
Automatically Learning Gazetteers from the Deep Web∗

Tim Furche, Giovanni Grasso, Giorgio Orsi, Christian Schallhart, Cheng Wang
Oxford University Computer Science Department, Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

ABSTRACT
Wrapper induction faces a dilemma: To reach web scale, it requires
automatically generated examples, but to produce accurate results,
these examples must have the quality of human annotations. We re-
solve this conflict with AMBER, a system for fully automated data
extraction from result pages. In contrast to previous approaches,
AMBER employs domain specific gazetteers to discern basic do-
main attributes on a page, and leverages repeated occurrences of
similar attributes to group related attributes into records rather than
relying on the noisy structure of the DOM. With this approach AM-
BER is able to identify records and their attributes with almost per-
fect accuracy (> 98%) on a large sample of websites. To make such
an approach feasible at scale, AMBER automatically learns domain
gazetteers from a small seed set. In this demonstration, we show
how AMBER uses the repeated structure of records on deep web
result pages to learn such gazetteers. This is only possible with a
highly accurate extraction system. Depending on its parametriza-
tion, this learning process runs either fully automatically or with
human interaction. We show how AMBER bootstraps a gazetteer for
UK locations in 4 iterations: From a small seed sample we achieve
94.4% accuracy in recognizing UK locations in the 4th iteration.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Data and Content
Management—Web-based services

General Terms
Languages, Experimentation

Keywords
gazetteer learning, example generation, vertical search, web data
extraction
∗The research leading to these results has received funding from the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant agree-
ment DIADEM, no. 246858. Giorgio Orsi has been supported by
the Oxford Martin School, Institute for the Future of Computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WWW’12 Apr 16-20, 2012 Lyon, France.
Copyright 2012 ACM XXX ...$10.00.

1. INTRODUCTION
For monitoring all advertisements in the UK real estate market,

we have to wrap 17,000 different web sites, including sophisti-
cated nation wide aggregators with thousands of offers as well as
manually maintained sites of small agencies offering only a hand-
ful of properties. Resorting to established technologies, we face
a dilemma: We either rely on unsupervised but inaccurate extrac-
tion tools, e.g., [1, 6, 8], or we semi-manually induce wrappers
for each of these sites, achieving accuracy through manual annota-
tions, e.g., [4, 2]. The latter choice requires the generation of ex-
ample pages with human-quality annotations for all relevant data,
infeasible for a domain of 17,000 different sites.

To overcome this dilemma between accuracy and scalability, we
introduce AMBER (Adaptable Model-based Extraction of Result
Pages) for extracting data from an entire domain, providing ex-
traction results which are highly accurate while requiring almost
no human intervention. The extracted data is not only a result of
outstanding quality in itself, but it is also suitable to drive a wrapper
inducting system in learning a simple, efficient, yet highly accurate
wrapper. To this end, we exploit the fact that AMBER is applied to
the entire domain and equip it with a thin layer of domain knowl-
edge. AMBER achieves, e.g., >98% F-score for UK real estate at-
tributes.

Most unsupervised data extraction approaches [1, 6, 8] rely ex-
clusively on the detection of repeated structures in the HTML en-
coding or visual rendering of the page. Some current approaches [3,
5, 7] combine repeated structures and semantic annotations but ei-
ther do not integrate the annotation in inferring the repeating record
template [7], or rely on randomly selected subsets of uncleaned an-
notations for wrapper induction [3], or report quite low F1-scores
between 63% and 85% [5].

In contrast, AMBER analyzes the annotated DOM tree and thus
searches for repetitions in the annotated structure. AMBER pro-
ceeds in the following three phases: (1) Page segmentation identi-
fies areas with relevant data and segments them into records based
on the page’s DOM, including the visual layout, augmented with
both domain-dependent and domain-independent textual annota-
tions generated from gazetteers such as UK locations. (2) Attribute
alignment matches the page structure against domain constraints
in order to fix the attributes and to obtain a suitable record model.
(3) Finally, we extend the existing gazetteers, in the gazetteer learn-
ing: AMBER collects the terms occurring in apriori unannotated text
nodes, splits them if necessary, and determines a confidence value
for the suggested terms. Depending on the calculated confidence
and configuration, AMBER adds the found terms to the gazetteers
either automatically or semi-automatically. AMBER also validates
the utility of formerly added terms in identifying new attributes. If
a term never occurs again, AMBER lowers its confidence, optionally

record

...
...

record record
k1 n

t ti j

...
...

t ti j

data area

t
1

t
m

t i

t j

.

.

.

.

.

.

.

.

.

t
1

t
m

t i

t j

.

.

.

.

.

.

.

.

.
t m+1

?

t
1

t
m

t i

t j

.

.

.

.

.

.

.

.

.

tm+1

...
...

t m+1

S

E

G

M

E

N

T

A

T

I

O

N

A

L

I

G

N

M

E

N

T

L

E

A

R

N

I

N

G

G[location]

U { }

G[location]

G[location]

Figure 1: AMBER approach

asking a human operator for a decision.
This demonstration showcases AMBER’s approach for bootstrap-

ping gazetteers and its data extraction capabilities. The gazetteer
learning proceeds through incremental runs of AMBER until no
new terms can be learned, where each iteration involves the three
steps as described above. Thus, in the beginning, annotations serve
merely as a starting point for extrapolation, while over time, they
turn into requirements for recognition. The bootstrapped gazetteers
are valuable, not only for AMBER itself but for other tools as well.

In particular, we show how AMBER grows its gazetteer for UK
locations, as occurring in UK real estate classifies. We start with a
randomly selected subset (25%, 50%, and 75%) of a gazetteer with
good cover. With a graphical client, we show for each iteration the
found annotations within their repeated structures. We show how
the confidence settings determine the terms which are automati-
cally added or discarded, or prompted to the user. Finally, we run
AMBER with suitable settings to grow the gazetteer until saturation.

2. AMBER APPROACH
For processing a result page with AMBER, we feed it with the

DOM of this page and a domain schema, describing the relevant
record and attribute types. In addition, the schema defines a set of
annotation types, together with a set of gazetteers on the terms be-
longing to the annotation type, and a set of attribute constraints
relating annotation types, e.g., city , with corresponding attribute
types, e.g., LOCATION.

AMBER learns terms for its gazetteers starting with a small seed
gazetteer and expands this gazetteer throughout a number of itera-
tions over the three phases shown in Figure 1.

Figure 2: A Result Page Example

Page Segmentation. This phase proceeds in three substeps,
turning a page into a set of data areas consisting of individual
records: During (1) page retrieval & annotation, AMBER loads and
renders a page, evaluates all embedded scripts, and annotates the
contained domain terms, using GATE as annotation engine. We
provide the necessary terms as gazetteer lists, which are initially
either manually assembled or automatically derived from external
sources, such as DBPedia. In Figure 2, AMBER annotates “7 bed-
room” with annotation type bed_number , “£339,950” with price, and
“Victoria Road, Summertown” as location. During (2) data area
identification, AMBER identifies the page areas containing relevant
data, organized in structurally similar records. In Figure 2, AM-
BER identifies two data areas, the first one contains featured prop-
erties aligned horizontally, and the second one contains the records
delivered as query result. Having obtained the data areas, during
(3) record segmentation, AMBER segments each data area into in-
dividual segments, each corresponding to a single record. In Fig-
ure 2, the records are seperated by a line of dashes. In Figure 1,
an simplified representation of the result is shown with n records,
highlighting occurrences of terms from the gazetteer on the left.

Attribute Alignment. In this phase, we choose the attribute in-
stances to be associated with each record. In Figure 2, we show the
prices, bedroom numbers, and locations extracted by AMBER.

To check whether the identified attribute instances are coherent
with the discovered repeated structure, AMBER compares for each
attribute all relative paths leading to its instances as shown in Fig-
ure 1 where the green paths lead from the first node of the cor-
responding segment to the attribute instance in question, moving
along first-child and next-sibling axes. We link semantic annota-
tions with the DOM structure by considering type-path pairs, each
consisting of an attribute type and such a relative attribute path. We
call the instances with the same type-path pair the support set of
that type-path pair. Intuitively, the larger the support sets, the more
annotations are coherent with the repeated structure.

Having analyzed the type-pair paths and their support, the recon-
ciliation phase proceeds with three substeps. During (1) attribute
cleanup, AMBER (a) discards instances with a support below a

1

2

3

4

5

Figure 3: AMBER Interface

threshold l, (b) prompts the user for a decision on instances with
support between l and u, and (c) accepts all instances with sup-
port above threshold u. The parameters l and u are either specified
directly or given as quota fractions l′ and u′. In the latter case, AM-
BER discards the l′ fraction of the most weakly supported instances
and accepts the top u′ fraction without user interaction, prompting
the user for all remaining candidates. Thus, by setting l = u, AM-
BER cleans the attribute instances fully automatically. Then, dur-
ing (2) attribute disambiguation, AMBER considers those records
which contain more than one instance for a single attribute and
elects those instances with maximum support. In (3) attribute gen-
eralization, AMBER checks records for missing mandatory attribute
instances and adds new instances at unannotated nodes, if the cor-
responding type-path pair has support larger than a threshold g, and
the path in the pair leads to the text node in consideration. This is
the case in Figure 1 for the node containing term tm+1 with a violet
path from the segment root which is sufficiently supported by the
green paths. If the support of a type-pair path is low, the user is
prompted to check whether the instance belongs to the attribute.

The attributes obtained during generalization are candidates for
learning, as they were missing in the original gazetteer and had to
be inferred structurally.

Gazetteer Learning. For learning, AMBER performs the fol-
lowing two steps to extract terms from the attribute instances ob-
tained during the attribute generalization. During (1) term formula-
tion, AMBER splits the text node identified as an attribute instance
into relevant terms. For example, in the description “Oxford, Wal-
ton Street, top-floor apartment”, a location gazetteer should contain
“Oxford” and “Walton Street” as location terms, while the “top-
floor apartment” should be ignored. After splitting the attribute
slots into new terms, we remove all terms appearing in a blacklist
of excluded terms. This list contains both terms already belonging
to disjoint gazetteers and terms learned to be excluded. At last, a
confidence value for each term is computed, involving the size of

the support set and the size of the term as compared with the entire
instance that contained it. If the resulting confidence is low, the
user is optionally prompted. During (2) term validation, AMBER
deals with false positives, i.e., incorrectly added terms. To this end,
AMBER tracks the relevance of learned terms by checking in later
iterations whether such a term occurs again in an attribute instance
with sufficient support. If this is not the case, AMBER blacklists the
term and removes it from the gazetteer.

3. DEMO DESCRIPTION
In the demonstration, we learn additional gazetteer entries from

AMBER’s result-page analysis to enrich a small seed gazetteer. In
particular, it shows how AMBER bootstraps a realistic gazetteer
from seed gazetteer in a few initial learning rounds and then contin-
uously improves this gazetteer when it analyses more result pages.

We start by considering the gazetteer for the attribute LOCATION

in the context of the UK real estate domain, for which a reference
gazetteer of 14,484 locations is available. Locations are terms re-
ferring to entities such as towns, counties and regions, e.g., Oxford,
Hampshire and Midlands. The initial gazetteer consists of a ran-
dom sample of 3621 location terms corresponding to 25% of the
reference gazetteer.

The demonstration proceeds as follows: we pick a random web-
site from a list of 150 UK real estate agencies, execute a “broad”
search such as flats to rent in the UK on this site, and run AMBER on
the set of result pages. We then visualize the effect of AMBER’s seg-
mentation algorithm for individual pages; in particular, as shown in
Figure 3, AMBER highlights the identified records and attributes
(1). The panel on the left-hand-side of the GUI shows: (2) the con-
cepts of the domain schema, e.g., LOCATION and PROPERTY-TYPE, and
(3) the discovered terms with the corresponding confidence value
(highlighting in red those terms occurring on the current page). The
panel on the right-hand side contains (4) the list of URLs that are
used for the analysis and the terms that have been identified on the
current page, and (5) the current content of the gazetteer.

unannotated instances (328) total instances (1484)

rnd. aligned corr. prec. rec. prec. rec.

1 226 196 86.7% 59.2% 84.7% 81.6%
2 261 248 95.0% 74.9% 93.2% 91.0%
3 271 265 97.8% 80.6% 95.1% 93.8%
4 271 265 97.8% 80.6% 95.1% 93.8%

Table 1: Total learned instances

rnd. unannot. recog. corr. prec. rec. terms

1 331 225 196 86.7% 59.2% 262
2 118 34 32 94.1% 27.1% 29
3 79 16 16 100.0% 20.3% 4
4 63 0 0 100.0% 0% 0

Table 2: Incrementally recognized instances and learned terms

As an example, consider the webpage of Figure 3 taken from
rightmove.co.uk. The page shows properties in a radius of 15
miles around Oxford. AMBER uses the content of the seed gazetteer
to identify the position of the known terms such as locations. In par-
ticular, AMBER identifies three potential new locations, videlicet.
“Oxford”, “Witney” and “Wallingford” with confidence of 0.70,
0.62, and 0.61 respectively. Since the acceptance threshold for new
items is 50%, all the three locations are added to the gazetteer.

We repeat the process for several websites and show how AMBER
identifies new locations with increasing confidence as the number
of analyzed websites grows. We then leave AMBER to run over
250 result pages from 150 sites of the UK real estate domain, in a
configuration for fully automated learning, i.e., g = l = u = 50%,
and we visualize the results on sample pages.

Starting with the sparse gazetteer (i.e., 25% of the full gazetteer),
AMBER performs four learning iterations, before it saturates, as it
does not learn any new terms. Table 1 shows the outcome of each of
the four rounds. Using the incomplete gazetteer, we initially fail to
annotate 328 out of 1484 attribute instances. In the first round, the
gazetteer learning step identifies 226 unannotated instances. 197
of those instances are correctly identified, which yields a precision
and recall of 87.2% and 60.1% of the unannotated instances, 84.3%
and 81.3% of all instances. The increase in precision is stable in
all the learning rounds so that, at the end of the fourth iteration,
AMBER achieves a precision of 97.8% and a recall of 80.6% of the
unannotated instances, and an overall precision and recall of 95.1%
and 93.8%, respectively.

Table 2 shows the incremental improvements made in each
round. For each round, we report the number of unannotated in-
stances, the number of instances recognized through attribute align-
ment, and the number of correctly identified instances. For each
round we also show the corresponding precision and recall met-
rics, as well as the number of new terms added to the gazetteer.
Note that the number of learned terms is larger than the number of
instances in round 1, as splitting them yields multiple terms. Con-
versely, in rounds 2 to 4, the number of terms is smaller than the
number of instances, due to terms occurring in multiple instances
simultaneously or already blacklisted.

We also show the behavior of AMBER with different settings for
the threshold g. In particular, increasing the value of g (i.e., the
support for the discovered attributes) leads to higher precision of
the learned terms at the cost of lower recall. The learning algorithm
also converges faster for higher values of g.

Figure 4 illustrates our evaluation of AMBER on the real-estate
domain. We evaluate AMBER on 150 UK real-estate web sites, ran-

94.0%!

96.0%!

98.0%!

100.0%!

da
ta

 a
re

a!
re

co
rd

s!
pr

ice
!

de
ta

ils
 U

RL
!

loc
at

ion
!

leg
al!

po
stc

od
e!

be
dr

oo
m
!

pr
op

er
ty

typ
e!

re
ce

pt
ion
!

ba
th
!

precision! recall!

Figure 4: AMBER Evaluation on Real-Estate Domain

domly selected among 2810 web sites named in the yellow pages.
For each site, we submit its main form with a fixed sequence of
fillings to obtain one, or if possible, two result pages with at least
two result records and compare AMBER’s results with a manually
annotated gold standard. Using a full gazetteer, AMBER extracts
data area, records, price, detailed page link, location, legal status,
postcode and bedroom number with more than 98% precision and
recall. For less regular attributes such as property type, reception
number and bathroom number, precision remains at 98%, but re-
call drops to 94%. The result of our evaluation proves that AMBER
is able to generate human-quality examples for any web site in a
given domain.

4. REFERENCES
[1] V. Crescenzi and G. Mecca. Automatic Information Extraction

from Large Websites. Journal of the ACM, 51(5):731–779,
2004.

[2] N. N. Dalvi, P. Bohannon, and F. Sha. Robust web extraction:
an approach based on a probabilistic tree-edit model. In Proc.
of the ACM SIGMOD International Conference on
Management of Data, pages 335–348, 2009.

[3] N. N. Dalvi, R. Kumar, and M. A. Soliman. Automatic
wrappers for large scale web extraction. The Proceedings of
the VLDB Endowment, 4(4):219–230, 2011.

[4] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical
Wrapper Induction for Semistructrued Information Systems.
Autonomous Agents and Multi-Agent Systems, 4:93–114,
2001.

[5] P. Senellart, A. Mittal, D. Muschick, R. Gilleron, and
M. Tommasi. Automatic wrapper induction from hidden-web
sources with domain knowledge. In Proc. of WIDM, pages
9–16, 2008.

[6] K. Simon and G. Lausen. ViPER: Augmenting Automatic
Information Extraction with visual Perceptions. In Proc. 14th

ACM Conference on Information and Knowledge
Management, pages 381–388, 2005.

[7] W. Su, J. Wang, and F. H. Lochovsky. ODE:
Ontology-Assisted Data Extraction. ACM Transactions on
Database Systems, 34(2), 2009.

[8] Y. Zhai and B. Liu. Structured Data Extraction from the Web
Based on Partial Tree Alignment. IEEE Transactions on
Knowledge and Data Engineering, 18(12):1614–1628, 2006.

