%!

80%!

100%!

1! 3! 5! 7! 9! 11! 13! 15! 17! 19! 21! 23! 25!

A
cc
ur
ac
y!

Week!

Average
Canonical
Visual OXPath

Figure 4: User Study on Expression Robustness

Figure 5: Skyscanner Result Page

through extensive visual feedback and ranked wrapper suggestions;
(3) freedom in which order to provide examples for multiple enti-
ties; (4) ability to deal with complex scripted pages. We also dis-
cuss the robustness of the generated wrappers and how they can be
evaluated using OXPath in a cloud environment.

A typical use of Visual OXPath comprises the navigation to a
webpage, usually by filling form fields with values, and the ex-
traction of data from one or multiple result pages. Users simply
navigate through the web and mark the data they want to extract
directly on the page. The tool records the user interaction with all
visited pages and generates an OXPath expression. Elements se-
lected by this expression are highlighted on the webpage, which
allows users to verify if the tool interpreted their intent correctly. If
undesired elements are selected, users are visually guided to refine
the expression.

Specifically, we demonstrate Visual OXPath along a set of pre-
pared examples as well as with suggestions from the audience. To
give an impression of the demonstration assume you want to fly
from London to Lyon. What would be the best flight to take? Flight
price are quickly fluctuating, even on daily basis, so that you might
want to constantly monitoring your preferred travel web sites, to
catch the best offer. Here, we focus on Skyscanner(skyscanner.
com) as one of these sites.

Figure 2 depicts the homepage with the search criteria as entered
by the user loaded into Visual OXPath. Visual OXPath automati-
cally generates the following expression from the user interaction:

doc("skyscanner.com")//input[@name=’from’]/{"london"/}
2 //input[@name=’to’]/{"lyon"/}

//input[@name=’depdatetext’]/{"15/04/2012"/}
4 //input[@name=’retdatetext’]/{"22/04/2012"/}

//button#sc_search/{click/}

On result pages such as the one shown in Figure 5, users spec-
ify which elements should be extracted. In contrast to other web
data extraction tools [5, 6], this happens on the rendered webpage
itself rather than in the HTML parse tree or source code. Moving
the mouse over the webpage highlights the currently hovered ele-
ment with a grey overlay. To extract a list of results, users hover
the mouse over any result and select “Extract Item” in the context
menu. Figure 6 shows this step for extracting the price. It also
shows on the right hand the extracted data for a partial wrapper,
highlighting matched elements on the web page in the same color.

When the user selects “Extract Item” Visual OXPath finds simi-
lar nodes on the page and a list of suitable OXPath expression to the
user, ranked by similarity, coverage, and robustness. For the given

Figure 6: Selecting Data for Extraction

example, the user only needs to indicate just one example for each
flight attribute. The order in which those attributes are chosen is up
to the user and it is not necessary to first (or at all) define the bound-
aries as a single flight, as Visual OXPath can identify those from the
repeated structure on the page. In the given example, the div repre-
senting a flight is a suitable common ancestor of the attributes and
thus Visual OXPath generates the following expression:

//div.sorted-px/div:<flight>
2 [.//p.ileg-o/span[2]:<from=string(.)>]

[.//p.ileg-o/span[5]:<to=string(.)>]
4 [.//p.ileg-o/span[1]:<departure=string(.)>]

[.//p.ileg-o/span[4]:<arrival=string(.)>]
6 [.//span.EUR:<price=substring-before(.,’

{\color{darkorange}\euro}’)>]

The extraction markers, such as “price” define the output records.
They are derived from the DOM tree, for instance from the class
of the extracted element. In summary, one simple click per ex-
tracted data item—origin and destination airport, departure and ar-
rival time, and the price—suffices to specify the complete OXPath
expression.

Refinement. For easy refinement, Visual OXPath lists all recorded
actions, as depicted in the left hand-side on Figure 7. Existing ac-
tions can be moved, deleted, modified and highlighted on the web
page, via a contextual menu. In addition, users can create new ac-
tions, such as a Kleene star, which repeats other actions with a spec-
ified cardinality. For instance, multiple result pages can be crawled
by clicking on the “Next” button and surrounding the recorded ac-
tion with a Kleene star. The expression

/((//button.next)[1]/{click/})*

is automatically generated.
For Skyscanner, we are done after this step, but we will also show

pages such as autotrader.co.uk, where Visual OXPath’s heuris-
tics fail to suggest the best wrapper due to a high level of noise.

In such cases, selecting “Properties” in the context menu opens
the dialog shown in Figure 7 (right hand-side), which allows users
to refine every step of the OXPath expression. This includes the
extraction marker and function. By default, the function string(.)

extracts the text content of the subtree below the addressed node.
Other options in the dropdown menu include the HTML code, any
attribute of the node, such as src for img elements, or a user defined
OXPath function. Furthermore, the Visual OXPath recognizes sub-
strings common to the whole result set and suggests to adjust the
extraction function. In the given example, all prices end with the e
character, so that the tool suggests a substring-before function.

The last field in the dialog contains the OXPath to address the
node in the DOM tree. Multiple OXPath expressions are gener-
ated, scored according to their resilience to future page changes,
and ranked with the most robust expression pre-selected.

Figure 7: List of Recorded Actions and Extractions

For the given example, the expression //span[@class=’px EUR’]

is considered more robust than //div[@class=’quote mainquote’]/span[2]

because it addresses the node directly through an attribute instead
of using its parent as anchor.

Users can select another expression in the list that appears to
be more suitable. They can also adapt the generated OXPath or
define their own expression manually. For assistance, the syntactic
correctness of the expression and the number of nodes it selects is
updated during typing. In addition, Visual OXPath highlights the
selected items on the webpage and displays the extracted content
each time the user selects or adjusts an expression.

For advanced users, the tool offers DOM tree navigation and ma-
nipulation. The context menu of the embedded browser allows any
clicked element to be shown in the DOM tree. Any attribute value
can be edited and the page rendering is updated instantly. Fur-
thermore, arbitrary OXPath expressions can be evaluated and high-
lighted on the webpage. This helps users to understand the web-
page intricacies and assess the applicability of manually created
OXPaths expressions.

Finally, the OXPath expression can be replayed with the ex-
tracted data being highlighted on the webpage for verification. The
extraction project can be saved to disk for future refinement and
saved as OXPath expression for execution with the standard OX-
Path engine.

A screencast of Visual OXPath is available at diadem-project.
info/oxpath/visual.

6. REFERENCES
[1] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and

A. Sellers, “OXPath: A language for scalable,
memory-efficient data extraction from web applications,”
Proceedings of the VLDB Endowment, 2011.

[2] M. Marx, “Conditional XPath,” ACM Transactions on
Database Systems (TODS), vol. 30, no. 4, pp. 929–959, 2005.

[3] B. Fazzinga, S. Flesca, and A. Tagarelli, “Schema-based web
wrapping,” Knowledge and Information Systems, pp. 1–47,
2011.

[4] M. Abe and M. Hori, “Robust pointing by XPath language:
Authoring support and empirical evaluation,” in IEEE
Symposium on Applications and the Internet, 2003, pp.
156–165.

[5] A. Laender, B. Ribeiro-Neto, A. da Silva, and J. Teixeira, “A
brief survey of web data extraction tools,” ACM SIGMOD
Record, vol. 31, no. 2, pp. 84–93, 2002.

[6] C. Chang, M. Kayed, M. Girgis, and K. Shaalan, “A survey of
web information extraction systems,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1411–1428, 2006.

