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ABSTRACT
Finding an apartment is a lengthy and tedious process. Once
decided, one can never be sure not to have missed an even
better offer which would have been just one click away. Form
understanding is key to automatically access and process all
the relevant—and nowadays readily available—data.

We introduce opal (ontology-based web pattern analysis
with logic), a novel, purely logical approach to web form un-
derstanding: opal labels, structures, and groups form fields
according to a domain-specific ontology linked through phe-
nomenological rules to a logical representation of a DOM.
The phenomenological rules describe how ontological con-
cepts appear on the web; the ontology formalizes and struc-
tures common patterns of web pages observed in a domain.
A unique feature of opal is that all domain-independent as-
sumptions about web forms are represented in rules, whereas
domain-specific assumptions are represented in the ontology.
This yields a coherent logical framework, robust in face of
changing web trends.

We apply opal to a significant, randomly selected sample
of UK real estate sites, showing that straightforward rules
suffice to achieve high precision form understanding.
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H.3.5 [Information Storage and Retrieval]: On-line In-
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1. INTRODUCTION
On the web today there are as many pages, as there are

stars in the Milky Way! Through observation and analy-
sis we have identified patterns of genesis and behavior that
allow us to categorize stars and determine their properties,
despite the distances involved. Unfortunately, for web pages
the same principled analysis is still in its infancy.

In this paper, we focus on the particular problem of web
form understanding. Web forms are one of the more deeply
investigated aspects of the Web. Their understanding is cru-
cial for “deep-web” search engines, for web data-extraction,
and for web querying. By “understanding” we primarily
mean the identification of forms and form elements, along
with their logical organization beyond the asserted HTML
structure.

Approaches to form understanding in the context of deep
web search [11, 15, 9, 14], web querying [16, 2] and in
web extraction [13] have focused on observing commonal-
ities of general web forms exploiting in specifically tailored
algorithms and heuristics. Despite reportedly good perfor-
mance, two issues seriously limit their applicability in prac-
tice: (1) In all the above approaches, the necessary assump-
tions are hard-coded into the implemented algorithms and
it is not easy (or even possible) to adapt them. Further-
more, in many cases mere parametrization of the heuristics
does not suffice for the needed adaptability requirements,
especially in an open scenario such as the Web. (2) Try-
ing to define general heuristics capable of producing highly
precise results in all domains is not an easy task. By gen-
eralizing the assumptions made about web forms we are au-
tomatically forced to ignore domain-specific patterns that
can make a real difference in form understanding for entire
classes of web sites.

In this paper, we introduce opal, short for ontology-based
web pattern analysis with logic. opal uses Prolog rules to
explicitly represent assumptions about commonalities of web
forms (and other types of web objects). Thus opal allows
(1) the declarative definition of the needed assumptions and
heuristics through Prolog rules, (2) the specification of mul-
tiple sets of rules to be chosen and applied in order to adapt
to the situation at hand, and (3) the easy integration of
background knowledge (e.g., about the domain, the patterns
of web forms, the used vocabulary). We have implemented a
prototype system for analyzing real-estate forms in the UK,
that exploits background knowledge on the domain (e.g.,
to distinguish forms for renting and buying properties) and
adapts to the observed form type by using different assump-
tions. We show that an encoding of those assumptions as



Prolog rules yields concise, easy to understand and modify
specifications. At the same time, it competes with existing
approaches using hard-wired heuristics for speed and preci-
sion.

opal represents information at three different levels of ab-
straction corresponding to three steps of the proposed form
understanding process:

(1) opal’s relational browser page model (Section 2)
faithfully represents the HTML DOM as constructed by
a browser (including any modifications through scripting).
The data model is enriched by a thin layer of annotators
(Section 2) that provide additional annotations on element
nodes and textual information. In this paper, we consider
visual annotations derived from the browser engine and lin-
guistic annotations about entities on the web page and their
relations.

(2) In a set of phenomenological rules, we employ a
number of heuristics on such a representation of a web page
(1) to assign labels to fields, (2) to hierarchically segment
a form, and (3) to categorize form fields based on their ap-
pearance on the web page. These heuristics are primarily
domain-independent, but parameterized by domain-specific
information such as the labels or field values associated with
certain form field categories.

(3) We derive a real-estate form ontology (Section 4)
by carefully analyzing forms on over 50 UK real-estate web
sites. This ontology is used to construct a model of a form
based on the categories assigned to form fields. This model
can be further used, e.g., to fill the form fields for deep web
crawling or data extraction or to integrate the form with a
global schema of a meta-query engine.

Our preliminary experimental evaluation (Section 5) shows
that opal recognizes real-estate forms and their elements
with very high precision on a random sampling of UK real-
estate web sites. It also demonstrates that the time for an-
alyzing web pages with opal is dominated by the time for
rendering the page.

To illustrate how opal uses its three layers (browser page
model, phenomenological rules and real-estate form ontol-
ogy), we continue with an extended example on the search
form of a local UK real-estate site. We choose this example
as it is concise, but allows us to illustrate many of the salient
issues in opal.

1.1 Running Example: Heritage4Homes
We use http://www.heritage4homes.co.uk/ as our running

example. Figure 1 shows the relevant web form of this site.
This form uses a number of checkboxes to select the areas
in which to search for properties. This is actually a fairly
unusual case, with most forms either using drop-down lists
or postcode inputs. It also provides a checkbox to indicate
whether to search for retirement properties and drop-down
lists for the minimum number of required bedrooms, the
minimum and maximum price, and the order in which to
return the properties. We process this form in three stages
as discussed above.

Extracting the Browser Page Model. We employ Html-
Unit [3] to load the web page containing the form, since
HtmlUnit evaluates all included scripts, renders the page
approximately, and provides programmatic access to the
dynamical DOM. We extract the individual form elements,
their hierarchical structure, and their visual appearance. For

Figure 1: Form on Heritage

example, we extract the facts shown below to represent the
first check box of the form in Figure 1.

html-element(e_199_input,199,200,198,input).
2 html-attr(e_199_input.type,e_199_input,type).

html-attr(e_199_input.name,e_199_input,name).
4 html-attr(e_199_input.id,e_199_input,id).

html-attr(e_199_input.value,e_199_input,value).
6 html-attr(e_199_input.onclick,e_199_input,onclick).

css_attr(e_199_input,bottom,"auto").
8 css_attr(e_199_input,clear,"none").

css_attr(e_199_input,clip,"auto").
10 css_attr(e_199_input,color,"rgb(0,0,0)").

. . .
12 css_attr(e_199_input,top,"auto").

css_attr(e_199_input,visibility,"visible").
14 css_attr(e_199_input,width,"auto").

css-box(e_199_input,45,19,755,34).

Applying the Phenomenological Rules. In this stage, we
complete the low-level facts in order to establish a phe-
nomenologically complete description of the form fields in
the form. For the form from Figure 1, we find the labels
for the individual form fields: We locate the least common
ancestor containing only the form field at hand and no other
form fields, and assign all its contained text nodes as labels
to the form field, resulting in the following facts:

hasLabel(e_199_input,"Nailsea / Backwell").
2 hasLabel(e_207_input,"Portishead / Pill").

hasLabel(e_215_input,"Yatton / Congresbury").
4 hasLabel(e_223_input,"Clevedon").

hasLabel(e_231_input,"Bristol / Weston-super-Mare").
6 hasLabel(e_243_input,"Bungalows / Retirement properties").

hasLabel(e_251_select,"Min Beds").
8 hasLabel(e_279_select,"Min Price").

hasLabel(e_321_select,"Max Price").
10 hasLabel(e_363_select,"View Order").

By recognizing the similarity of the first five elements in
terms of their attributes, we group them explicitly into a
logical segment which is represented by the tbody element
e_196_tbody, resulting in facts such as:

partOf(e_199_input,e_196_tbody).

Once this segment has been identified, we look for a la-
bel for this segment. As in the case of the individual form
elements, we find the label via the least common ancestor:

hasLabel(e_196_tbody,"Area").
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Figure 2: Annotated Example Form (Heritage)

Based on the associated labels, we classify the fields us-
ing the label annotations of the corresponding form element
concepts from the ontology. The first five fields are identi-
fied as areaBranchElement with granularity set to area. Such
an element designates a certain area either by its name or
responsible branch of the real estate agency. The first check-
box yields the following two facts.

areaBranchElement(e_199_input).
2 granularity(e_199_input,area).

As another example, the first select box is classified as
roomElement which prescribes the required number of rooms
of a certain type. In our case, the room’s category is bedroom.

roomElement(e_251_select).
2 category(e_251_select,bedroom).

Similarly, the next two fields are classified as priceElement.
Using the values in the drop down lists, we determine the
purpose of these prices as buy, indicating that the prices refer
to buying prices as opposed to renting prices. Finally, using
the labels, we find that the first price refers to the minimum
and the second one to the maximum price of a specified
range.

priceElement(e_279_select).
2 priceElement(e_321_select).

purpose(e_279_select,buy).
4 purpose(e_321_select,buy).

priceType(e_279_select,min).
6 priceType(e_321_select,max).

Ontological Processing. Using our ontology, we deter-
mine the logical structure of the web form. Figure 2 shows
the form together with the annotated form model. In the fig-
ure area branch elements are shaded in gray, price elements
are shaded in red. The blue lines correspond to the relation
in the ontology (Section 4). Segments are also visually il-
lustrated as boxes with dashed border. Where a segment is
“virtual” (here: the price segment), i.e., does not correspond
directly to an HTML node, it is drawn only around the
contained elements. Otherwise it is drawn around the con-
tained elements and their visual representation. In particu-
lar, we recognize that the five areaBranchElement’s all share a

granularity of area, and group them into an areaBranchSegment

of the same granularity. The areaBranchSegment is a type of
geographicSegment.

geographicSegment(e_196_tbody).
2 areaBranchSegment(e_196_tbody).

granularity(e_196_tbody,area).
4 areaBranchElement(e_199_input).

areaBranchElement(e_207_input).
6 areaBranchElement(e_215_input).

areaBranchElement(e_223_input).
8 areaBranchElement(e_231_input).

Similarly, since the two priceElement’s have complementary
types min and max and a compatible purpose set to buy, we
group the two elements into a priceSegment with the same
purpose.

priceSegment(priceSegment(e_190_tbody)).
2 purpose(priceSegment(e_190_tbody),buy).

priceElement(e_279_select).
4 priceElement(e_321_select).

purpose(e_279_select,buy).
6 purpose(e_321_select,buy).

priceType(e_279_select,min).
8 priceType(e_321_select,max).

In this case, the priceSegment cannot be identified as an HTML
element but must be annotated to an invented value which
we introduce to this end (priceSegment(e_190_tbody)).

The geographicSegment and priceSegment are sufficient to iden-
tify the whole form as a realEstateWebForm, as witnessed by
the following fact:

realEstateWebForm(e_190_tbody).

1.2 Related Work
Web form understanding [7] is essential to web automation

tasks dealing with the deep web, for surfacing the content
behind forms for search index generation, wrapper construc-
tion, or interface integration, see for example [9, 13, 15].
While earlier approaches [6, 8, 9, 10, 11] treated web inter-
faces as flat structures, current approaches [2, 5, 14] model
web interfaces hierarchically. Since our approach is hierar-
chical as well, we relate our own work with these approaches.



Any approach for form understanding must rely on as-
sumptions on human form understanding and the corre-
sponding design principles. Most of these rules describe how
logical attributes are mapped onto physical form elements—
however, these rules are not formalized as rules but only
underlie the employed heuristics or grammar. In contrast,
our technique has a phenomenology at its heart, which ex-
plicitly describes this mapping in terms of a logic rule base.
By having these rules represented in a formal and machine
processable language such as Datalog, we can flexibly com-
bine phenomenological information with domain knowledge
to improve the accuracy of our approach.

In [2], the tree structure of a form is derived in two steps:
First, separate trees for text and form fields are built. Then
these two trees are iteratively merged, yielding a label as-
signment in the process. This approach is based on nine gen-
eral rules on web forms which attempt to capture common
web design practice. For example, these rules say that query
interfaces are organized top-down and left-to-right, or that
group and element labels are styled consistently. Also, the
elements are grouped hierarchically, based on so-called in-
flection points, which mark the points where a human agent
supposedly changes the reading direction during processing
the form.

ExQ [14] works in two phases, by (1) extracting an unla-
beled tree of elements and (2) decorating the obtained tree
with labels. The unlabeled tree is generated from topological
relations, e.g., containment or disjointness, 4-way neighbor-
hood relations, and alignment relations. For assigning the
labels, ExQ uses annotation blocks which are the bounding
boxes around a label and the labeled elements. Guided by
a number of assumptions, such as that annotation blocks
do not overlap, ExQ processes the element tree in a bot-
tom up manner and assigns labels to all elements in a group
simultaneously in each step.

Wise-iExtractor [5] is implemented in two phases: It
performs an attribute extraction and a separate attribute
analysis which aims at revealing “hidden” meta-information.
In this process, Wise distinguishes logical attributes which
are represented by physical elements on the form. The at-
tribute extraction tokenizes the form to obtain an interface
expressions (IEXP), distinguishing text fragments, form el-
ements, and delimiters, such as line breaks. Wise computes
the association weight between any given element and the
labels in the same line and the two preceding lines and as-
signs labels accordingly. The associative weight is computed
with heuristics that exploit ending colons, similarities in the
HTML name attributes of elements and labels, and the dis-
tance between element and label. During attribute analysis,
Wise determines the domain values, the default value, and
the unit of form elements. It also groups together the ele-
ments forming a single logical attribute and analyzes their
relationships: For example, they are classified to be in one
out of four relation types, namely range (e.g. from, to), part
(e.g. first and last name), group (e.g. radio buttons), or con-
straint (e.g. exact match required).

Closest in spirit to our own approach, the method in [16]
follows the observation that forms “seem to reveal some
‘concerted structure’, by sharing common building blocks”
and presupposes the existence of a hidden syntax, shared
by most web forms, which “connects semantics to presenta-
tions.” This hidden syntax is formalized into a visual lan-
guage which is described in a 2P grammar which is based
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Figure 3: Logical model of HTML DOM structure

on common patterns and relative preferences between these
patterns—providing a declarative description of the phe-
nomena commonly encountered in web forms. However,
in contrast to our logical approach, the formalization as a
grammar does not lend itself easily to the integration of
the phenomenological rules with domain-specific ontological
knowledge. It is also unclear how to contextualize grammar
rules so as to select which set of rules best applies to a given
form.

2. BROWSER PAGE MODEL
To analyse forms (and web pages in general) with rules,

we first need a logical data model for browser pages. This
data model faithfully represents the structural, textual, and
visual properties of the web page as rendered by a browser
engine. We represent the browser’s DOM tree (including
element, text, comment, and attribute nodes) in structural
relations (Figure 3), the associated textual content of the
DOM (Figure 4) in a large character object (CLOB) with
references from the DOM nodes to start and end positions
in the CLOB, and the browser’s rendering including all CSS
attributes and bounding boxes (Figure 5). Since the en-
countered web sites do not employ semantic web technolo-
gies [12], such as RDF, OWL-DL, or RIF, we did not incor-
porate them into our data model.

Structural information. The structural information from
the DOM (which nodes there are and how they are re-
lated and ordered) is represented in the extensional relations
html-element, html-text, html-comment, and html-attr. We
encode the tree structure using the start/end encoding from
[1]. We provide derived structural relations for all XPath
axes, and for first-child, next-sibling, and next. For instance,
next-sibling(X,Y) holds if X and Y have the same parent
and Y follows immediately after X (node is a convenience
relation for accessing all nodes in the DOM):

next-sibling(X,Y) ⇐ node(X,_,EndX,Par)∧
2 node(Y,StartY,_,Par)∧StartY is EndX + 1.

DOM nodes are related to their textual content and CSS
attributes by the content and css-attr relations, and may be
annotated with arbitrary properties via annotate. Figure 3
shows the schema for the structural information, omitting
html-text and html-comment for space reasons.
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Textual information. DOM nodes are linked (by content)
to textual information specifying the start and end position
of the textual content in the given CLOB. We use start and
end positions to allow annotations crossing element borders
and to concisely represent the textual content of nested el-
ements, but offer a convenience relation text to access the
contained text of a node directly (Figure 4).

Visual information. From the visual rendering of the web
site we extract all CSS attributes of DOM nodes (accessed
through css-attr) as well as their bounding boxes (css-box).
From these information we derive a number of spatial rela-
tions such as contains, aligned, and neighbor, see Figure 5.
In particular alignment and neighborhood are essential for
form segmentation.

Example. To illustrate the logical data model of browser
pages in opal, consider the fragment of a DOM tree shown
in Figure 6. It shows a part of a table with a tr containing
two td’s, the first a label (“Price:”) for the form input field
contained in the second. The figure shows the html-element,
html-attr, and html-text facts for representing these DOM
nodes (and the content fact for associating the text node
with its textual content). The visual information extracted
for these elements are all their CSS attributes (including

Price:

...
...

Figure 7: Example (rendering)

margin, text and background color, text font, etc.) and the
bounding boxes shown in Figure 7.

3. Phenomenological Rules
Based on the browser page model, the phenomenological

rules label, segment, and classify the form fields contained
in the web page. We call these rules “phenomenological” as
they connect the abstract concepts of the ontology (such as
price input element) with observable phenomena on the web
sites (such as an input field with a certain label). To that
end, we

1. group form fields (and thus their labels) into segment,
2. pair form fields with their labels into form elements

(form fields with their labels),
3. classify form elements according to the domain ontol-

ogy.

3.1 Segmentation
In the UK real estate domain, a single rule proved suffi-

cient to group related segments recursively into compound
segments. The predicate segment(grp(Es)) holds, if grp(Es)
is a segment, where Es is a list of (other) segments or form
fields which satisfy the following two conditions: (1) They
occur in a sequence in the web form and are similar to each
other, where similarity means that either their type and
style attributes or their class and name attributes coincide.
(2) Their least common ancestor contains no other form
segments. The least common ancestor is the node which
contains all these segments, but has no children that also
contains all of them. We translate these conditions directly
into the following rule:

segment(grp(Es)) ⇐ similarSegmentSequence(Es)∧
2 leastCommonAncestor(Es,A)∧

¬ hasAdditionalSegment(A,Es).

Therein, the first body atom similarSegmentSequence(Es)

identifies the segment sequences which match condition (1).
For condition (2), we determine A as the least common ances-
tor of the segments in Es, using the leastCommonAncestor(Es,A)

predicate, as defined in the following rule. It asks for a com-
mon ancestor having no child being a common ancestor of
the segments in Es.

leastCommonAncestor(Es,A) ⇐ commonAncestor(Es,A)∧
2 ¬ (child(A,C)∧commonAncestor(Es,C)).

We define a partOf relation between the identified segments
with the following rule:

partOf(E,grp(Es)) ⇐ segment(grp(Es)∧
2 member(E,Es).
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3.2 Label Assignment
We use three heuristics for assigning labels to form fields

or segments, such that hasLabel(E,L) is true, if field or seg-
ment E has label L. An field may be associated with mul-
tiple labels. We need to introduce a stratum in the defi-
nition of hasLabel(E,L) for assigning labels to fields based
on their position in a sequence of (partially labeled) fields
(see label alignment below). To that end, we introduce
hasBasicLabel(E,L) and use

hasLabel(E,L) ⇐ hasBasicLabel(E,L).

to add all basic labels to hasLabel.

HTML label. The first heuristics extracts the HTML labels
from web forms, as shown below (where _ represents a don’t
care variable):

hasBasicLabel(E,L) ⇐ html-element(E,_,_,_,input)∧
2 html-attr(_,E,id,Id)∧

html-element(LNode,_,_,_,label)∧
4 html-attr(_,LNode,for,Id)∧

child(L,LNode)∧
6 html-text(L,_,_,_).

In this rule, we look for HTML form fields E and HTML
labels LNode such that LNode refers to E via the for attribute.
We take the text nodes L of LNode as labels for E.

Greatest unique ancestor. The second heuristics uses the
greatest unique ancestor of a form field E to search for labels
L of E. The greatest unique ancestor A of E is the ancestor of E
closest to the document root that does not contain any other
form fields. We say that E is the unique field descendant of
A if A contains no other form fields beside E and define the
following rule to obtain the greatest unique ancestor.

greatestUniqueAncestor(E,A) ⇐ uniqueDescendant(E,A)∧
2 ¬ (parent(A,A1)∧uniqueDescendant(E,A1)).

Then, we take L as label for E, if E is a segment (a form field
or a group of segments), L is a text node, A is the greatest
unique ancestor of E, and L is a descendant of A.

hasBasicLabel(E,L) ⇐ segment(E)∧
2 html-text(L,_,_,_)∧

greatestUniqueAncestor(E,A)∧
4 descendant(A,L).

This heuristic sometimes yields multiple labels for the same
segment.

Label alignment in segments. Our third heuristics as-
signs labels based on their position in their parent segment.

hasLabel(E,L) ⇐ partOf(E,G)∧
2 children(Es,G)

hasNoLabel(Es)∧
4 labelLists(LLs,G)∧

sameLength(Es,LLs)∧
6 labelOneToOne(E,L,Es,LLs).

In this heuristic, we
1. find a segment E which is member of another segment

G together with its members Es,
2. check that no member of Es already has a label,
3. identify the list of all label groups in G: We retrieve all

text nodes that are descendants of the least common
ancestor of Es and partition this list on each occurrence
of a segment from Es,

4. check that the list LLs of label groups and Es have the
same length, and

5. map the i-th member of Es to all labels in the i-th label
group from LLs.

If the list of label groups is by one longer than the list
of members of Es we use the first label as the label for the
entire segment:

hasLabel(E,L) ⇐ partOf(E,G)∧
2 children(Es,G)∧

hasNoLabel(Es)∧
4 labelLists([Ls|LLs],G)∧

sameLength(Es,LLs)∧
6 labelOneToOne(E,L,Es,LLs).

8 hasLabel(G,L) ⇐ partOf(E,G)∧
children(Es,G)∧



10 hasNoLabel(Es)∧
labelLists([Ls|LLs],G)∧

12 sameLength(Es,LLs)∧
member(L,Ls).

We also consider the case when some segments have al-
ready assigned a label; however, for space reasons, we do not
show the corresponding rules here.

3.3 Classification of Form Elements
From the label assignments and segmentation of the pre-

vious section, we obtain “segments”, which are either indi-
vidual form fields or groups of them, together with proper
labels. However, these segments need to be classified ac-
cording to our ontology to provide a complete model of the
web form.

To this end, we employ a set of logical rules of which we
show here, for space reasons, only those needed for classi-
fying Area Branch Elements, Room Elements, and Price El-
ements, as well as their facets, such as Granularity, Price-
Type, Category (Section 4).

Our rules necessitate real estate domain knowledge to clas-
sify form fields according to the concepts they implement.
In particular, form elements in the ontology are annotated
with a set of terms that are used to recognize the labels of
these elements, and a specification of values typically ap-
pearing as values of corresponding fields, e.g., as options in
down lists.

From an extensive corpus of real estate web pages, we have
collected such label and value annotations for our ontology
concepts. For each concept C in the ontology there are pred-
icates CLabel(L) and CValue(V) to indicate that L and V are
possible labels or values of C. The same applies to aspects
of ontology concepts.

Each of these predicates contains terms of a particular
concept in the real estate domain, represented as logical
facts. As an example, consider areaBranchLabel, which con-
tains facts such as:

areaBranchElementLabel("london").
2 areaBranchElementLabel("area").

areaBranchElementLabel("place").
4 . . .

The priceTypeMinLabel dictionary (resp. priceTypeMaxLabel)
includes facts for terms like “min”, “minimum” (resp. “max”,
“maximum”). In general, we classify a form element with
concept C as follows:

C(X) ⇐ leafSegment(X)∧
2 hasLabel(X,Lab)∧

CLabel(Y)∧label-match(Lab,Y).

For instance, for Area Branch Elements we use the follow-
ing classification rule:

areaBranchElement(X) ⇐ leafSegment(X)∧
2 hasLabel(X,Lab)∧

areaBranchElementLabel(Y)∧label-match(Lab,Y).

leafSegment is only true for those segments that have no
further sub-segments, i.e., only form elements. hasLabel is
as defined above. label-match holds if the the area branch
element label Y occurs in Lab.1

Thus, our rule says that a leaf segment, which has a la-
bel that matches areaBranchElementLabel, is an Area Branch

1We employ regular expressions for this matching task.

Element. In our running example in Section 1.1, such rules
recognize all first five check-boxes as Area Branch Elements.

Another essential concept of real estate web forms is price.
Here, we use a set of more sophisticated rules in order to
identify Price Elements, and their facets Type (min, max,
etc.), and Purpose (buy or rent). For Price Elements we
have the followings:

priceElement(X) ⇐ leafSegment(X)∧
2 hasLabel(X,Lab)∧

priceElementLabel(Y)∧label-match(Lab,Y).
4 priceElement(X) ⇐ leafSegment(X)∧

priceElementValue(Y)∧value-match(X,Y).

The first rule is analog to the one for Area Branch Element.
The only difference is the reference to the labels for Price
Element. In the second rule, we retrieve the price element
value specification and match that against X. Y is, e.g.,
a regular expression testing if a contained text node starts
or ends with a currency symbol. value-match checks if this
expression holds on X.

Once we have identified a price element, we try to un-
derstand its attributes. In the real estate domain, a price
element has either “buy” or “rent” as purpose. If a price
element’s values are above a threshold (in our case 50,000
expressed with formTypeBuyPriceValue(50000)), that form
is likely a form for buying, rather than renting properties.

purpose(X,buy) ⇐ priceElement(X)∧
2 formTypeBuyPriceValue(Y)∧value-match(X,Y).

purpose(X,rent) ⇐ priceElement(X)∧
4 formTypeRentPriceValue(Y)∧value-match(X,Y).

As far as price type is concerned, we try to identify at-
tributes min and max by matching their labels and values
with the appropriate dictionary. Very often, indeed, price
select fields on real estate web forms, include items such as
“no minimum”, “no maximum”. The following rule exploits
such knowledge, to derive the assign the “min” price type to
a price element.

priceType(X,min) ⇐ priceElement(X)∧
2 hasLabel(X,Lab)∧

priceTypeMinLabel(Y)∧label-match(Y,Lab).
4 priceType(X,min) ⇐ priceElement(X)∧

priceTypeMinValue(Y)∧value-match(X,Y).

Similar rules are used for “max”, “average” and “range”
price types.

We conclude this description of our phenomenological rules
by showing how we classify a segment as Room Element of
Category bedroom. For both, we employ proper dictionaries
to match labels (and possibly values) for concept Room and
attribute Bedroom, respectively.

roomElement(X) ⇐ leafSegment(X)∧
2 hasLabel(X,Lab)∧

roomElementLabel(Y)∧label-match(Lab,Y).
4 roomElement(X) ⇐ leafSegment(X)∧

roomElementValue(Y)∧value-match(X,Y).
6 category(X,bedroom) ⇐ roomElement(X)∧

hasLabel(X,Lab)∧
8 roomElementCategoryLabel(Y)∧label-match(Lab,Y).

category(X,bedroom) ⇐ roomElement(X)∧
10 roomElementCategoryValue(Y)∧value-match(X,Y).

4. REAL-ESTATE FORM ONTOLOGY
In order to understand the conceptual and the logical

structure of a web form, we require a reference description of
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Figure 8: The Real-Estate Web-Form Ontology (fragment).

how such forms occur in practice on the considered websites.
In addition, such a description must be formal and machine
readable since we need to combine it with the information
coming from the browser page model and the phenomeno-
logical rules to produce a meaningful model of the web form.
Due to the intrinsic object-oriented and hierarchical nature
of a web form, a natural solution is to resort to an ontological
description [4], where each component of a web form is rep-
resented as an ontological concept, corresponding to a class
in the object-oriented terminology. The adoption of an on-
tological language also enables reasoning over such entities
by means of standard inference procedures and technologies
(e.g., rule-based reasoning or tableaux reasoning).

The role of the ontology in web form understanding is
twofold: (i) The ontology formally models the design-patterns
of web forms. Such reference structures can then be used to
perform coherence checks against the facts provided by the
phenomenological rules. This is needed since the heuristics
implemented in phenomenological rules may sometimes pro-
vide inconsistent information because there are, in general,
multiple valid labeling, grouping, and classification possibil-
ities for the same form elements. (ii) The information ex-
tracted by phenomenological rules represents only a partial
description of the web form. We exploit reasoning proce-
dures to produce annotations for the untyped components
in the form and, in particular, for the form itself.

We developed our ontology through a systematic study
of 57 UK real estate sites. During this analysis, we took
into account both software and visual design principles in
order to identify the most common design-patterns behind
the real-estate web forms. The ontology represents the hier-
archical structure of a web form in terms of its components,
their properties and the relationships among them. The
vocabulary of our ontology includes terms to denote basic
components of a web form such as labels, buttons and input-
fields (e.g., text fields, dropdown lists, check boxes, etc.)
along with the logical relationships among them. In partic-
ular, we introduce two logical structures that do not always
have a counterpart in the DOM tree of the form namely
form elements and segments. A form element is a logical
element consisting of an input field and a label describing
it. On the other hand, a segment denotes a group of form
elements with a common goal w.r.t. the user interaction

such as a price input-facility or a group of search options.
Though in many forms we can find a representative DOM
node for these logical concepts, in some cases we need to
invent specific representative nodes and inject them into the
object hierarchy.

For the representation of such structures, we adopt a sim-
ple ontological language consisting of the following constructs:

Classes (or concepts), represented in the ontology as
unary first-order predicates and denoting the type of an ob-
ject in the form e.g., an input field for the number of rooms
or a price segment.

partOf relation, represented in the ontology as a binary
relation between two concepts and used to encode the hier-
archical structure of the components of a web form e.g., the
fact that a price label and a price input field are part of a
price element.

Attributes, represented in the ontology as binary rela-
tions between a concept and an XML data-type (e.g., strings,
integers, etc.) and denoting the class attributes. An at-
tribute may, for example, represent the fact that a price
field is a minimum/maximum price field or that an order-by
input field is ordering in ascending or descending order.
In addition, we need to model some additional constraints
for the attributes and the partOf relation that are required to
fully capture the constraints we identified on the real-estate
web forms. In particular we introduce:

1. Attribute constraints. These constraints are expressed
over the attribute values of certain objects. For example the
fact that all such objects with a given type have mandatory
values for their attributes or that a group of objects must
agree on the values of their attributes.

2. Cardinality constraints. These constraints are useful
to specify constraints over the hierarchical structure of the
ontology. For example the fact that an object cannot be
part of two other objects at the same time (i.e., the web
forms are conceptually trees) or that a certain component is
optional in a web form.

Due to lack of space, we do not describe the entire ontol-
ogy (available, both as rules and in OWL format, from the
project home page at diadem-project.info/opal) but only
some fragments relevant for our running example.

We use squared boxes to denote the classes of our ontol-
ogy, ellipses to denote the attributes of a class, “♦” arrows to



denote the partOf relation and “→” arrows to express inher-
itance. In addition, we use the notation a.{v} to denote the
fact that the attribute a must have the value v. We asso-
ciate an attribute a to an aggregation operator (i.e., AND,
OR and XOR) whenever we require that all the objects par-
ticipating in the aggregation have compatible values for a.
Given two values v1, v2 for an attribute a, we say that v1 and
v2 are compatible if either v1 = v2 or at least one of them is
a null (i.e., unknown) value. The notion of compatibility is
easily extended to sets of values.

Figure 8 shows three relevant fragments of the ontology
namely: (A) the top concepts of our ontology defining how a
real-estate web form is constructed, (B) the price segments,
modelling the structure of a price input/selection facility in
a web form and, (C) the area/branch segment describing
a search facility based on location information i.e., a ge-
ographic area (e.g., London) or an area identified by the
branch of a real-estate agency (e.g., North London branch).

A real-estate web form (see Figure 8.A) necessarily con-
tains a price segment, used to input the property price-
range, and a segment containing the buttons for the submis-
sion of the form or other operations (e.g., clearing a form).
Moreover, it must contain either a geographic-segment, con-
taining location-based search options, or a property-feature
segment, describing the features of the property. Optionally,
we may find a contract segment defining the type of con-
tract for the property and additional search options, e.g., to
order the search results according to some attribute. Each
form has a purpose (e.g., buy, rent or combined) represented
as an attribute. Since price and property-feature segments
also have a purpose attribute, the purpose value must be the
same whenever they belong to the same web form. We also
say that a combined form, represented in the ontology as a
subclass of a real-estate web form, must have “combined” as
value for the purpose attribute.

A price segment (see Figure 8.B) is composed by a cur-
rency element and one or more price elements. The price-
Type attribute is used to denote different price-input facili-
ties occurring in real-estate web forms e.g., we may select a
price range, an approximate price, or a pair composed by a
minimum and a maximum price. In the latter case, if they
occur together, they must agree on the value of the purpose
attribute. Each price element consists of a label and a price
input field (i.e., a list or a text field).

An area/branch segment (see Figure 8.C) is part of a ge-
ographic segment and must contain an area/branch element
(possibly with a label) providing the type of location-based
search that can be used by the user and represented here
through the granularity attribute. As usual, an area/branch
element consists of a label and an input field.

Using our ontology, we annotate the web form of Fig-
ure 1 in a bottom-up fashion: Based on the phenomenolog-
ically identified labels and fields, we identify and annotate
composite objects on the page, e.g., an element which con-
sists of a label and a field. In particular we associate an
area/branch element to the first five pairs of labels and check
boxes in the form. All these form elements are then part of
an area/branch segment whose label is “Area”. On the other
hand, the check box denoting the retirement properties and
bungalows is annotated as a property-contract segment and
the dropdown list for the number of bedroom, along with the
corresponding labels, identifies a property-feature segment,
while the minimum and maximum price dropdown lists are

Figure 9: Form on Finders Keepers

identified as a price segment. Finally, the order-by drop-
down list and the button will be annotated as search-option
segment and form-buttons segment respectively. Notice that
in some cases, the annotations for form elements and seg-
ments can be made directly on an HTML element in the
DOM tree e.g., by annotating a div element surrounding a
group of other HTML elements. However, it is often the case
that, for such concepts, there is not a corresponding element
in the DOM tree. In these cases, the heuristics of the phe-
nomenological rules generate an artificial bounding box for
such elements that are then annotated using the ontology.

5. ANALYSIS AND EVALUATION
We evaluate opal with a brief usage study of five real

estate web sites. In the second part of this section, we run
opal on 50 randomly sampled UK web sites and show that
opal achieves very high precision on these sites.

5.1 Real-Estate Forms: Examples
In this section we discuss some examples of real forms from

UK real-estate web sites. Although each form has its own
peculiarities, it is possible to capture their logical structure
with the few general rules from Section 3 together with the
domain ontology from Section 4.

Finders Keepers. The Finders Keepers2 web form (Fig-
ure 9) contains two input fields for the price with interleaved
labels, and an input field for restricting the search to a given
area determined by a postcode. It is also possible to specify
this restriction from a dropdown list. The next input field
allows the user to specify the desired number of bedrooms.
At the bottom, the form contains two search buttons deter-
mining the format of the results page: it is possible to return
them as a list of results or as points on an active map.

From a structural point of view the form is organized as a
list of HTML div elements, one for each row in the form. All
these div elements are part of another HTML div element.
Thus, the HTML structure of the form does not quite re-
flect its logical structure: The rows containing the postcode
and area search boxes form together a logical segment as
they both represent a way to restrict the search on the basis
of the location, but there is not corresponding HTML ele-
ment. On the other hand, the row containing the term “or”
(and represented as a p element in the HTML tree) carries
the information that the two search boxes are to be used
exclusively.

2http://www.finders.co.uk/.



Figure 10: Buying Form on Vebra

In addition to the logical structure, another interesting
aspect that contributes to the understanding of the form’s
semantics is the analysis of the labels and the content of
the drop-lists. For example it is possible to derive that the
purpose of this form is to rent a house (and not to buy
one) from the terms “rent” and “per month” in the first row.
This can also been inferred using the values“800”and“1200”
coupled with the pound symbol in the search fields of the
first row; it is reasonable to assume that these values cannot
represent a sale price for any house. For the price fields
we also need to recognize that the user must use the fields
to specify a minimum and a maximum price (i.e., a range).
This can be done by means of the labels with value “to” and
“from” between the two price fields.

Vebra. The Vebra3 form of Figure 10 is an example of a
less sophisticated form. In contrast to Finders Keepers, the
location of the property can only be filtered with a free text
input field. The price is specified in a similar way to Finders
Keepers, but the values are selected from dropdown lists
whose content clearly expresses a sale price because it is
unlikely to rent a house for 3 million pounds even in London.
This can also be easily inferred by the term “for sale” in the
header of the form. As on Finders Keepers we have a way to
specify the form of the results page (by means of a check box)
and the number of bedrooms. The button at the bottom of
the form is easily recognized as a search button.

Bell Park Kerridge. The form from Bell Park Kerridge4

is structurally organized as a grid, where each pair of la-
bels and fields are represented without any HTML element
bounding them. As a result the minimum and maximum
price fields have the same parent as the location-based search
field, the rent/buy selector, the room selector and the sub-
mit button. An issue with this web form is to create all the
proper logical bounding boxes for the elements in the form,
especially for the two price fields that must be grouped to-
gether. The purpose (i.e., buy or rent) of this form is not
pre-determined but depends on what it is selected by the
user in the dropdown list at the upper-left corner of the
form.

Harmony Homes. The last web form considered in this
section is the one from Harmony Homes5 and shown in Fig-
ure 12. Similarly to the Bell Park Kerridge example, the
form has a combined purpose since there is a dropdown

3http://www.vebra.com/vebra/.
4http://www.bpkestateagents.co.uk/.
5http://www.harmony-homes.co.uk/.

Figure 11: Form on Bell Park Kerridge

Figure 12: Form on Harmony Homes

list from which the user can choose whether to search for
a house for sale or for rent. But the form is again organized
as a list of elements. The only issue with this form is the
correct grouping of the minimum and maximum price input
fields that are here expressed as dropdown lists whose val-
ues change according to what it is selected in the buy/rent
dropdown list at the top of the form.

5.2 Real-Estate Forms: Analysis
In the remainder of this section we report on our prelim-

inary statistical analysis of the current state of web forms.
We illustrate the result of an experimental evaluation of the
opal approach, in which a random sampling of 50 UK real-
estate web sites is considered (this sample has little overlap
with the pages used for creating the ontology). In addi-
tion, we show that opal’s runtime for analysing web pages
is dominated by the page rendering time.

In order to evaluate the precision of our technique, we
annotate by hand all 50 pages our benchmark is composed
of. For each of these, we note how many form fields and
form segments these pages contain, respectively.

Table 1 summarizes the result for each of the web sites we
consider: The URL is given in the first column. The sec-
ond column contains how many fields the page actually con-
tains, whereas the third and the fourth show, respectively,
the percentage of fields and labels opal correctly retrieves.
On these tasks, our approach obtains an average precision
of 97.77% and 96.82%, respectively. While this result itself
shows the effectiveness of opal, it is worth noting that, only
for very few web sites of our benchmark we are not able to
perfectly identity fields and labels.

As far as form segmentation is concerned, the fifth col-
umn in Table 1 indicates how many segments are present
on the corresponding page, whereas the last column reports
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whether opal did perform a correct segmentation (X), oth-
erwise the number of missed segments. We compute the
correctness for the segmentation task, as the percentage of
found segments out of the total number. We achieved a high
rate of 93.33%, which again confirms the overall quality of
our approach.

In addition to the above experiments, we conducted an
evaluation of the runtime opal needs for analyzing a given
web page. As Figure 13 shows, processing time is by far
dominated by the page rendering time of the underlying
browser. However, processing time is yet sensibly small.

6. CONCLUSION AND FUTURE WORK
To the best of our knowledge, opal is the first system for

automated form understanding that exposes its assumptions
explicitly as rules. It demonstrates that a purely declarative
specification of the involved heuristics is possible and can
yield competitive precision for typical form understanding
tasks such as label assignment and segmentation. It also
demonstrates the efficacy of analysis rules specialized for a
concrete domain.

However, opal is only a first-step towards a domain-centric
analysis of web pages using declarative rules. We believe
that it is a strong indication that such an approach is very
promising for web page analysis in general.

There is, however, no parcity of research challenges yet to
be addressed:
– Although we present opal here for the real-estate domain,

we are confident that it can be applied with similar success
to other domains. The main effort is the identification of
web patterns in that domain as well as the annotation of
domain concepts with labels and value specification ap-
propriate for the domain. We plan to investigate the use
of machine learning techniques for supporting the creation
of the ontology for a new domain.

– opal is focused on form understanding. The employed
methodology—explicit heuristics in rules based on knowl-
edge of web patterns in a concrete domain—can likely be
applied to other types of web objects, e.g., for analyzing
result pages or the navigation structure of web sites.

– In form understanding the major challenge is that the
segmentation strategy adopted in opal is too naive for
some web sites. We plan to investigate a segmentation
strategy guided by the ontology that also integrates more
visual knowledge than used in the current version of opal.

– Background knowledge beyond the web patterns repre-
sented in the ontology is currently not used in opal.

– opal generates, for the most part, a single model of the

form. In some cases, however, there may not be one
clearly preferable model of the form. We plan to investi-
gate probabilistic logic for representing several alternative
form models and selecting the one that best matches the
constraints expressed in our ontology.
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Evaluation

form elements form segments
url total found(%) labeled(%) total found
rodgersestates.com 8 100.00 100.00 1 X
bspokeproperty.com 4 100.00 100.00 0 X
dreweryandwheeldon.co.uk 5 100.00 100.00 0 X
nicholasestates.co.uk 6 100.00 100.00 0 X
wilkie.co.uk/main.htm 7 100.00 100.00 0 X
harveyrobinson.co.uk 6 83.33 83.33 0 X
henrygeorgeestates.co.uk 9 100.00 100.00 3 X
dawsonsproperty.co.uk 23 100.00 100.00 6 X
knightfrank.com 2 100.00 100.00 0 X
all-about-homes.co.uk 5 100.00 100.00 0 X
carlisleandborder.com 6 100.00 100.00 0 X
bernadetteharris.co.uk 7 100.00 100.00 2 X
harmony-homes.co.uk 6 100.00 100.00 0 X
kippencampbell.co.uk 3 100.00 100.00 0 X
jimmcmillan.co.uk 10 100.00 100.00 5 X
stokesestateagents.co.uk 5 100.00 100.00 0 X
wrightschurchstretton.co.uk 3 100.00 100.00 0 X
huwtudor.co.uk 17 100.00 100.00 2 X
tspc.co.uk 8 100.00 100.00 0 X
stewartwatson.co.uk 12 100.00 83.33 2 2 missed
morganyork.co.uk 2 100.00 100.00 0 X
robsoncarter.co.uk 3 100.00 100.00 0 X
clearwateruk.net 9 100.00 100.00 0 X
johnhoole.co.uk 8 100.00 100.00 2 X
hi-m.co.uk 6 100.00 100.00 1 1 missed
qualityhomes.co.uk 13 100.00 100.00 5 X
bychoice.co.uk 7 100.00 100.00 0 X
rowelluk.com 9 100.00 77.78 2 1 missed
nicktart.com 17 100.00 100.00 4 X
lawsonsestateagents.co.uk 5 100.00 100.00 1 X
christopherbice.co.uk 7 100.00 100.00 1 X
finders.co.uk 8 100.00 100.00 2 X
andrewsonline.co.uk 7 100.00 100.00 0 X
vebra.com 6 100.00 100.00 1 X
ankerandpartners.co.uk 4 75.00 75.00 0 X
babingtons.co.uk 5 100.00 100.00 0 X
bairstoweves.co.uk 2 50.00 50.00 0 X
cjhole.co.uk 7 100.00 100.00 3 X
heritage4homes.co.uk 11 100.00 100.00 1 X
besleyhill.co.uk 5 100.00 100.00 1 X
countryproperty.co.uk 8 100.00 100.00 0 X
chestertonhumberts.com 15 100.00 100.00 3 X
edisonfordproperty.co.uk 5 100.00 100.00 0 X
edwards-online.co.uk 7 100.00 100.00 1 X
bruntandfussell.co.uk 5 100.00 100.00 1 X
geoffreysmith.org 5 80.00 80.00 0 X
sequencehome.co.uk 7 100.00 100.00 1 X
hootons.co.uk 14 100.00 100.00 3 X
lettingzed.co.uk 7 100.00 100.00 0 X
houseandco.co.uk 13 92.31 84.62 6 X

97.61% 96.68% 93.33%
average precision correct segmentation

Table 1: Precision of labeling and segmentation in Opal for 50 UK real-estate sites


