
Semantic Integrity in Large-Scale Online

Simulations

SOMESH JHA

University of Wisconsin

STEFAN KATZENBEISSER

Technische Universität Darmstadt

CHRISTIAN SCHALLHART

Technische Universität Darmstadt

HELMUT VEITH

Technische Universität Darmstadt

and

STEPHEN CHENNEY

Emergent Game Technology

As large-scale online simulations such as Second Life and World of Warcraft are gaining economic
significance, there is a growing incentive for attacks against such simulation software. We focus
on attacks against the semantic integrity of the simulation. This class of attacks exploits the
client-server architecture and is specific to online simulations which, for performance reasons,
have to delegate the detailed rendering of the simulated world to the clients. Attacks against
semantic integrity often compromise the physical laws of the simulated world—enabling the user’s
simulation persona to fly, walk through walls, or to run faster than anybody else.

We introduce the Secure Semantic Integrity Protocol (SSIP) which enables the simulation
provider to audit the client computations. Then we analyze the security and scalability of SSIP.
First, we show that under standard cryptographic assumptions SSIP will detect semantic integrity
attacks. Second, we analyze the network overhead, and determine the optimum tradeoff between
cost of bandwidth and audit frequency for our protocol.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information

Systems]: Security and Protection; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems

General Terms: Security

Additional Key Words and Phrases: Networked Virtual Environments, cryptographic protocols,
semantic integrity

Supported by the European FP6 project ECRYPT (IST-2002-507932).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0000-0000/2008/0000-0001 $5.00

ACM Journal Name, Vol. 1, No. 2, January 2008, Pages 1–23.

2 · Somesh Jha et al.

1. INTRODUCTION

With the advent of Second Life, large-scale online simulations of virtual worlds
have for the first time attracted broad public interest beyond the computer gam-
ing community. It is widely expected that the technology of Networked Virtual
Environments (NVEs) will provide a novel paradigm for the Internet which will
partly replace the current web browser technology. Major industrial investments
in NVE technology as well as virtual representations [Siklos 2006; Gardner 2007],
standardization efforts for seamless transition between online worlds [Economist
2007b], increasing academic interest (special issues on NVEs were published by the
IEEE [IEEE 2004] and ACM [ACM 2003; 2004]) and continuous press coverage are
all witness to the impending technology leap.

Both in gaming and Second Life we have seen that virtual worlds are becoming
fast-growing economies in their own right. There is a thriving market for vir-
tual goods and territories, and virtual money can be converted to cash [Economist
2007a]. It is safe to assume that within a decade, virtual worlds will hold significant
segments of the online shopping market.

Although the attractiveness of virtual worlds is often attributed to the possi-
bility of bending certain physical laws—e.g., changing one’s physical appearance
or flying—the users expect the virtual world to differ from reality only in regular
and predictable aspects, while the laws of physics and logic are by whole and large
intact. Most importantly, the virtual world has to be consistent and fair, i.e., re-
peated online experiments should yield the same result regardless of the user. We
will refer to this property of the virtual world as its semantic integrity. The seman-
tic integrity of a virtual world is typically not formally defined, but an emergent
property of the simulation software which combines physical simulations with game
logic, animated semi-intelligent objects, etc.

Virtual economies are highly sensitive to violations of semantic integrity: in
order to sustain a realistic and fair environment, most simulations will prohibit
duplication of virtual objects, access to virtual media before purchase, walking
through walls, walking on water etc. In order to establish a common understanding
of the simulated world, it is particularly important to enforce identical policies and
restrictions on all participants. By the same reasoning, however, there is a strong
incentive for malicious users to manipulate the semantic integrity of the simulation
in order to gain financial profit or other advantages.

The key to attacks against the semantic integrity of NVEs lies in their distributed
software architecture. In a large-scale NVE, the central state server is maintaining
an abstract view of the virtual world, in particular a simplified geometry, while all
clients are responsible to maintain a concrete state. Thus the computational load
of the detailed simulation is distributed among the clients and thus the bandwidth
requirements can be reduced. With current technology, this design choice is in-
evitable: If the server system were responsible for the detailed simulation, it would
need to render individual video streams for thousands of participants and transmit
each of them over the Internet; thus, the server system would require excessive
bandwidth and CPU time.

Attacks against semantic integrity exploit the security gap which is inherent
in this architecture: they modify the client software as to support behavior which

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 3

violates the semantic integrity of the system, but is consistent with the abstract view
of the central state server. Since the state server does not have enough information
and computation power to verify the decisions of the clients, it is difficult to detect
attacks against semantic integrity.

In a previous short paper [Jha et al. 2007] we initiated a systematic study of
NVE security. Our analysis identified semantic integrity attacks as the primary
new security challenge arising from NVEs. We introduced a protocol, called the
Secure Semantic Integrity Protocol (SSIP), which enables the simulation provider
to audit the client computations. In the current paper, we analyze the SSIP pro-
tocol in depth. First, we show that under common cryptographic assumptions,
SSIP detects attacks against semantic integrity with high probability. Since the
client software is operating exclusively in the context of NVEs, our formulation of
the security property involves a scenario generator which is tailored for the client
software and provides a suitable simulation environment. Second, we analyze the
bandwidth requirements of the SSIP protocol. We argue that the protocol incurs
a very reasonable network overhead, and use an economic model to determine the
optimum tradeoff between cost of bandwidth and audit frequency.

Organization. In Section 2 we establish a taxonomy for the security threats aris-
ing in the domain of NVEs. In particular, we identify semantic integrity violations
as most critical NVE-specific security threat to be handled by the protocol intro-
duced subsequently. In Section 3 we review the client-server protocol, called the
client cycle, which is currently employed by most NVEs. Based on the client cycle,
we introduce in Section 4 our Secure Semantic Integrity Protocol (SSIP). Then in
Section 5, we define the security properties relevant for NVEs which we prove to
be satisfied by the SSIP. Finally, in Section 6, we analyze the bandwidth overhead
of the SSIP in order to determine a cost-optimal protocol parameterization.

2. THREAT ANALYSIS

The first NVEs were military simulation systems where the users belonged to well-
defined groups whose NVE-clients were trusted. However, as large-scale NVEs

with untrusted and dispersed participants are becoming more popular, the security
of NVEs becomes an eminent issue. We have identified the following security
threats in the context of an NVE with untrusted participants:

(1) System Security Attacks: There are a number of classical security problems
associated with NVEs, such as authentication, or host security. These security
issues have been widely studied [Anderson 2001; Stallings 2003].

(2) Semantic Subversion: The participants of an NVE can interact in the vir-
tual environment according to the set of rules embodied in the simulation algo-
rithms. The enforcement of these rules is of crucial importance for all honest
participants and the system’s host. We call attacks targeted at circumventing
or subverting these rules semantic attacks.

(a) Semantic Integrity Violation: Attacks in this category attempt to vi-
olate the physical and logical laws of the NVE without detection by the
server. All attacks in this class involve maliciously modified software on
the client side and come in two flavors:

ACM Journal Name, Vol. 1, No. 2, January 2008.

4 · Somesh Jha et al.

i. Rule Corruption: The malicious client attempts to modify the sim-
ulation in a way that is illegal but plausible to the server system. For
example, the client modifies their vehicle physics system to allow higher
speeds without negative road-holding consequences. The server is not
running the complex vehicle simulation, so it does not know precisely
what the vehicle should be doing.

ii. Causality Alteration: The malicious client attempts to withdraw
previous state changes to obtain unfair advantages, i.e., the client at-
tempts to “rewrite its history”. For example, position information
could be changed to avoid taking damage from an explosion, after the
explosion had happened and damage was determined by the client.

(b) Client Amplification: In this case, the client employs modified software
to achieve capabilities to exploit the possibilities of the NVE in an unin-
tended manner. During such an attack, the externally observable behavior
of the amplified client is not reliably distinguishable from the behavior
of a honest client. Amplification attacks contain the following two main
categories:
i. Sniffing: The malicious client exposes information which has to be

downloaded for technical reasons but is not intended to be observable
immediately. For example, a client can be modified to render opaque
walls as transparent, thus revealing a monster in a neighboring room
that should have been hidden. Note that cheats of this kind may
not require modifications to the client application — access to client
memory or system libraries suffices for a cheat.

ii. Agents: The malicious client enhances the natural capabilities of the
human participant. For example, an agent could automatically main-
tain a model of the world and employ search strategies to guide the
player, or could log and replay successful prior actions.

(3) Metastrategies: Attacks in this category are compliant with the NVE and
do not involve software modifications. They exploit principal vulnerabilities
present in the NVE, e.g., collusive collaboration of human participants, or
mobbing of fellow participants.

Note that system security attacks are targeted against the server systems, while all
other attack groups identified in this section describe exploits which involve only
the client side.

System security attacks are exploits that do not involve specific properties of
NVEs and therefore they are not in the scope of this paper. On the other ex-
treme, Metastrategies do not violate the semantic rules of the game, and require
solutions that look outside the environment. Consequently, the focus of this pa-
per is on Semantic Subversion Attacks; these attacks are further subdivided into
the categories Semantic Integrity Violation and Client Amplification. Some client
amplification attacks can be addressed with memory encryption or other counter-
measures [Pritchard 2000], but not all can be handled in a rigorous way because they
require models of human player capabilities. They are, however, amenable to statis-
tical detection and countermeasures similar to intrusion detection systems [Debar
et al. 1999].

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 5

We consider Semantic Integrity Violation the most important NVE-specific class
of attacks which needs to be treated at the protocol level. The protocols presented
in this paper consider both rule corruption and causality alteration attacks. To do
so, the protocols enforce the following two conditions on the client behavior:

—Rule Compliance: Each client is only allowed to act in accordance with the
rules of the NVE. This prevents rule corruption.

—Monotone History: The actions of the client must be irrevocable and unde-
niable. Consequently, clients are not allowed to choose an alternative history of
actions once they obtain more information in the future. This condition prevents
causality alteration.

3. UNSECURED CLIENT CYCLE

In this section, we review the state update mechanism, called the client cycle, that
is commonly implemented in NVEs in order to maintain a central abstract state.
We write astate to denote this abstracted state, which is centrally maintained by
a StateServer. Depending on the spatial position of clienti within the simulated
world, only a portion of the entire state is relevant for the clienti; this portion is
denoted by astate[clienti]. The relevant portion of the abstracted and centrally
maintained state is transfered to the client. Locally, this abstract state is expanded
to a concrete state by the client.

Given an abstract state s, we use γ(s) to denote the set of possible concretizations.
On the other hand, if S is a concrete state, then α(S) is the unique abstract state
which corresponds to S. The pair α()/γ() can be naturally viewed as a Galois
connection between the set of abstract and concrete states [Cousot and Cousot
1977], i.e., S ∈ γ(α(S)) and s = α(S) for any S ∈ γ(s).

When clienti connects to the NVE, it first receives a suitable concrete state
S ∈ γ(astate[clienti]) to initialize its local state state[clienti]. From this point
on, clienti maintains and updates state[clienti] locally and communicates only in
terms of abstract updates.

If clienti wishes to change its state, it has to inform the StateServer in order
to update the central NVE-state astate. For this purpose, clienti computes a
state update in the form of a compact description ∆ of the difference between the
current state state[clienti]t and the intended next state; we call ∆ a diff. Given
a state S and a diff ∆ between S and S′, we denote the application of ∆ to S by
S′ = S +∆. Note that ∆ will typically be small compared to the state descriptions
S if the NVE performs a fine-grained simulation of the virtual world (for exemplary
numbers from an entertainment application, see Section 6).

We apply α() and γ() not only to states, but also to diffs. In particular, we use
α(∆) to denote the abstraction of a diff. If S′ = S + ∆ holds, then we require that
α(S′) = α(S) + α(∆) is also true. Not every concretization ∆ of an abstract diff δ
might be applicable to a given concrete state S. Therefore, we use use γ(S, δ) to
denote the set of concretizations of an abstract diff δ which can be applied to S.
More precisely, if S′ = S +∆, then ∆ ∈ γ(S, α(∆)) and for all ∆′ ∈ γ(S, α(∆)), we
get α(S + ∆′) = α(S′).

Once the client has determined the diff ∆, the client cycle starts and the client
sends an abstraction of ∆, called the request diff δ = α(∆), to StateServer. Upon

ACM Journal Name, Vol. 1, No. 2, January 2008.

6 · Somesh Jha et al.

receiving δ, StateServer produces an authoritative diff δ′ as answer: First, invalid
changes requested in δ are removed, and second, changes caused by other clients
are added to obtain δ′. Upon receipt of δ′, clienti computes a concretization ∆′ ∈
γ(state[clienti], δ

′) and updates its own state by computing state[clienti]t+1 =
state[clienti]t + ∆′. Now a new iteration of the client cycle is being started by
computing a new diff ∆.

If the clients behave according to the NVE specification, this protocol suffices
to consistently maintain both the state of the clients and the server. However,
if malicious clients participate in the simulation, this protocol is susceptible to
semantic integrity violation as discussed in Section 1: StateServer is only able to
check whether the abstract request diffs δ = α(∆) are consistent with the abstract
state. A malicious client (see Definition 5.3) can make an inconsistent state change
∆ whose abstraction δ is consistent with the NVE rules. Thus, it gains an unfair
advantage by ignoring all rules referring to aspects which are abstracted away by
α() and which are consequently uncheckable at the server side.

4. SECURE SEMANTIC INTEGRITY PROTOCOL (SSIP)

In this section, we show how to amend the basic client cycle described above with
cryptographic mechanisms to prevent semantic integrity violation attacks. Our
approach uses the concept of optimistic execution: the protocol allows clients to
perform any state update which is consistent with the abstract NVE state. At a
later time, a dedicated and fully trusted AuditServer stochastically performs audits
of clients to check whether their sequence of concrete states is indeed consistent with
the rules of the NVE. Thus, our approach allows to trade the invested bandwidth
for the achieved degree of security.

To facilitate the auditing procedure, during each client cycle, the client reliably
sends a piece of evidence (containing a hash of the applied concrete state update)
as action commitment to AuditServer. From time to time, the client commits to
a concrete state; these states will serve as possible starting states for the audit
process. Recall that our security model assumes that AuditServer is fully trusted,
which implies that a client is unable to alter past action commitments once they
are sent. When auditing is initiated, AuditServer asks a client to provide a sequence
of concrete state updates for a specific time frame together with an initial concrete
full state. Based on this information, AuditServer simulates the requested segment
of the client computation and checks both its compliance to the NVE rules and its
consistency with the action commitments sent previously.

Audit Cycles. The auditing process is subdivided into audit cycles, where each
audit cycle consists of exactly l client cycles. At each l-th client cycle a new audit
cycle is started. At the beginning of each audit cycle, the client sends a hash of
the concrete full state as action commitment to AuditServer. As this hash may be
costly to compute because of the large state description, this message has to arrive
only within the current audit cycle (i.e., within the next l client cycles). During
each client cycle, the client sends additionally an action commitment of the applied
concrete diff; as the diff is usually small, we require that this message arrives at
AuditServer during the same client cycle.

While StateServer only keeps the current abstracted central state, the clients

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 7

maintain their current concrete state and retain a history of previous states in a local
buffer, containing up to 3 concrete states and 3l diffs. In particular, the client has to
retain a copy of the concrete state at the beginning of each new audit cycle together
with diffs between the states of intermediate client cycles. All buffer content older
than three audit cycles on the client side can be safely deleted. The buffer thus
describes a sliding window which contains the state history of the last 2l + 1 to 3l
client cycles, i.e., the last two full audit cycles and the current one. The sliding
window which is maintained at client cycle t0 ≥ 2l contains the states Sta

, Sta+l
, St0

as well as all the intermediate diffs ∆′
ta+1, . . . , ∆

′
t0 where ta = ⌊t0/l − 2⌋ l. Thus, ta

denotes the expiration time for client side audit information. The client also stores
all messages received from the server within the time interval determined by the
sliding window.

Audit Process. During the auditing, a client must prove that its actions dur-
ing the last two finished audit cycles and the current audit cycle are compliant to
the rules of the NVE. For this purpose, the client sends the state information of
the current sliding window together with all corresponding StateServer messages
to AuditServer. Now, AuditServer checks whether (1) the received state information
matches the previously submitted action commitments, (2) whether the client com-
putation is compliant to the rules of the NVE, and (3) whether the client correctly
committed itself to the starting states of all audit cycles contained in the audited
period. The audit results in a positive verdict if and only if all checks succeed.
Note that the third condition is of central importance, as this prohibits the client
from cheating on future audit starting states.

Crucial to the correctness of the audit process is the enforcement of the timing
conditions for the action commitments. The action commitment of a diff must
arrive reliably within the current client cycle, whereas action commitments on the
first concrete full state of each new audit cycle must only arrive upon completion
of the corresponding audit cycle.

Protocol Overview. SSIP enforces semantic integrity of clients through three pro-
tocols Initialize, StatusUpdate and Audit . The protocol Initialize is per-
formed whenever a client joins the NVE, whereas StatusUpdate is executed at
each client cycle. Finally, Audit implements the auditing mechanism.

For the sake of simplicity, we present the protocol for a single client that interacts
with StateServer and AuditServer. For multiple clients, the protocol is processed
asynchronously in parallel. Sending a message unreliably will be denoted by .
Sending a message reliably that must arrive before the next t-th client cycle is
initiated, will be denoted by →֒t. Unreliable messages may be dropped or delivered
with delay. However, we assume that no packet corruption occurs.

In the protocols we use a Message Authentication Code (MAC) and a collision-
free hash function as cryptographic primitives. For computing MAC-tags, an ap-
propriate key k = GenMac(1n) is generated, where n is the security parameter.
Then, a tag t for a message m is computed with t = SignMac(k, m), whereas
the verification algorithm is written as VerifyMac(k, m, t) ∈ {true, false}. We
write M = AuthMsg(k, m, client) as an abbreviation for m ‖ SignMac(k, m ‖ client),
where ‖ denotes a string concatenation with a unique encoding, i.e., a ‖ b = a′ ‖ b′

ACM Journal Name, Vol. 1, No. 2, January 2008.

8 · Somesh Jha et al.

implies a = a′ and b = b′. Furthermore, we will denote with M (1) and M (2) the
two parts of the message M , i.e., M (1) = m and M (2) = SignMac(k, m ‖ client).
The hash function CFHashh(m) is chosen from a collection of collision-free hash
functions. Let h = GenCFHash(1n) be its index, where n is the security parameter.
For the sake of simplicity we will abbreviate state[client]t with St. The protocols
use a single MAC key k which is mutually agreed between the state server and the
audit server and is used to authenticate status updates sent from StateServer to
client.

(1) client initializes t := 0 and sends an initialization request to StateServer

(2) StateServer AuditServer : k := GenMac(1n)
(3) AuditServer client : h := GenCFHash(1n)
(4) StateServer chooses S ∈ γ(astate[client])
(5) StateServer client : M0 := AuthMsg(k, S ‖n0, client)
(6) client sets S0 := S
(7) client →֒l AuditServer : Q0 := CFHashh(S0)

Fig. 1. Protocol Initialize

(1) client computes a desired status change ∆t+1 and its abstraction δt+1 = α(∆t+1)
(2) client StateServer : δt+1

(3) Upon receiving δt+1, StateServer computes a new δ′
t+1 and updates its astate

(4) StateServer client : Mt+1 := AuthMsg(k, δ′
t+1 ‖nt + 1, client)

(5) client chooses and stores ∆′

t+1 ∈ γ(St, δ′t+1) and computes St+1 = St + ∆′

t+1
(6) client →֒1 AuditServer : Dt+1 := CFHashh(∆′

t+1)
(7) client increments t
(8) if t mod l = 0

(a) client deletes all ∆′

t−i
with 2l ≤ i < 3l as well as the concrete state St−3l (if t ≥ 3l)

(b) client stores St and starts to compute Qt := CFHashh(St)
(c) After computation of Qt, client →֒l AuditServer : Qt

Fig. 2. Protocol StatusUpdate

In this paper, we assume for the sake of simplicity that the audit cycle length l
and the pair α()/γ() of abstraction and concretization functions are system-wide
announced and agreed on parameters. But note that our presentation is always
referring to the servers and a single client, and therefore, these parameters can be
chosen specifically for each individual client.

Protocol Initialize. This protocol initializes the state of a client joining the NVE

(see Figure 1). Upon opening a connection to StateServer, an appropriate MAC-
key k as well as an index h for the collision-free hash function are generated and
distributed. Then, the client receives the relevant status information together with
a randomly generated nonce n0 and a MAC of the message. At this point the state
server transmits a concrete state S ∈ γ(astate[client]) to the client. The client
initializes its local state S0 with S. This is the only time throughout the Initialize

and StatusUpdate protocol when a concrete state is transmitted. Finally, the

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 9

(1) AuditServer client : audit ‖ t0

(2) client computes ta =
j

t0
l
− 2

k

l

(3) client AuditServer : Sta
‖∆′

ta+1 ‖ . . . ‖∆′

t0
‖Mta+1 ‖ . . . ‖Mt0

(4) AuditServer computes Ŝi+1 = Ŝi + ∆′

i+1 for i = ta, . . . , t0 − 1 where Ŝta
= Sta

(5) For all i = ta + 1, . . . , t0, AuditServer checks whether ∆′

i
is chosen from γ(Ŝi, δ′i) compliant

with the rules of the NVE, where δ′
i

is taken from the message Mi

(6) For all i = ta + 1, . . . , t0, AuditServer checks whether

(a) VerifyMac(k, M
(1)
i

‖ client, M
(2)
i

) = true and
(b) CFHashh(∆′

i
) = Di

(7) AuditServer checks whether CFHashh(Sta
) = Qta

and CFHashh(Ŝta+l) = Qta+l;

If ta = 0, client AuditServer : M
(2)
0 and AuditServer checks whether

VerifyMac(k, S0‖client, M
(2)
0) = true

(8) AuditServer accepts the computations of client if and only if all tests in steps 5 to 7 passed

Fig. 3. Protocol Audit

client sends as evidence a hash of its state S0 reliably to the audit server; as the
hash of the concrete state may be costly to compute, this hash must only arrive
before the l-th client cycle is initiated.

Protocol StatusUpdate. After initialization, the client uses this protocol to up-
date its local state in each client cycle (see Figure 2). Suppose the client is in
state St and wants to change its state according to the diff ∆t+1. To initiate the
update protocol, the client reliably sends an abstracted request diff δt+1 = α(∆t+1)
to StateServer. The server checks whether this request conforms to the current
astate and computes a new authoritative diff δ′t+1. This diff δ′t+1 contains the
legitimate changes of δt+1 and changes caused by other clients. StateServer up-
dates its centrally managed state astate according to δ′t+1 and returns Mt+1 :=
AuthMsg(k, δ′t+1 ‖nt + 1, client), consisting of the diff, an incremented nonce, and
a MAC, to the client.

The client now computes a concrete update ∆′
t+1 ∈ γ(St, δ

′
t+1) and applies it

to St to enter the next state St+1 = St + ∆′
t+1. Finally the client sends a hash

Dt+1 := CFHashh(∆′
t+1) as action commitment reliably to the AuditServer before

the next client cycle is started. At the beginning of each audit cycle, the client
sends a hash Qt := CFHashh(St) of its concrete state to AuditServer. This message
is sent reliably but must only arrive within the current audit cycle, i.e., within the
next l client cycles. Finally, all outdated audit information is removed.

Protocol Audit. During the audit protocol, AuditServer validates the computa-
tion of one client (see Figure 3). In particular, AuditServer checks whether the
client can present concrete state updates that match the action commitments re-
ceived so far and are consistent with the NVE rules. The auditing protocol starts
with an audit message sent to the client during client cycle t0. The client first
computes the starting point ta of the audit. The client then (unreliably) sends
the concrete state Sta

as well as all diffs ∆′
i and messages Mi for ta + 1 ≤ i ≤ t0

to the AuditServer. Then, AuditServer checks, using the action commitment mes-
sages Di and Qi submitted by the client before, whether the client adhered to the
NVE semantics: AuditServer checks whether all ∆′

i are suitable concretizations of

ACM Journal Name, Vol. 1, No. 2, January 2008.

10 · Somesh Jha et al.

δ′i sent by the state server in message Mi, whether all state server messages Mi

(ta + 1 ≤ i ≤ t0) are unmodified and whether all action commitment messages (Dt

and Qt) submitted by the client beforehand are valid. If the first audit cycle is

audited (ta = 0), then client is required to present M
(2)
0 = SignMac(k, S0‖client) to

AuditServer additionally to prove that the initial state S0 has been authorized by
the StateServer. If all checks pass, the client is considered honest.

Protocol Overhead. The protocol can be implemented in a very resource efficient
manner: The StatusUpdate protocol requires only a few MAC and hash com-
putations over relatively small amounts of data. The hash computation over the
concrete state of a client can be processed in background during the l client cycles
of an audit cycle. Thus, state updates require only a small amount of additional
computation at the client and the server.

The Audit protocol is more data intensive as it involves the re-simulation of
the semantically relevant client computations of the audited fraction of the client
cycles—however, on these grounds, the AuditServer is able to skip large parts of the
client computations:

—The audio-visual simulation output and the background scenery simulated for the
sake of orientation and immersion only, are semantically irrelevant. Therefore,
the AuditServer is free to drop all these computations.

—As the bandwidth analysis in Section 6 suggests, the AuditServer will typically
audit a small fraction of client cycles. In our exemplary setting, the AuditServer
audits only approximately 15% of the client cycles.

Therefore, in such a setting, we would expect the data center to redo approxi-
mately 10% of the client computations. To further reduce the load, we can increase
the penalty for cheating in order to deter a larger fraction of potentially malicious
participants. Such an approach is expressed in larger values of deterrence factor D
in our bandwidth analysis in Section 6. As another strategy, we can audit all clients
being located within the same region simultaneously: By checking all movements in
a region, we expect to share a large fraction of the necessary computations during
re-simulation.

Moreover, the auditing process does not need to be performed on a single ma-
chine; rather, several audit servers may be present that audit several clients in
parallel—as the protocol suite scales with the number of audit servers without any
penalty. Finally, audits are usually not time critical and are relieved from any
realtime requirements.

5. SECURITY

In this section, we state the security property achieved by the Secure Semantic
Integrity Protocol SSIP. In particular, we introduce the two properties rule com-
pliance and monotone history, which jointly assure the semantic integrity of the
NVE. Then we show that the SSIP enforces both properties during audited client
cycles.

We introduce the successor relation ≻ on (partial) concrete states, where state ≻
state′ holds if there is a diff ∆ such that state′ = state+∆ holds and such that ∆
is compliant to the rules of the NVE. We extend the successor relation to abstract

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 11

states: If state ≻ state′ holds, then we require α(state) ≻ α(state′) to hold.
Since we do not require the converse, the successor relation on abstract states is
allowed to overapproximate the permitted concrete behavior. Using the successor
relation, we say that a sequence 〈state0, . . . , statet〉 of concrete states is valid if
statei ≻ statei+1 holds for all 0 ≤ i < t. Analogously, 〈astate0, . . . ,astatet〉 is
a valid sequence of abstract states if astatei ≻ astatei+1 holds for all 0 ≤ i < t.

In the following, we use At as abbreviation for astate[client]t, similarly as we use
St as abbreviation for state[client]. In the course of the Initialize-protocol and t
subsequent iterations of the StatusUpdate-protocol, the client receives a concrete
state S0 and a series 〈δ′1, . . . , δ

′
t〉 of (abstract) authoritative diffs. Thus, the client

and the StateServer produce cooperatively a sequence of abstract states 〈A0, . . . , At〉,
such that A0 = α(S0) and Ai+1 = Ai + δ′i+1. The StateServer is only able to check
whether the abstract sequence 〈A0, . . . , At〉 is valid. But the validity of the abstract
sequence does not guarantee its realizability: We say that 〈A0, . . . , At〉 is realizable
at concrete state S0, if there exists a valid concrete sequence 〈S0, . . . , St〉 which
starts with S0 and where Si ∈ γ(Ai) holds for all 0 ≤ i ≤ t.

Definition 5.1 Rule Compliance. A client behaves rule compliant, iff the sequence
of abstract states 〈A0, . . . , At〉 produced by the client and the StateServer is realiz-
able at the concrete state S0 received by the client during the Initialize-protocol.

If the Audit-protocol is initiated at round t0, the AuditServer asks the client to
disclose the sequence states 〈Sta

, . . . , St0〉 of concrete states by transmitting Sta
and

the diffs ∆ta+1, . . . , ∆t0 . In this situation, a malicious client could provide a rule
compliant sequence which has been manipulated: Using the knowledge available at
t0, the client could rewrite its own history to gain some advantage.

For a given q ≥ t, we denote with Hq
t the state returned by the client if queried at

time q for its former state St. Hq
t is called a historical state. If the client is honest,

it will always return its truthful historical states, i.e., Hq
t = St for all q ≥ t. In this

case, the client never rewrites its history (i.e., there exists no pair Hq
t 6= Hr

t) and
thus we say that the client has a monotone history. Finally, a monotone history
together with rule compliance assures honest behavior.

Definition 5.2 Monotone History. A client has a monotone history, iff Hq
t = St

for all q ≥ t.

Definition 5.3 Honest and Malicious Clients. A client is honest, iff it behaves
rule compliant and discloses a monotone history. Otherwise, the client is malicious.

Using standard cryptographic assumptions, the Secure Semantic Integrity Pro-
tocol (SSIP) enforces honest client behavior:

Claim 5.4 Security of SSIP. If CFHash is a collection of collision-free hash
functions, and SignMac is a message authentication code secure against selective
forgery of messages, then the Secure Semantic Integrity Protocol (SSIP) enforces
honest client behavior (assuming probabilistic polynomial time computations on
client- and server-side).

In order to refine and formally prove the statement of Claim 5.4, we show that
whenever a client is able to behave maliciously within a reasonable demonstration

ACM Journal Name, Vol. 1, No. 2, January 2008.

12 · Somesh Jha et al.

environment with non-negligible probability, either a MAC-tag can be forged or a
collision of the hash function can be found in probabilistic polynomial time, again
with non-negligible probability. Note that by assumption AuditServer is fully trusted
and the client can therefore only tamper with data sent to the state or audit servers.

We assume that AuditServer executes a single step of the StatusUpdate- and
the Audit-protocol within polynomial time with respect to the security parameter
n and the size of the concrete states. As a malicious client can only operate in
the environment of an NVE, we will use a ScenarioGenerator in our proof which
provides a client with a realistic environment by pretending to be the StateServer.
Thus, the client interacts with the ScenarioGenerator in the same way as it would
interact with the StateServer.

Definition 5.5 Scenario Generator. ScenarioGenerator is a probabilistic interac-
tive Turing Machine which takes the security parameter 1n as initial input and
produces interactively with a client some scenario 〈S0, δ

′
1, . . . , δ

′
m〉 where m is poly-

nomial in n. The resulting sequence 〈A0, . . . , At〉 of abstract states with A0 = α(S0)
and Ai+1 = Ai + δ′i+1 must be valid. After computing and outputting the first con-
crete state S0, the ScenarioGenerator waits for an abstract request diff δt from the
client to compute and return a corresponding authoritative diff δ′t. Once m authori-
tative diffs have been produced, the ScenarioGenerator terminates. The computation
of the initial concrete state S0 and the computation of each abstract diff δt must
respect probabilistic polynomial time bounds with respect to n.

Each malicious client is assumed to come with a suitable ScenarioGenerator as-
sisting the client in cheating successfully: It produces a scenario which allows the
corresponding client to demonstrate its ability to behave maliciously. For example,
the client could require the simultaneous presence of two specific objects in order
to perform its exploit and such a situation might arise infrequently in real simula-
tions. In such a case, the ScenarioGenerator will provide the client with a matching
scenario to apply its exploit. While the ScenarioGenerator is designed to provide
an opportunity for a client to cheat, it is at the same time bound to respect the
abstract rules of the NVE since 〈A0, . . . , At〉 must be a valid sequence. However,
strictly speaking, it is not necessary to explicitly provide a suitable ScenarioGener-
ator for a given malicious client, it is only required that such a ScenarioGenerator
exists.

The goal of the client in interacting with the ScenarioGenerator is to behave
maliciously while being undetected by the AuditServer. Thus, if the client is suc-
cessful in doing so, it demonstrated its capability to cheat under certain realistic
circumstances. More precisely, to prove the malicious capabilities of a client, the
allegedly malicious client, its associated ScenarioGenerator, and the trusted real-life
AuditServer engage in the following experiment.

Definition 5.6 Malicious Behavior Experiment. In the malicious behavior exper-
iment, a client, a ScenarioGenerator, and the AuditServer participate. First, the se-
curity parameter n is distributed and the AuditServer communicates the index h
of the hash function to be used by the client. Also, the ScenarioGenerator sends
an initial state S0, utilizing the Initialize-protocol, to the client. Then client and
ScenarioGenerator repeatedly execute the StatusUpdate-protocol for at most m

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 13

rounds, where m is the length of the generated scenario. In each round, client
sends a request diff δi to ScenarioGenerator and receives an authoritative diff δ′i as
response. Furthermore, the client outputs its current local state Si in each itera-
tion. The AuditServer initiates the Audit-protocol once during the experiment at a
uniformly and randomly chosen point in time t0 ≤ m. The experiment is successful,
if the client behaves maliciously within the audited time frame but is not detected
by the AuditServer.

Fig. 4 depicts this experiment graphically: GenMac generates a random MAC-
key which is subsequently used by AuthMsg to authorize the messages originating
from the ScenarioGenerator. The ScenarioGenerator produces the initial state S0

and the authoritative updates δ′1, . . . , δ
′
m, and authenticates them with the help of

AuthMsg. The authenticated messages M0, . . . , Mm are sent to client and forwarded
(possibly modified) to AuditServer as in the real StatusUpdate-protocol.

AuditServer also receives the hashes D1, . . . , Dm on the concrete diffs and the
hashes Q0, . . . , Q⌊m/l⌋l on the complete concrete states. Finally, the client produces
the sequence of local states S0, . . . , Sm. In the figure, we use thin lines to depict
messages sent during the Initialize- or StatusUpdate-protocol.

In contrast, bold lines are used for messages of the Audit-protocol: At some
uniformly and randomly chosen point in time t0, AuditServer initiates the Audit-
protocol by sending the message audit‖t0 to the client. In response, the client will
reply with the messages M̄ta+1, . . . , M̄t0 , S̄ta

, and ∆̄ta+1, . . . , ∆̄t0 . By doing so, the
client claims that Mi = M̄i, Sta

= S̄ta
, and ∆i = ∆̄i, where Sta

and ∆ta+1, . . . , ∆t0

denote states and diffs the client originally committed to. The experiment ends
when AuditServer outputs a verdict whether client behaved maliciously or not.

In Claim 5.4, we said that the SSIP enforces honest client behavior, assuming
polynomial time complexity bounds on the server and client side and assuming
that secure MACs and collections of collision-free hash functions do exist. With
the definition of the malicious behavior experiment at hand, we are able to refine
this statement as follows:

Theorem 5.7 Security of SSIP. If CFHash is a collection of collision-free
hash functions and SignMac a Message Authentication Code secure against selective
forgery of messages, then the Secure Semantic Integrity Protocol (SSIP) guarantees
that any malicious behavior experiment with a probabilistic polynomial-time client
has negligible success probability.

To prove Theorem 5.7, we show that a client which passes the malicious behavior
experiment with a non-negligible probability will yield a procedure AttackHash
producing collisions for the allegedly collision-free hash function and a procedure
AttackMac which forges MACs for the allegedly secure MAC function. At least one
of these two procedures will be successful with non-negligible probability, assuming
that the malicious behavior experiment succeeds with non-negligible probability.
Thus, we show that the existence of a client which is successful in the malicious
code experiment violates standard cryptographic assumptions. Thus SSIP enforces
honest behavior during audited client cycles.

Proof of Theorem 5.7. Suppose there exist a client and a ScenarioGenera-
tor such that the client succeeds in the malicious behavior experiment with non-

ACM Journal Name, Vol. 1, No. 2, January 2008.

14 · Somesh Jha et al.

honest/malicious

h

k

1n

δ1, . . . , δm

S0, δ
′
1, . . . , δ

′
m

D
1
,.

..
,D

m

AuditServer

client

ScenarioGenerator

AuthMsg

GenMac

M0, M1, . . . , Mm

S̄
t a

,∆̄
t a

+
1
,.

..
,∆̄

t 0

Q
0
,Q

l,
..

.,
Q

⌊m
/
l⌋

l

a
u
d
it
‖
t 0

M̄
t a

+
1
,.

..
,M̄

t 0

S0, . . . , Sm

Fig. 4. Malicious Behavior Experiment

negligible probability.
Then we construct two probabilistic polynomial-time procedures where the first

procedure AttackHash is able to find a collision of the hash function CFHash, and
the second procedure AttackMac is able to forge MACs. Either of these algorithms
will succeed with non-negligible probability, contradicting the cryptographic as-
sumptions of Theorem 5.7.

Both procedures are constructed on the basis of a malicious behavior experiment.
In particular, we claim that each successful execution of the experiment yields either
a forged MAC or a collision of the hash function.

According to Definition 5.3, a successful malicious client must either violate the
rule compliance of the NVE or the monotone history property, while being un-
detected. The rule compliance property is violated if the sequence of abstract
states, as presented by the client to the AuditServer, is not jointly produced by the
StateServer and the client or is not realizable at the given initial concrete client state.
A cheating client can attempt to present a different sequence by manipulating the
received authoritative diffs δ′i. The realizability of the sequence is always checked
correctly in the Audit-protocol by resimulating the presented concrete sequence
and checking whether it corresponds to the abstract one.

The monotone history property is violated, if the client provides the AuditServer
with a sequence of states that differs from the sequence of states it actually executed.
Thus, the client may either cheat on the diffs ∆̄i sent during the audit or on the
full state S̄ta

that provides the basis for the auditing process. In summary, the

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 15

malicious client has the following options to cheat:

(1) The client cheats on the first audited state Sta
, i.e., the state S̄ta

sent to
AuditServer differs from Sta

. In this case the client has found a second pre-
image of the hash function, as CFHashh(Sta

) = CFHashh(S̄ta
).

(2) Suppose now that the client does not cheat on the first audited state, i.e.,
S̄ta

= Sta
. Thus, the client may either cheat on some message Mi or honestly

report M̄i = Mi for all i.

(a) In the first case, the client provides a message M̄i = AuthMsg(k, δ̄′i ‖ni, client)
for a δ̄′i which has never been authenticated (since we assume that the ma-
licious behavior experiment succeeds). Thus, the client would be able to
forge the MAC of the message δ̄′i ‖ni ‖ client, which has never been authen-
ticated during the entire experiment due to the uniqueness of the nonce.

(b) In the second case (M̄i = Mi for all i), the client provided the AuditServer
with the correctly authenticated authoritative diffs, as constructed by Sce-
narioGenerator. This leaves the client with two other possibilities for cheat-
ing:
Case 1: The client cheats on a diff, i.e., there is an i such that ∆̄′

i 6=
∆′

i. Since the client committed to ∆′
i by sending Di = CFHashh(∆′

i) to
AuditServer, it follows that the client has found a second pre-image of Di.
Case 2: If the client does not cheat on the diffs, the only remaining way to
cheat successfully without being detected is to manipulate the state Sta+l.
This means that Sta+l differs from S̄ta+l = S̄ta

+ ∆̄ta+1 + . . . + ∆̄ta+l. But
the client already committed itself to Sta+l by sending the hash Qta+l =
CFHashh(Sta+l) to the AuditServer. Since the client cheats undetected, it
must have found a second pre-image of Qta+l.

Since by assumption the experiment is successful with a non-negligible probability,
we can either forge MACs or compute second pre-images of the collision-free hash
function with non-negligible probability.

It remains to construct the two attack procedures AttackMac and AttackHash
which adapt the black-box simulation and fit the definition of attacks on MACs
and collision-free hashing functions, respectively.

—We build an attack procedure AttackHash as depicted in Fig. 5a: The attack pro-
cedure AttackHash receives the index h of the hash function to be used and out-
puts a pair 〈a, ā〉 such that CFHashh(a) = CFHashh(ā) holds with non-negligible
probability.

GenMac and AuthMsg are part of the attack procedure, while GenCFHash is
external to the attack. The AuditServer has been replaced: GenCFHash is used
to provide the index h for the hash function and the message audit‖t0, which
starts the Audit-protocol, is sent at a uniformly and randomly chosen point in
time.

CFHashSelector computes the sequence ∆′
ta+1, . . . , ∆

′
t0 (based on Sta

, . . . , St0)
and the state S̄ta+l (based on the S̄ta

and ∆̄′
ta+1, . . . , ∆̄

′
t0). Then CFHashSelector

chooses uniformly and randomly one pair 〈a, ā〉 from the pairs
〈

Sta
, S̄ta

〉

and
〈

Sta+l, S̄ta+l

〉

and from the sequence of pairs
〈

∆′
ta+1, ∆̄

′
ta+1

〉

, . . . ,
〈

∆′
t0 , ∆̄

′
t0

〉

.

ACM Journal Name, Vol. 1, No. 2, January 2008.

16 · Somesh Jha et al.

k

δ1, . . . , δm

S0, δ
′
1, . . . , δ

′
m

GenCFHash

client

ScenarioGenerator

AuthMsg

GenMac

M0, M1, . . . , Mm

CFHashSelector

S̄
t a

,∆̄
t a

+
1
,.

..
,∆̄

t 0

〈a, ā〉

a
u
d
it
‖
t 0

1n

h

S
0
,.

..
,S

t 0

k

1n

δ1, . . . , δm

S0, δ
′
1, . . . , δ

′
m

GenCFHash

client

ScenarioGenerator

AuthMsg

GenMac

M0, M1, . . . , Mm

MacSelector

M̄
t a

+
1
,.

..
,M̄

t 0

h

〈m, t〉

a
u
d
it
‖
t 0

(a) AttackHash (b) AttackMac

Fig. 5. Attack Procedures

All other outputs of the client, namely the authenticated messages M̄ta+1, . . . , M̄t0 ,
the hashes D1, . . . , Dm on the concrete diffs, and the hashes Q0, . . . , Q⌈m

l
⌉l on

the concrete states, are discarded.
Let us assume that the simulation produces a collision for the collision-free hash-
ing function with non-negligible probability, i.e. that one of the possible choices
for 〈a, ā〉 is a collision under the given hash function with non-negligible prob-
ability. Then the randomly chosen pair is still a collision with non-negligible
probability.
The runtime of AttackHash is again polynomially bounded since all components
of the malicious behavior experiment are running within probabilistic polynomial
time.

—We construct an attack procedure AttackMac which takes 1n as input, has access
to an authentication oracle AuthMsg, and produces with non-negligible proba-
bility a pair 〈m, t〉 such that m has not been authenticated before by AuthMsg
but such that t = SignMac(k, m) holds for a key k which is not known to the
AttackMac.
In Fig. 5b, AttackMac is shown as the procedure which is enclosed by the dashed
box: This time, the GenMac and AuthMsg procedures are external to AttackMac
such that the used key k is inaccessible to AttackMac (and again, we replace the
AuditServer by GenCFHash and send the first message of the Audit-protocol at
a randomly chosen point in time).
The MacSelector receives the messages M̄ta+1, . . . , M̄t0 and selects one of them
uniformly and randomly. If one of these messages contains a forged MAC-

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 17

tag with non-negligible probability, then a uniformly selected message M̄i con-
tains still a forged MAC-tag with non-negligible probability. This is true, since
there are at most polynomially many such pairs. Finally, the procedure outputs
〈

M̄
(1)
i , M̄

(2)
i

〉

.

All other outputs of the client, namely the sequence of local stats S0, . . . , St0 ,
the allegedly occurred state at the beginning of the audited cycle S̄ta

and the
allegedly subsequently used diffs ∆̄ta+1, . . . , ∆̄t0 , the hashes D1, . . . , Dm on the
concrete diffs, and the hashes Q0, . . . , Q⌈m

l
⌉l on the concrete states, are discarded.

Since all components used within AttackMac run within polynomial time, Sce-
narioGenerator runs in polynomial time with respect to the security parameter n
as well.

This concludes the proof: If the protocol does not eliminate the possibility of suc-
cessful executions of the malicious behavior experiment with non-negligible proba-
bility, then it either produces forged MACs or collisions for the hash function with
non-negligible probability, and therefore at least one of the procedures AttackMac
and AttackHash will be successfully attacking the corresponding cryptographic
primitive—which contradicts the assumption that no such attack exists at all.

Integrity of the Audit Log. In the construction of SSIP we assumed that both
StateServer and AuditServer are fully trusted; in particular, AuditServer does not
frame a client by altering its previously sent action commitments. To prevent
tampering of the audit log by a potentially malicious AuditServer, the client can
protect the auditing data by using a cryptographic signature instead of a hash
function. By replacing CFHashh with a signing algorithm of an cryptographic
signature scheme which secure against existential forgery under a chosen message
attack, the integrity and authenticity of the audit information can be assured. The
security of this modified SSIP protocol can be proven completely analogous to
Theorem 5.7 by a simultaneous reduction against the unforgeability of the MAC
and the signature scheme in use.

6. BANDWIDTH OVERHEAD

In the previous section we showed that SSIP reliably identifies malicious behavior in
audited client cycles. However, due to the computational and networking resources
required for auditing, it is not possible to audit each cycle of all clients participating
in an NVE. Thus, a stochastic approach must be applied, which selectively audits
a fraction of the client cycles. It remains to determine the optimal audit probability
which balances the cost of additional bandwidth on the one hand, and the cost of
successful and uncaught cheat attempts on the other hand. Hence, we first establish
a lower bound on the minimal probability that a client cycle is audited as function
of the bandwidth, and second we calculate the optimal bandwidth investment in a
reasonable cost model.

Relating Audit Initiation Probability and Bandwidth. As a model for the auditing
strategy, we assume that AuditServer is deciding randomly and uniformly with the
audit initiation probability paudit whether to initiate the Audit-protocol within

ACM Journal Name, Vol. 1, No. 2, January 2008.

18 · Somesh Jha et al.

a client cycle.1 To relate paudit with the resulting bandwidth requirements, we
use the following notation: |S|, |∆|, and |δ| denote the average size of the client-
side maintained concrete state, of a concrete diff between two subsequent client
states, and of an abstract diff between two subsequent client states, respectively.
Furthermore, h and m denote the size of a hash and a MAC-tag.

Starting with the downstream bandwidth, we note that there are no additional
messages sent from the servers to the client. Only each authoritative diff δ′ is au-
thorized with a MAC-tag. However, since these MAC-tags are fairly small and must
be added to the authoritative diffs irrespective of all other protocol parameters, we
ignore them subsequently and rather discuss the upstream bandwidth requirements.

The upstream bandwidth U involves the messages of the Audit-protocol as well
as the additional messages of the StatusUpdate-protocol. During the StatusUp-

date-protocol we have to account for the request diff, a hash of the concrete diff
of the local state, and a hash of the complete local state in each lth client cycle,
yielding |δ| + h (1 + 1/l) bytes sent on average from the client to the servers in a
single client cycle of StatusUpdate. If an Audit-protocol is issued, the client must
transmit a copy of its complete local state and between 2l+1 and 3l concrete diffs.
Each of these concrete diffs must be accompanied by their corresponding authori-
tative diffs and their MAC-tags. Taken together, each time a client is audited, it
has to transmit on average |S| + 3l(|∆| + |δ| + m) bytes.

Since we assume that an Audit-protocol is issued with probability paudit during
a client cycle, the expected bandwidth requirements U for upstream messages are
bounded by U ≤ |δ| + h (1 + 1/l) + paudit (|S| + 3l(|∆| + |δ| + m)), and therefore
we obtain

U − |δ| − h (1 + 1/l)

|S| + 3l(|∆| + |δ| + m)
≤ paudit .

Note that any sensible choice for U must be larger than |δ| + h as to cover the
abstract request diff δ and the hashes. On the other hand, choosing U larger than
|∆| does not make sense at all since then the client could send concrete diffs instead
of abstract diffs—thus rendering the SSIP unnecessary.2 Therefore we have

|δ| + h < U < |∆|

as suitable range for U .

Relating Minimal Audit Probability and Bandwidth. To analyze the probabil-
ity that a malicious client is caught by the AuditServer, we introduce the mini-
mal audit probability pmin as the probability that a single client cycle is audited.
The particular client cycle performing the transition from St to St+1 is audited
whenever the Audit-protocol is initiated at some round t0 with ta ≤ t < t0 for
ta = ⌊t0/l − 2⌋ l. This is the case for 3l − (t − ⌊t/l⌋l) − 1 individual values of
t0. Thus the minimal probability that this particular cycle is audited is given by

1In a practical implementation, the AuditServer will also consider the client behavior, e.g.,
AuditServer will preferably audit clients which show a suspiciously strong performance.
2Even if the clients send concrete diffs, the server system could still use abstraction to reduce its
CPU load. In this case, the server system could audit its clients independently from the clients.

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 19

0.2

0.15

0.1

0.05

0
100755025

pmin

Length l of an Audit Cycle

Fig. 6. Lower Bound on pmin

1 − (1 − paudit)
3l−(t−⌊t/l⌋l)−1 ≥ 1 − (1 − paudit)

2l = pmin. Therefore, we find

U − |δ| − h (1 + 1/l)

|S| + 3l(|∆| + |δ| + m)
≤ paudit = 1 − (1 − pmin)

1/2l

and obtain the following lemma:

Lemma 6.1 Lower Bound on pmin. For an average upstream bandwidth U and
an audit cycle length l, the minimal audit probability pmin that an individual client
cycle is audited is bounded by

1 −

[

1 −
U − |δ| − h (1 + 1/l)

|S| + 3l(|∆| + |δ| + m)

]2l

≤ pmin .

The values of all variables which occur in Lemma 6.1—with the exception of
U , l and pmin—are determined by the underlying NVE and the concrete choice of
the algorithms and parameters for computing MAC-tags and collision-free hashes.
Thus, the lemma presents a trade-off between U and pmin where l can be chosen
freely to optimize the result: The larger the bandwidth U , the larger becomes pmin—
where larger values of l increase the probability pmin without requiring additional
bandwidth.

In Fig. 6, we show the resulting lower bound for pmin as function of l where we
set U to 6, 7, 8, 9, and 10kB, respectively (the higher the bandwidth U , the higher
pmin). The remaining variables are fixed as follows: |S| = 50kB (corresponding to
500 entities in the ares of interest of a client with each having roughly 100 bytes of
dynamic content), |∆| = 10kB, |δ| = 5kB, h = 256B, and m = 256B.3 For these
values, the suitable range for U is given by 5376B = |δ| + h < U < |∆| = 10240B.

For fixed U , pmin increases and quickly converges as l goes to infinity. Thus,
we can improve the minimal auditing probability pmin by increasing l, but as the
bound approaches its limit, further increments of l only achieve a minimal effect.

3These numbers and all subsequently mentioned figures rely on industrial experience within gam-
ing development.

ACM Journal Name, Vol. 1, No. 2, January 2008.

20 · Somesh Jha et al.

0.2

0.15

0.1

0.05

0
10240900070005376

pmin

U

Fig. 7. Minimal Audit Probability pmin

Therefore, we use the bound of Lemma 6.1 with l going to infinity to obtain a
simpler approximate lower bound for pmin, shown in the next lemma (for a detailed
proof, see Appendix A).

Lemma 6.2 Limit on the Lower Bound for pmin. As the length l of an au-
dit cycle goes to infinity, the lower bound on pmin converges to

1 − e−
2(U−|δ|−h)

3(|∆|+|δ|+m) ≤ pmin.

Fig. 7 shows the resulting relationship where we use for all parameters the same
values as for Fig. 6. Given these values, the bandwidth U must be chosen from
the interval 5376 < U < 10240. For these possibles choices, the SSIP guarantees a
minimal audit probability pmin strictly between 0 (for U being close to 5376) and
0.185 (for U being almost 10240).

Optimizing the Protocol Parameters. To optimize the invested bandwidth, we
have to establish a cost model which relates the bandwidth requirements with the
financial loss incurred due to successful cheaters. To do so, we introduce the band-
width cost CB per transmitted byte and the cheating cost CC for each successfully
and maliciously executed client cycle. We relate these costs with each other by
computing the total protocol cost CT which describes the combined bandwidth and
cheating cost for a single average client cycle. Next we introduce the success prob-
ability pS for a client to perform an undetected malicious client cycle such that we
have CT = UCB + pSCC for the total cost.

This success probability pS depends on a number of parameters. In particular,
we have to consider the deterring effect of caught cheaters: If many cheaters are
caught and punished, the fraction of cheating participants will decline, i.e., potential
cheaters will be deterred. Thus, we subdivide the potentially malicious fraction pM

into (1) the uncaught fraction pS of successful cheaters, (2) the caught fraction pC

of cheaters, and (3) the deterred fraction pD, with pM = pS + pC + pD. Note that
pM −pD is then the fraction of players who attempt to cheat. Following approaches
established in economics [Levitt 1996], we set pD = DpC for a deterrence factor

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 21

6

7

8

9

10

10240900070005376

105CT

U

Fig. 8. Total Protocol Cost CT

D. Therefore, as a client cycle is audited with probability pmin, we get pC =
pmin(pM − pD) = pmin(pM − DpC) and arrive at pC = pminpM/(1 + Dpmin). Since
pS = pM−pC−pD = pM−(1+D)pC we obtain—using α = 3

2 (|∆|+|δ|+m) and β =

1− pmin = e−(U−|δ|−h)/α as abbreviations—the equation pS = pMβ/(1 + D−Dβ).
Thus, the total protocol cost CT is given by

CT = UCB + pMCC
β

1 + D − Dβ
, (1)

which we want to minimize. In Fig. 8, we plot CT as function in U where we use
CB = 5 · 10−9, CC = 10−4, D = 10, and pM = 7/10 in addition to the parameters
already fixed for the preceding figures. The optimal choice for U in this example
is U ≈ 8855.86 which can be calculated directly by equating the derivate of Eq. 1
with 0, and solving the resulting theorem (for a detailed proof, see Appendix A):

Theorem 6.3 Optimal Choice for the Bandwidth U . The optimal choice
for the bandwidth U in the above cost model is

U = |δ| + h − α log

[

1 +
1

D
+

1

2D2γ

(

1 −
√

4D2γ + 4Dγ + 1
)

]

,

where we use α = 3
2 (|∆| + |δ| + m) and γ = CBα

(1+D)pM CC
as abbreviations.

7. CONCLUSIONS

The Secure Semantic Integrity Protocol (SSIP) bridges the semantic gap arising as
an inherent consequence of abstraction-based client-server NVE architectures. In
this paper, we introduced the malicious behavior experiment to analyze the SSIP in
depth and to prove that the audit trail mechanism of the SSIP is provably secure.
Thus, an audited cheating client has only a negligible chance of not being caught by
the AuditServer. However, due to bandwidth restrictions, auditing is only applicable
in a fraction of the occurring client cycles. Hence, a trade-off between the audit
probability and the resulting bandwidth cost must be chosen. We introduced a

ACM Journal Name, Vol. 1, No. 2, January 2008.

22 · Somesh Jha et al.

suitable cost model and determined a correspondingly optimal choice for the audit
probability.

Acknowledgements.. We thank Hovav Shacham for his helpful comments on a
preliminary version of this paper.

REFERENCES

ACM 2003. A game experience in every application (Special Issue). Communications of the

ACM 46, 7 (July).

ACM 2004. Interactive Immersion in 3D Graphics (Special Issue). Communications of the

ACM 47, 8 (August).

Anderson, R. 2001. Security Engineering. Wiley.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Symposium on Principles

of Programming Languages. 238–252.

Debar, H., Dacier, M., and Wespi, A. 1999. Towards a taxonomy of intrusion-detection systems.
Computer Networks 31, 9, 805–822.

Economist 2007a. A credit crunch in cyberspace. Trouble in paradise. The Economist . http:
//www.economist.com/finance/displaystory.cfm?story id=9661900.

Economist 2007b. Online gaming’s Netscape moment? The Economist. http://www.
economist.com/search/displaystory.cfm?story id=9249157.

Gardner, J. 2007. Virtual world of ’Second Life’ is starting to look a lot like Sweden. San

Francisco Business Times.

Heuser, H. 1998. Lehrbuch der Analysis, Teil 1 , 12. ed. Teubner.

IEEE 2004. Networked Virtual Environments (Special Issue). IEEE Commmunications 42, 4
(April).

Jha, S., Katzenbeisser, S., Schallhart, C., Veith, H., and Chenny, S. 2007. Enforcing Seman-
tic Integrity on Untrusted Clients in Networked Virtual Environments (Extended Abstract). In
IEEE Security and Privacy. 179–186.

Levitt, S. 1996. The Effect of Prison Population on Crime Rates: Evidence from Prison Over-
crowding Litigation. The Quaterly Journal of Economics 111, 2, 319–351.

Pritchard, M. 2000. How to hurt the hackers: The scoop on the internet cheating and how
you can combat it. Game Developer Magazine. http://www.gamasutra.com/features/
20000724/pritchard 01.htm.

Siklos, R. 2006. A Virtual World but Real Money. New York Times. http://www.nytimes.
com/2006/10/19/technology/19virtual.htm.

Stallings, W. 2003. Cryptography and Network Security. Prentice Hall.

A. PROOFS FOR SECTION 6

Proof of Lemma 6.2. One has to show that the left-hand side of Lemma 6.1,
i.e.,

1 −

[

1 −
U − |δ| − h (1 + 1/l)

|S| + 3l(|∆| + |δ| + m)

]2l

,

converges to the lower bound Lemma 6.2, i.e.,

1 − e−
2(U−|δ|−h)

3(|∆|+|δ|+m)

as l goes to infinity. To this end, we use the identity [Heuser 1998]

lim
n→∞

(

1 +
an

b + cn

)n

= ea/c

ACM Journal Name, Vol. 1, No. 2, January 2008.

Semantic Integrity in Large-Scale Online Simulations · 23

for limn→∞ an = a and introduce abbreviations al = U − |δ| − h (1 + 1/l), b = |S|,
and c = 3(|∆| + |δ| + m) in order to rewrite the required limes

lim
l→∞

(

1 −

[

1 −
U − |δ| − h (1 + 1/l)

|S| + 3l(|∆| + |δ| + m)

]2l
)

as

lim
l→∞

1 −

[

1 −
al

b + cl

]2l

.

Then we obtain the statement of the Lemma as follows:

lim
l→∞

1 −

[

1 −
al

b + cl

]2l

= 1 −

(

lim
l→∞

[

1 −
al

b + cl

]l
)2

= 1 − e−2a/c

= 1 − e−
2(U−|δ|−h)

3(|∆|+|δ|+m)

Proof of Theorem 6.3. Using

α =
3

2
(|∆| + |δ| + m) , β = e−(U−|δ|−h)/α , and γ =

CBα

(1 + D)pMCC

as abbreviations, we have to prove that

CT = UCB + pMCC
β

1 + D − Dβ

becomes minimal for

U = |δ| + h − α log

[

1 +
1

D
+

1

2D2γ

(

1 −
√

4D2γ + 4Dγ + 1
)

]

.

Calculating the derivate of CT in U , we obtain

C′
T = CB − pMCC

(1 + D)β

α(1 + D − Dβ)2

and by equating this derivate with 0 and solving the resulting equation for U we
find the two solutions

U = |δ| + h − α log

[

1 +
1

D
+

1

2D2γ

(

1 ±
√

4D2γ + 4Dγ + 1
)

]

(2)

for the desired extremal point. As the second derivate

C′′
T = pMCC

(1 + D)((1 + D)2β − D2β3)

α2(1 + D − Dβ)4

becomes positive if and only if we choose in Eq. 2 to subtract the square root, we
obtain the desired minimum for CT .

XXX — RECEIVED BLOCK

ACM Journal Name, Vol. 1, No. 2, January 2008.

