Exploring the Web with OXPath’

Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart, Andrew Sellers

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD
firstname.lasthame@comlab.ox.ac.uk

ABSTRACT

OXPath is a careful extension of XPath that facilitates data
extraction from the deep web. It is designed to facilitate
the large-scale extraction of data from sophisticated modern
web interfaces with client-side scripting and asynchronous
server communication. Its main characteristics are (1) a
minimal extension of XPath to allow page navigation and
action execution, (2) a set-theoretic formal semantics for full
OXPath, (3) and a sophisticated memory management that
minimizes page buffering. In this poster, we briefly review
the main features of the language and discuss ongoing and
future work.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation|: Hy-
pertext/Hypermedia—navigation

General Terms
Languages, Algorithms

Keywords
Web extraction, web automation, XPath, AJAX

1. INTRODUCTION

In this paper, we present details of the OXPath language,
a formalism for specifying data extraction from modern web
applications.

XPath has become the de facto standard for querying sin-
gle XML and HTML documents. However, modern web ap-
plications often require navigation, form filling, and other
(single or multi-page) interactions to expose the data of
interest. OXPath is an extension of XPath to allow page

*The research leading to these results has received funding
from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007—
2013) / ERC grant agreement no. 246858. The views ex-
pressed in this article are solely those of the authors.

(c) 2011 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

LWDM 2011, March 25, 2011, Uppsala, Sweden.

Copyright 2011 ACM XXXX ...$10.00

[cited by 2 |
Scholar [articles and patents %) | @D Emergence of scaling in random networks |
__________________ | @I AL Barabssi, R Albert - Science, 1999 - sciencemag.org

- . Page 1. DOI: 10.1126/science.286.5439.509 , 509 (1999); 28|

Thg diameter of !he world wide wel Ba?aba'si, Emergence of Scaling in Random Nelwo(rks Th)is

@D R Alber, H Jeong, AL Barabasi - Anxiv preptl non-commercial use only. . clicking here colleagues, clients,
arXivicond-mat/9907038v2 [cond-mat.dis-nily Cited by 8027 - Related articles - BL Direct - All 57 versions
Despite s increasing role in communication,'— — — — — = = = — = = = — = = — — — = — — — = = — — —

controlled medium: any individual or institutiof

Gited by 2497 agicle asH

{click /}

Goooo 0000 ooglew

fe
12345678910 Next

@

Result Page:

doc("scholar.google.com")/descendant: : field() [1]1/{"world..."}®
/following: : field()[1]/{click/}®
/(//alcontains(string(.), 'Next’)]/{click/})*®
//div.gs_r:<paper>[.//h3:<title=string(.)>]
[.//*.gs_a:<authors=substring-before(.,’” - ')>]
[.//al.#="Cited by’]/{click /}©
//div.gs_r:<cited_by>[.//h3:<title=.>]

[.//*.gs_a:<authors=substring-before(.,’ - ')>1]

Figure 1: Finding an OXPath through Google

Scholar

navigation, form filling, interactions, and the extraction of
multiple data items in a single expression.

For space reasons, we focus here on presenting the lan-
guage and point the interested reader to [1] for discussion
of OXPath’s semantics, evaluation algorithm, and formal
properties.

2. EXAMPLE

Figure 1 shows an OXPath expression for extraction of
papers, authors, and citations from Google Scholar: Lines
1-2 fill and submit the search form. Line 3 realizes the
iteration over the set of result pages by repeatedly clicking
the “Next” link. Lines 4-5 identify a result record and its
author and title, lines 6-8 navigate to the cited-by page and
extract the papers.

3. OXPATH: THE LANGUAGE

OXPath extends XPath with (1) a new axis for select-
ing nodes based on visual attributes, (2) a new node-test
for selecting visible fields, (3) a new kind of location step
for actions and form filling, and (4) a new kind of predi-
cate for marking data to be extracted. For page navigation,
we adapt the notion of Kleene star over path expressions
from [2]. Nodes and values marked by extraction markers

are streamed out as records of the result tables. For effi-
cient processing, we cannot fix an apriori order on nodes
from different pages. Therefore, we do not allow access to
the order of nodes in sets that contain nodes from multiple
pages.XPath expressions are also OXPath expressions and
retain their same semantics, computing sets of nodes, inte-
gers, strings or Booleans.

Style Axis and Visible Field Access. We introduce two
extensions for lightweight visual navigation: a new axis for
accessing CSS DOM node properties and a new node test
for selecting only visible form fields. The style axis is similar
to the attribute axis, but navigates dynamic CSS properties
instead of static HTML properties. For example, the follow-
ing expression selects the sources for the top story on Google
News based on visual information only:

doc("news.google.com")//*[style::color="#767676"1]

The style axis provides access to the actual CSS properties
(as returned by the DOM style object), rather than only to
inline styles.

An essential application of the style axis is the naviga-
tion of wisible fields. This excludes fields which have type
or visibility hidden, or have display property none set for ei-
ther themselves or an ancestor. To ease field navigation,
we introduce the node-test field() as an abbreviation. In
the above Google search for “Oxford”, we rely on the order
of the visible fields selected with descendant::field()[1] and
following::field()[1]. Such an expression is not only easier
to write, it is also far more robust against changes on the
web site. For it to fail, either the order or set of visible form
fields has to change.

Actions. For explicitly simulating user actions, such as clicks
or mouse-overs, OXPath introduces contextual action steps,
as in {click}, and absolute action steps with a trailing slash,
as in {click /} . Since actions may modify or replace the en-
tire DOM, OXPath’s semantics assumes that they produce a
new DOM. Absolute actions return DOM roots, while con-
textual actions return those nodes in the resulting DOMs
which are matched by the action-free prefix of the performed
action: The action-free prefix AFP(action) of action is con-
structed by removing all intermediate contextual actions and
extraction markers from the segment starting at the previous
absolute action. Thus, the action-free prefix selects nodes on
the new page, if there are any. For instance, the following
expression enters “Oxford” into Google’s search form using a
contextual action—thereby maintaining the position on the
page—and clicks its search button using an absolute action.

doc("google.com")/descendant::field()[1]/{"0xford"}
/following::field()[1]/{click /}

Extraction Marker. Navigation and form filling are often
means to data extraction: While data extraction requires
records with many related attributes, XPath only computes
a single node set. Hence, we introduce a new kind of qual-
ifier, the extraction marker, to identify nodes as represen-
tatives for records and to form attributes from extracted
data. For example, :<story> identifies the context nodes as
story records. To select the text of a node as title, we use
:<title=string(.)>. Therefore,

doc("news.google.com")//div[@class~="story"]:<story>
[.//h2:<title=string(.)>]
[.//span[style::color="#767676"]:<source=string(.)>]

extracts from Google News a story element for each current
story, containing its title and its sources, as in:
<story><title >Tax cuts ...</title>

<source>Washington Post</source>

<source>Wall Street Journal</source> ... </story>

The nesting in the result above mirrors the structure of the
OXPath expression: An extraction marker in a predicate
represents an attribute to the (last) extraction marker out-
side the predicate.

Kleene Star. Finally, we add the Kleene star, as in [2],
to OXPath. For example, we use the following expression
to query Google for “Oxford”, traverse all accessible result
pages, and to extract all contained links.

doc("google.com")/descendant: :field()[1]/{"Oxford"}
/following: :field()[1]1/{click /}/
(descendant::a.l:<Link=(@href)>/ancestor: :x
/descendant: :a[contains (., 'Next’)]/{click /})=*

To limit the range of the Kleene star, one can specify upper
and lower bounds on the multiplicity, e.g., (...)*{3,8}.
Also note that OXPath adopts the class selector from CSS.

4. FUTURE WORK

To the best of our knowledge OXPath is the first web ex-
traction system with strict memory guarantees. These mem-
ory guarantees reflect strongly in our experimental evalua-
tion. Just as important, OXPath is built on standard web
technology, such as XPath and DOM, so that it is familiar
and easy to learn for web developers. We believe that it has
the potential to become an important part of the toolset
of developers interacting with the web. To further simply
OXPath expressions and enhance their robustness, we plan
to investigate additional features, such as more expressive
visual language constructs and multi-property axes.

A strength of OXPath is that it is focused and easily em-
beddable. We want to exploit that potential by realizing
OXPath in a variety of contexts, but will next focus on de-
ploying OXPath in a cloud for large-scale extraction.

OXPath is designed for highly parallel execution: the host
language can assign different bindings for the same variable
to create multiple OXPath queries. These queries can be
processed with separate web sessions hosted on separate
computing instances. We think this approach to parallel
decomposition is ideally suited for the share-nothing na-
ture of computing instances in elastic computing environ-
ments. The design of a host language for the cloud requires
careful consideration: in particular, most existing web pro-
gramming languages, such as XQuery, do not provide access
to a dynamic DOM. Beyond variable bindings, any useful
host language almost certainly requires aggregation and sub-
querying capabilities.

Adapting OXPath to a cloud-based environment raises
the question of how to optimize the evaluation of several
parallel OXPath expressions in order to minimize expensive
browser instantiations, unnecessary replication of common
action sequences, and to best consolidate output extracted
by OXPath expressions running in multiple instances.

5. REFERENCES
[1] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and
A. Sellers. Finding an OXPath to Cherries Hidden in the
Scripted Web. Tech. rep., diadem-project.info/oxpath.
[2] M. Marx. Conditional XPath. TODS, 2005.

