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Abstract—Although recent estimates are speaking of 200,000 different viruses, worms, and Trojan horses, the majority of them are
variants of previously existing malware. As these variants mostly differ in their binary representation rather than their functionality, they
can be recognized by analyzing the program behavior, even though they are not covered by the signature databases of current anti-
virus tools. Proactive malware detectors mitigate this risk by detection procedures which use a single signature to detect whole classes
of functionally related malware without signature updates. It is evident that the quality of proactive detection procedures depends on
their ability to analyze the semantics of the binary.
In this paper, we propose the use of model checking—a well established software verification technique—for proactive malware
detection. We describe a tool which extracts an annotated control flow graph from the binary and automatically verifies it against
a formal malware specification. To this end, we introduce the new specification language CTPL, which balances the high expressive
power needed for malware signatures with efficient model checking algorithms. Our experiments demonstrate that our technique indeed
is able to recognize variants of existing malware with a low risk of false positives.

Index Terms—Invasive Software, Model Checking.
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1 INTRODUCTION

THE Internet connects a vast number of personal
computers, most of which run Microsoft Windows

operating systems on x86-compatible architectures. Re-
cent global security incidents have shown that this
monoculture is a very attractive target for e-mail worms,
self-replicating malicious programs which rely on users
opening e-mail attachments out of curiosity. Spreading
with this rather unsophisticated method, various ver-
sions of NetSky, MyDoom, and Bagle have dominated the
malware statistics of 2004 and are still regularly seen in
top 10 threat lists in 2008. MyDoom alone caused a total
economic damage of around 3 billion US Dollars during
the phase of its initial outbreak [2].

Despite the high economic damage, it is relatively
easy to develop e-mail worms: In contrast to the ‘classic’
viruses of the pre-Internet era, which spread by infecting
executable files, e-mail worms that infect hundreds of
thousands of computers can be created without knowl-
edge of system programming or assembly language.
Today’s e-mail worms are commonly written in high-
level programming languages: MyDoom and NetSky, for
example, have been created using Microsoft Visual C++.
The source code of these malicious programs is often
spread via Internet forums, making it accessible to the
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broad public including the infamous script kiddies. Since
high-level code can be easily altered and recompiled,
several modified versions of the worm (called variants)
typically appear in the wild shortly after the initial
release of the worm. In addition to variants created by
different individuals, the original author usually releases
his own improved and extended versions of the worm in
short order. For example, NetSky exists in more than 30
versions, of which up to three were released during one
single day. While worm variants differ only slightly from
the original in terms of functionality, the executable file
can differ significantly, depending on the compiler and
its optimization settings.

Due to these differences in the binary representation,
current anti-virus products usually fail to detect new
malware variants unless an update is supplied [3]. Their
principal detection method relies on a large database of
virus signatures, binary strings of known viral code. A
file is assumed to be malicious if it contains one of the
signature strings. In order to minimize false positives
of the detector, signatures are chosen very narrowly so
that one signature matches exactly one specific worm.
Consequently, a signature designed for one version of
a virus or worm will usually not match against future
variants thereof. Anti-virus vendors address this prob-
lem by releasing updates to their signature databases as
quickly as possible, usually daily or in some cases even
several times a day. However, there will always be a
significant time span between the release of a new worm
(variant) and the next database update, called ‘window
of vulnerability’, during which the new malware remains
undetected by conventional scanners.

Removing or shortening this window of vulnerability,
i.e., enhancing malware detectors in a way that they
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Fig. 1. Architecture of the proposed worm detector.

are capable of detecting worms which were not known
at the time of the last signature update, is one of the
central problems considered in anti-virus research. Even
though theoretical results [4] show that it is impossible
to construct a universal malware detector (i.e., a detector
that is capable of detecting every foreseeable malware),
malicious code that performs similar actions as known
malware can be identified by a proactive malware de-
tector. Such a detector does not use the mere syntactic
representation of a worm as a detection criterion, but
rather checks for the presence of malicious behavior in
suspicious binaries. This approach allows to reliably
detect a whole class of malicious programs that share
a common functionality, even if their precise syntactic
representations are not known beforehand. Rather than
using syntactic malware signatures, proactive detectors
use signatures that match known malicious functionality.
In particular, this approach lends itself for the detection
of worm variants.

In this paper we outline a proactive semantic detection
tool for computer worms which employs model check-
ing, an algorithmic formal verification method widely
used for verifying correctness properties of hard- and
software. The architecture of the malware detector is
depicted in Figure 1. The core component of the de-
tector is a model checker that checks a model of a
potentially malicious program against malicious code
specifications, i.e., malware signatures specifying known
malicious behavior, abstracted from implementation de-
tails. The program model is produced by a model extrac-
tor, which prepares a potentially malicious program for
disassembly (e.g., by unpacking or decryption), passes
the preprocessed code to a disassembler and extracts a
simplified finite-state model from the disassembly. The
specifications are written in the temporal logic CTPL,
which is an extension of the classic branching-time logic
CTL that lends itself well to the specification of code
behavior. Using CTPL specifications, we were able to
write signatures that match a large class of functionally
related worms; for example, one single CTPL malware
signature matches several variants of the NetSky, MyDoom
and Klez worms without producing false positives.

The rest of the paper is structured as follows. In

Sections 2 and 3 we review related work and the basic
principles of model checking. Section 4 details the model
extraction component of the detector. Our specification
logic CTPL is introduced in Section 5; the capabilities
of CTPL to specify malicious code behavior are demon-
strated in Section 6. An efficient model checker for CTPL
is introduced in Section 7; experimental results and
limitations of the approach are discussed in Section 8.
Finally, Section 9 concludes.

2 RELATED WORK
Mitigating the above-mentioned shortcomings of tra-
ditional signature matching [3] has spurred academic
research on improved methods for malware detection
and analysis. Besides lightweight, statistical methods
designed for use in Network Intrusion Detection Sys-
tems, where speed is critical [5], [6], there are a number
of strategies which attempt to detect malicious behav-
ior. These techniques follow two principal approaches,
which are occasionally combined: Dynamic Analysis is
performed on actual execution traces of the program
under examination, while Static Analysis processes the
whole program, i.e., all possible execution paths.

In Host-based Intrusion Detection Systems (HIDS),
dynamic analysis is implemented as a live analysis
program that runs in the background of a production
system. Such a background monitor looks for suspicious
sequences of system calls or for anomalies in the exe-
cution behavior of known system services [7]. While a
HIDS provides decent protection at runtime, it cannot
ensure that a program will not behave maliciously in the
future. Alternatively, dynamic analysis can be performed
by using sandboxes. A sandbox consists of a virtual
machine and a simulated environment which are used
to run suspicious executables for a limited time span.
Depending on the sequence of actions, the simulated
program is classified as malicious or benign [8], [9],
[10], [11]. Sandbox-based systems suffer from the same
restrictions as HIDS, but additionally monitor a program
only over a short timeframe, making them blind towards
malware that does not execute its payload right away.

To overcome this inherent problem of dynamic anal-
ysis, Moser et al. [12] adopted techniques from directed
testing [13], [14] to explore multiple execution paths of
a process. During execution of the process, they save
memory snapshots at every conditional jump which
depends on certain types of input data (e.g., system
time, network data, etc.). Subsequently, they restore each
snapshot, patch all data so that the opposite branch
condition is met, and run the process again. The analysis
tool can thus detect behavior which is triggered by
certain dates or network commands. Still, timeouts are
required in case of long computations or if a large
number snapshots is created, which cause the tool to
miss malicious behavior in many cases (the paper reports
42%).

Static analysis determines properties of all possible
execution paths of a program. A malicious code detector
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using static analysis classifies programs as malicious
or benign according to their potential behavior. This is
achieved by disassembling an executable and analyzing
its control and data flow, without actually running the
program. Bergeron et al. [15] proposed an early system
which checks the control flow graph of a disassembled
binary for suspicious system call sequences. The system
does not allow to specify data dependencies, which are
required to reliably identify malicious code (in particular
the scheme is not able to express all specifications of
Section 6).

Singh and Lakhotia [16] sketched a system that trans-
lates the control flow graph of a binary into input for the
model checker SPIN. Viral specifications are written in
the linear temporal logic LTL and encode sequences of
system calls. Unfortunately, they did not report results
on real test data, and in [17] they express serious doubt
about the feasibility of this method and malicious code
detection by formal methods in general.

Christodorescu and Jha [18], [19], [20] describe a mal-
ware detection algorithm which matches disassembled
procedures against abstract malware templates. The tem-
plates are given as code snippets which describe the
code fragment to be detected, but use abstract variable
names and functions. The matching algorithm performs
unification of template instructions with the actual code,
and uses decision procedures to verify semantic equality
between templates and the code under analysis. Similar
to our approach, their matching algorithm also uses uni-
fication and is resilient against simple obfuscations [20].
The fundamental difference to the technique proposed
in this paper is that we use an expressive branching
time logic to specify malicious code, which allows more
flexible specifications and helps to capture a wider range
of similar malicious behavior found in different malware
families.

3 MODEL CHECKING
Model checking [21], [22] is an algorithmic method
to automatically verify the correctness of a finite state
system with respect to a given specification. During the
last years, model checking has become a standard tool
in the hardware industry, and is increasingly used to
verify the correctness of software. In model checking, a
system can be a piece of hardware or software that is
represented by a labeled state transition graph, a Kripke
structure. The nodes of the Kripke structure are labeled
with atomic propositions which represent properties of the
system that hold in the respective states.

Formally, a Kripke structure M is a triple 〈S,R,L〉,
where S is a set of states, R ⊆ S × S is a total transition
relation, and L : S → 2P is a labeling function that
assigns a set of propositions (elements of P ) to each
state. A proposition p ∈ P holds in s, if and only if
p is contained in the set of labels of the state s, i.e.,
M, s |= p ⇔ p ∈ L(s).

A path π = s0s1s2 . . . in M is an infinite sequence of
states si ∈ S with (si, si+1) ∈ R for each i ≥ 0. As an

abbreviation, we denote with πi the suffix of a path π
beginning with position i, in such a way that π0 = π.
Πs denotes the set of all possible paths in M beginning
with a state s.

Specifications verified by model checking are often
expressed as formulas in a temporal logic such as CTL*,
LTL, or CTL. Since the specification logic we will use
later in this paper is based on CTL, we give a brief
introduction to CTL. More detailed information can be
found in the literature [23]. CTL extends propositional
logic by six temporal operators which allow to specify
the temporal behavior of a system: A,E,X,F,G,U; A
and E are path quantifiers that quantify over paths in
a Kripke structure, whereas the others are linear-time
operators that specify properties along a given path π.
If a formula ϕ holds in a state s of the Kripke structure
M , we write M, s |= ϕ. Aϕ is true in a state s if ϕ is
true for all paths in Πs; in contrast, Eϕ is true in a state
s if there exists a path in Πs where ϕ holds. The other
operators express properties of one specific path π: X p
is true on a path π if p holds in the first state of π1,
F p is true if p holds somewhere in the future on π, G p
is true if p holds globally on π, whereas pU q is true if
p holds on the path π until q holds. In CTL, path and
linear-time operators can occur only pairwise (i.e., in the
combinations AX,EX,AU,EU,AF,EF,AG,EG).

For verification purposes, CTL is used to formulate
desired properties of a system. For example, in a concur-
rent system it should be guaranteed that two processes
do not enter a critical section at the same time. In
CTL, this requirement can be expressed by the formula
AG¬(crit1 ∧ crit2), where crit1 and crit2 are propositions
assigned to each state in the critical sections of the two
processes. As a second example, one may want to ensure
that a file opened by a process will eventually be closed
again. Using two propositions open and close which hold
in those states where the respective I/O operations are
invoked, a CTL specification for this property can be
written as AG(open → AF close). Conversely, we can
specify that a file is never closed without having been
previously opened by the formula A[¬close U open].

Efficient model checking algorithms are known which
verify whether a CTL specification ϕ holds in a Kripke
structure. For details, we refer to Clarke et al. [23].

4 MODEL EXTRACTION

As shown in Figure 1, our proactive worm detection
tool employs model checking on a program model in
the form of a Kripke structure. In this section we de-
tail the model extraction component, which is a three-
stage process: First, the program has to be prepared
for disassembly (i.e., by removing dynamic packing or
encryption routines) so that the potentially malicious
binary code is exposed. After this preprocessing step,
the resulting binary code is passed to a disassembler.
Finally, a Kripke structure representing the control flow
graph of the disassembly is constructed.
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4.1 Preprocessing
Most computer worms are packed with freely available
executable packers such as UPX [24] or FSG [25], which
allow to reduce the size of an executable in order to save
bandwidth or disk space. These tools compress and/or
encrypt an executable and add an extraction routine to
the compressed file. Every time the packed executable is
run, this routine decompresses and decrypts the original
binary into system memory and cedes control to the
unpacked binary. Packers are routinely used by malware
authors both to reduce the file size (thereby increasing
the infection rate) and to ‘hide’ the malicious code from
plain inspection.

In order to get access to the original binary code
of a packed program, it first needs to be unpacked.
This can either be done dynamically, by allowing the
program to load and then dumping the process to disk
after decompression has finished [26], or statically with
designated unpacking programs. In our implementation,
we used static unpackers for UPX, FSG, ASPack, and
Petite to obtain unpacked worm samples.

4.2 Disassembling
Once the program is unpacked and one has access to
the potentially malicious code, the program is disassem-
bled. In principle, there are two possible disassembly
strategies: A linear sweep disassembler starts at the entry
point of a program and decodes the instructions strictly
sequentially, assuming that each instruction is aligned
to the next. In contrast, a recursive traversal disassembler
follows the control flow of the program, resolves the
target address of each jump or call instruction and starts
disassembling another control flow branch there.

Our current implementation uses IDA Pro [27], a
recursive traversal disassembler supported by several
heuristics and library signatures. IDA Pro identifies sub-
routines and local variables, and provides the capability
of automatically resolving imported system calls, which
allows us to use them in the detection process.

Note that correct disassembly is an important step for
any proactive malware detection tool based on static
analysis. Unfortunately, program obfuscation methods
exist that hinder successful disassembly (see also Sec-
tion 8.4). Linn and Debray [28] proposed various ob-
fuscation techniques specifically targeted against disas-
sembly. Reversing such obfuscations is possible [29] but
out of scope of this paper. Furthermore, the practical
relevance of these highly sophisticated obfuscations is
currently rather small. The majority of e-mail worms do
not employ any obfuscation methods besides the use
of executable packers. Typically, a worm is compiled
with an industry standard compiler that produces code
current disassemblers are able to process successfully.

4.3 Model Builder
Once the assembly source of the potentially malicious
program is exposed, we build the program model. Due

label1:
cmp ebx,[bp-4]
jz label2
dec ebx
jmp label1

label2:
mov eax,[bp+8]

cmp(ebx,[bp-4])

#loc(0)
s0

jz(label2)

#loc(1)
s1

dec(ebx)

#loc(2)
s2

jmp(label1)

#loc(3)
s3

mov(eax,[bp+8])

#loc(4)
s4

Fig. 2. Executable code sequence and corresponding
Kripke structure.

to complexity reasons, the model builder treats every
subroutine of the potentially malicious program sepa-
rately. The generated program model consists of a set of
Kripke structures, each representing the control flow of
one subroutine. Each node in the graph represents one
machine instruction and is labeled with two propositions:
A proposition representing the instruction the node cor-
responds to (including opcode and parameters), and a
unique identifier. For example, the instruction dec ebx
would be represented by the proposition dec(ebx). As
unique identifier we use a special proposition #loc(L),
where L is some constant value unique to each state;
the current implementation uses the offset of the state’s
instruction as the value of L. More precisely, we produce
the Kripke structures as follows:

• Every state that is labeled with an unconditional
jump (jmp) is connected only to its jump target.

• States labeled with a conditional jump (such as jz,
jbe) are modeled as nondeterministic choice; they
are connected to both the state representing their
immediate successor in the disassembly (the fall-
through successor) and their jump target.

• Indirect jumps are currently not supported and are
thus only connected to themselves to ensure totality
of the transition relation (see also Section 8.4).

• Call instructions are connected to their fall-through
successor and return statements are treated like
indirect jumps. Note that it would be possible to
do interprocedural analysis by inlining the called
procedure at this point.

• Every other state is connected to its fall-through
successor.

Figure 2 demonstrates how a fragment of assembly code
is transformed into a Kripke structure according to these
rules.
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5 COMPUTATION TREE PREDICATE LOGIC

5.1 Robust Malware Specifications

For malware detection, we use program specifications
that describe unwanted (viral) behavior. Specifications
for the proactive detection of malicious code differ sub-
stantially from specifications used to verify the correct-
ness of programs, since they need to be robust: The
specifications have to be applicable to all disassembled
programs, and should match whenever a program con-
tains the specified behavior, regardless of implementation
details. Robust specifications should satisfy the following
requirements:
• Specifications have to abstract as many implemen-

tation details as possible. In particular, they should
not specify choices made by the compiler during
the compilation step (e.g., register assignment or
instruction scheduling).

• Specifications should be resilient against simple in-
struction level obfuscations, deliberately inserted by
malware writers to circumvent detection. Among
these obfuscations are dead code insertion (where
useless code, such as nop or mov eax,eax, is
inserted between the original instructions), code
reordering (where the program is fractured into
several pieces, which are ordered randomly and
connected through unconditional jumps) and reg-
ister substitutions (where register names are ex-
changed consistently in the program). The simplicity
of these obfuscations allows to fully automate the
obfuscation process, which makes them particularly
attractive for use in virus construction kits or poly-
morphic viruses [30], [31], [32].

• Specifications need to be concise and easy to write.
Classic temporal logics used in verification are unsuited
to write robust specifications. For example, consider the
statement ‘The value 2Fh is assigned to some register, and the
contents of that register is later pushed onto the stack’, which
can only be specified in CTL by simply enumerating all
possible implementations in one large expression:

EF(mov eax,2Fh ∧AF(push eax)) ∨
EF(mov ebx,2Fh ∧AF(push ebx)) ∨
EF(mov ecx,2Fh ∧AF(push ecx)) ∨ . . .

Robust CTL specifications for assembly code tend to
be very large, as a formula invariant against register
substitution has to explicitly mention each possible reg-
ister assignment. In addition, specifications involving
memory locations would require inclusion of each indi-
vidual memory address in the formula, which is clearly
infeasible.

In order to account for these difficulties we use the
temporal logic CTPL (Computation Tree Predicate Logic),
which is a subset of first-order CTL [33], [34]. It is equally
expressive as CTL, but in general has more succinct
specifications. In particular, CTPL allows to write ma-
licious code specifications that differentiate between the

opcode of an instruction and its parameters; in addition,
the introduction of universal and existential quantifiers
simplifies formulas considerably.

5.2 Predicates
As mentioned in Section 3, the basic properties of states
in Kripke structures are modeled as atomic propositions.
In CTPL, we relax this condition and use predicates
as atomic propositions (see Section 4.3). This approach
allows specifications for assembly code to differentiate
between the opcode of an instruction and its parameters.

More formally, let U be a finite set of strings. In
our setting, U contains all integer values, all memory
addresses, all register names, and combinations thereof
(e.g. for indexed addressing). Furthermore, let N be
a set of predicate names. In our setting, N contains
all opcodes and the special symbol #loc. Labels for
states in the Kripke structure are chosen from the set
PU of all predicates over elements of U , i.e., PU =
{p(t1, . . . , tn) | t1, . . . , tn ∈ U , p ∈ N}.

5.3 Syntax of CTPL
Let X be a set of variables disjoint from U . The syntax
of CTPL is defined inductively:
• > and ⊥ are CTPL formulas.
• If p ∈ N is a predicate of arity n ≥ 0 and t1, . . . , tn ∈
U ∪ X , then p(t1, . . . , tn) is a CTPL formula.

• If ψ is a CTPL formula and x ∈ X , then ∀x ψ and
∃x ψ are CTPL formulas.

• If ψ is a CTPL formula, then ¬ψ, AXψ, AFψ, AGψ,
EX ψ, EF ψ, and EG ψ are CTPL formulas.

• If ψ1 and ψ2 are CTPL formulas, then ψ1∧ψ2, ψ1∨ψ2,
E[ψ1 U ψ2], and A[ψ1 U ψ2] are CTPL formulas.

A formula is called closed if each variable is bound by a
quantifier. Without loss of generality, we assume that all
bound variables have unique names.

5.4 Semantics of CTPL
We call a partial function B mapping variables x ∈ X to
constants from the universe U an environment. In abuse
of notation, we let B(c) = c for each constant c ∈ U . If a
CTPL formula ϕ is true in a state s of a Kripke structure
M under environment B, we will write M, s |=B ϕ. A
formula ϕ is true in M (written M |= ϕ) if M, s0 |=∅ ϕ
holds for the initial state s0.

The detailed definition of |= is given in Table 1. In
most parts, this definition is similar to the semantics of
CTL, modified only to respect the environment B. Rule
1 initializes the environment with the empty binding,
implicitly requiring ψ to be closed. Rule 2 defines the
semantics of CTPL predicates: A predicate p(t1, . . . tn)
over t1, . . . , tn (variables or constants) evaluates to true
in a state s with respect to a binding B if and only if
s is labeled with p(B(t1), . . . , B(tn)). Rule 3 defines the
quantifier ∀ in the way that M, s |=B ∀x ψ holds if ψ
holds with respect to all environments that extend B by
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TABLE 1
Semantics of CTPL.

1. M |= ψ ⇔M, s0 |=∅ ψ
2. M, s |=B p(t1, . . . , tn)⇔ p(B(t1), . . . , B(tn)) ∈ L(s).
3. M, s |=B ∀x ψ ⇔ ∀c ∈ U . M, s |=B∪(x 7→c) ψ.
4. M, s |=B ∃x ψ ⇔ ∃c ∈ U . M, s |=B∪(x 7→c) ψ.
5. M, s |=B ¬ψ ⇔M, s |=B ψ does not hold.
6. M, s |=B ψ1 ∨ ψ2 ⇔M, s |=B ψ1 or M, s |=B ψ2.
7. M, s |=B ψ1 ∧ ψ2 ⇔M, s |=B ψ1 and M, s |=B ψ2.
8. M, s |=B EFψ ⇔ There is a path π ∈ Πs containing

a state si ∈ π such that M, si |=B

ψ.
9. M, s |=B EGψ ⇔ There is a path π ∈ Πs such that

M, si |=B ψ for all states si ∈ π.
10. M, s |=B EXψ ⇔ There is a state s1 such that

(s, s1) ∈ R and M, s1 |=B ψ.
11. M, s |=B E [ψ1Uψ2] ⇔ For a path π = (s0, s1, . . . ) ∈

Πs there is a k ≥ 0 such that
M, si |=B ψ1 for all i < k and
M, sk |=B ψ2.

12. M, s |=B AFψ ⇔ Every path π ∈ Πs contains a state
si ∈ π such that M, si |=B ψ.

13. M, s |=B AGψ ⇔ On every path π ∈ Πs, there holds
M, si |=B ψ in all states si ∈ π.

14. M, s |=B AXψ ⇔ For all s1 such that (s, s1) ∈ R,
holds M, s1 |=B ψ.

15. M, s |=B A [ψ1 Uψ2] ⇔ For all paths π = (s0, s1, . . . ) ∈
Πs there is a k ≥ 0 such that
M, si |=B ψ1 for all i < k and
M, sk |=B ψ2.

a mapping of x to an element of the universe U . Rule 4
handles ∃ analogously. All other rules are standard rules
for CTL.

6 SPECIFYING MALICIOUS CODE BEHAVIOR

In this section we show how CTPL can be used to write
robust specifications for malicious code, i.e., specifica-
tions that abstract from implementation details fixed
at compile time and tolerate simple instruction-level
obfuscations. These specifications will therefore match
against whole classes of malicious programs and allow
for proactive detection.

6.1 Modeling Program Behavior

CTPL allows for much flexibility in specifying program
behavior. For example, we can formalize the statement
‘The program contains an execution path where at some point
some register is set to zero and pushed onto the stack in the
next instruction’ by the succinct CTPL formula

∃r EF(mov(r,0) ∧ EX push(r)).

Here, r is a variable, existentially quantified by ∃, and 0
is a constant, while mov and push are both predicates.
By replacing EX with EF, we can specify a code sequence
where other instructions are allowed to occur between
mov and push, thus transforming the specification into
‘The program contains an execution path where at some point

C Declaration:
DWORD GetModuleFileName(

HMODULE hModule,
LPTSTR lpFilename,
DWORD nSize

);

Assembler Code:
xor ebx, ebx

push 80h

lea eax, lpFileName

push eax

push ebx

call GetModuleFileName

hModule

Return Address

esp

nSize

lpFileName

ebp

Fig. 3. Local stack frame at the moment of a system call.

some register is set to zero, and from there a path exists such
that this register is finally pushed onto the stack’:

∃r EF(mov(r,0) ∧ EF push(r)).

Note that this specification does not prevent the presence
of instructions between mov and push that modify the
content of the register r. To ensure that the value of 0
is still present in r we can use the CTPL operators EU.
For example, to disallow any mov instruction that writes
to register r between the initial mov and the final push,
we can use

∃r EF(mov(r,0) ∧ EX E(¬∃t mov(r, t)) U push(r)).

Of particular interest for malicious code specifications
are calls to the system API, as they are necessary to
perform I/O operations, such as network or file access.
In assembly language, a system call to the Windows API
is made by the call instruction. Immediately before
this call, one or more push instructions will be present,
pushing the parameters of the system call onto the stack.
The stack layout for the parameters of a system call at the
moment the call is executed can be seen in Figure 3; for
illustration purposes, we use the API call GetModule-
FileName. The push instructions either have constant
parameters, or they are preceded by other instructions
that compute the parameter value dynamically.

CTPL can be used to specify the behavior of such
code fragments independently of the actual instruction
ordering produced by the compiler. Such a specifica-
tion enforces only the correct computation of parameter
values and the correct stack layout at the time of the
function call. In the specification, we write a conjunction
of several different subformulas; one subformula rep-
resents the order in which the function parameters are
pushed onto the stack, ending with the system call itself,
while the other subformulas specify the computation
of the individual parameter values. To ensure that the
computation of a parameter is completed before it is
pushed onto the stack, we enforce an order between
certain states across different subformulas using the
location predicate #loc(L). As #loc(L) holds in exactly
one state for a specific value of L, we can be sure that
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multiple occurrences of #loc(L) in the CTPL formula will
always reference the same state.

Using this approach, a specification for a correct call
to a function fn that takes two parameters, where the
second parameter is set to zero using a mov instruction,
can be written as:

∃L∃r1EF(mov(r1, 0) ∧ EF #loc(L))∧
∃r2 EF(push(r2) ∧ EF(push(r1) ∧ #loc(L)

∧ EF call(fn)))

For simplicity, the above formula does not ensure the
integrity of registers or the stack. The first subformula (in
the first line) expresses that there exists a mov instruction
in the code that clears some register r1. After this instruc-
tion, there will be some state labeled with the location L,
which corresponds to the push instruction in which this
value is pushed onto the stack. The second subformula
(lines 2 and 3) asserts the correct stack layout and
specifies a sequence of push instructions that precede
a call to function fn. In particular, it asserts that
• eventually a register r2 will be pushed onto the

stack,
• at some later point register r1 (which is the same

register as in the first subformula) is also pushed
onto the stack by the instruction at location L,

• finally a call to function fn is executed.
Note that we do not specify a temporal relationship of
the two subformulas based on temporal CTPL operators.
The only temporal link between them is the location L
of the instruction that pushes register r1.

6.2 An Example: Klez.h
The sequence of system calls and their interdependen-
cies are a characteristic feature of a program; therefore
they lend themselves to robust specification of malicious
programs. In this section we will, as an example, develop
a specification for malicious code that operates in a
similar manner as the Klez.h worm. Worms of the Klez
family contain infection functionality typical for many e-
mail worms. Even though the specification is extracted
from one worm instance, it matches several worms
that behave in a similar manner (see Section 8.3). The
extraction of a malicious code specification from a piece
of malware is a manual process; however, a carefully
designed specification will match many variants of this
malware and malicious code from other families as well.

Figure 4 shows a part of the disassembled infection
routine of Klez.h. The code uses the Windows API call
GetModuleFileName to determine the filename of the
executable it was loaded from, and afterwards uses a
second system call CopyFile to copy this file to another
location, usually a system directory or shared folder. The
Windows API function GetModuleFileName can be
used to retrieve the filename of the executable belonging
to a specific process module and takes three parameters:

1) hModule: a numerical handle to the process mod-
ule whose name is requested,

mov edi, [ebp+arg_0]
xor ebx, ebx Clear register ebx for later
push edi use.

...
lea eax, [ebp+ExFileN] Get address of string buffer.
push 104h Push string buffer size.
push eax Push string buffer address.
push ebx Set first argument to NULL.
call ds:GetModuleFileN. System Call.
lea eax, [ebp+FName] Load the address of the des-

tination filename.
push ebx Set third argument to zero.
push eax Push address of the destina-

tion filename.
lea eax, [ebp+ExFileN] Fetch source filename ad-

dress.
push eax Push address as first argu-

ment.
call ds:CopyFile System Call.

Fig. 4. Code fragment of the infection routine of Klez.h.

2) lpFilename: a pointer to a string buffer desig-
nated to hold the returned filename, and

3) nSize: the size of the string buffer.

In particular, if hModule is zero (NULL), the filename
of the calling process is returned. The system call Copy-
File takes three parameters:

1) lpExistingFilename: a pointer to a string hold-
ing the name of the source file,

2) lpNewFilename: a pointer to a string containing
the target filename, and

3) bFailIfExists: a flag that determines whether
the target file should be overwritten if it already
exists.

The fragment of assembly code in Figure 4 displays the
invocation of those two system calls in the infection rou-
tine, along with the necessary parameter initializations.
By abstracting implementation details of the infection
routine, we created the CTPL formula in Figure 5. The
formula owes its structure to the technique for specifying
system calls described in Section 6.1. It matches code
that calls GetModuleFileName with a zero handle to
retrieve its own filename, and later uses the result as a
parameter to the system call CopyFile. The formula is
divided into three main subformulas, connected by the
∧ operator. Temporal dependencies are expressed by the
use of location predicates. The first line of the formula
quantifies the variables common to all three of the main
subformulas:

• Lm, the location of the GetModuleFileName call,
• Lc, the location of the CopyFile call, and
• vFile, the string buffer which holds the filename of

the process.

The first and largest subformula, from lines 2 to 14,
specifies the call to GetModuleFileName. It is itself
split into three subformulas, which share the following
local variables:
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1 ∃Lm∃Lc∃vFile(
2 ∃r0∃r1∃L0∃L1∃c0(
3 EF(lea(r0, vFile)
4 ∧EX E(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))
5 ∧EF(mov(r1,0)
6 ∧EX E(¬∃t(mov(r1, t) ∨ lea(r1, t)))U#loc(L1))
7 ∧EF(push(c0)
8 ∧EX E(¬∃t(push(t) ∨ pop(t)))
9 U(push(r0) ∧ #loc(L0)
10 ∧EX E(¬∃t(push(t) ∨ pop(t)))
11 U(push(r1) ∧ #loc(L1)
12 ∧EX E(¬∃t(push(t) ∨ pop(t)))
13 U(call(GetModuleFileName)
14 ∧#loc(Lm))))))
15 ∧∃r0∃L0(
16 EF(lea(r0, vFile)
17 ∧EX E(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))
18 ∧EF(push(r0) ∧ #loc(L0)
19 ∧EX E(¬∃t(push(t) ∨ pop(t)))
20 U(call(CopyFile) ∧ #loc(Lc)))
21 )
22 ∧EF(#loc(Lm) ∧ EF#loc(Lc))
23 )

Fig. 5. CTPL specification for a program that creates
copies of itself.

• r0, in which the address of the string buffer for the
executable filename is loaded,

• r1, the register holding the NULL value passed as
parameter hModule,

• L0, the location in which the pointer to the string
buffer r0 is pushed,

• L1, the location at which r1 is pushed, and
• c0, the size of the string buffer (its correct initializa-

tion is not part of the specification).

Line 3 starts the subformula which specifies that the
string buffer pointer is stored in r0. Using the data
integrity construction described earlier, line 4 assures
that this register is not altered by mov or lea instructions
until the location L0 is reached. Lines 5 and 6 assert
that register r1 is set to zero and again enforce that this
register remains unchanged until it is pushed onto the
stack at location L1. Lines 7 to 12 specify the order in
which the individual parameters are written to the stack
(where the last two push instructions occur at locations
L0 and L1) and enforce that no stack operations are per-
formed that would break the correct parameter layout.
This subformula is concluded by the actual system call to
GetModuleFileName in line 13, bound to location Lm.
Again, the only temporal link between the subformulas
is the location predicate.

The system call to CopyFile is specified in lines 15 to
21 in a similar way. This time, only two local variables
are used:

• r0, some register (not necessarily the same register
as in the first subformula) that is assigned the ad-
dress of the string buffer containing the executable

filename, and
• L0, the location in which r0 is pushed onto the stack.

The structure is completely analogous to the first system
call; lines 16 and 17 assert the loading of the buffer
address into r0; lines 18 and 19 specify r0 as the first
parameter passed to CopyFile. This time we can ignore
the other parameters because they do not affect the
behavior we are interested in.

Line 22 enforces the correct ordering of the two system
calls, again by utilizing the location predicate: Get-
ModuleFileName has to be called before CopyFile,
i.e., the location Lm must occur before Lc.

7 MODEL CHECKING CTPL
An explicit CTPL model checking algorithm is outlined
in Figure 6. It takes a formula ϕ and a Kripke structure
M as input and outputs all states s ∈M where ϕ holds,
i.e., M, s |=∅ ϕ. We assume that ϕ is passed as a parse
tree, so the algorithm can traverse it in a bottom-up
fashion from the smallest subformulas—the predicates—
up to the complete formula ϕ. The algorithm processes
each subformula ϕ′ of ϕ and labels all states with ϕ′

where ϕ′ holds. Alongside each label, the algorithm
stores a Boolean formula (constraint) in the form of a
Boolean circuit, that encodes all combinations of variable
bindings that make ϕ′ evaluate to true in the respective
state. M |= ϕ holds if, after termination of the algorithm,
the initial state s0 of M is labeled with ϕ and the
associated constraint is satisfiable.

The model checker only needs to process predicates,
⊥, and the operators ¬, ∧, ∃, EX, EU, and AF, as
every formula containing other CTPL connectives can
be transformed to use only operators of this subset, due
to De Morgan’s law and the following equivalences:

> ≡ ¬⊥ EF ψ ≡ E[>U ψ]
∀x ψ ≡ ¬∃x ¬ψ AG ψ ≡ ¬EF ¬ψ

EG ψ ≡ ¬AF ψ AX ψ ≡ ¬EX ¬ψ
A[ψ1 U ψ2] ≡ ¬(E[¬ψ2 U (¬ψ2 ∧ ¬ψ1)] ∨ EG ¬ψ2).

7.1 Bindings
In contrast to classic CTL, the validity of a CTPL formula
depends on the assignment of free variables in the
formula, which makes it necessary to maintain bindings
between variables x ∈ X and constants c ∈ U . Bindings
are generated when the algorithm matches (unifies) a
predicate P (t1, . . . , tn) with t1, . . . , tn ∈ (U∪X ) in the for-
mula against a predicate P (c1, . . . , cn) with c1, . . . , cn ∈ U
in a label of the Kripke structure. Every ti that is a
constant has to be equal to the corresponding constant
ci. For every ti that is a variable, the unification creates
a binding (ti = ci). The conjunction of these bindings
forms the constraint under which P (t1, . . . , tn) holds in
the respective state. If there are no variables and all
constants match, the constraint is set to >.

As the algorithm traverses the CTPL formula in a
bottom-up manner, it propagates and combines con-
straints in order to deduct the truth of a formula from
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the truth values of its subformulas. If a subformula holds
only under a certain constraint, this constraint has to
be propagated up to every larger formula that includes
the subformula. If two subformulas are combined with
a binary operator, the accompanying constraints have
to be combined as well. For example, if two formulas
ψ1 and ψ2 hold in a state under the constraints C1 and
C2, respectively, then ψ1 ∨ψ2 holds under the combined
constraint C1 ∨ C2.

For compactness reasons, the model checking algo-
rithm maintains constraints as circuits with operators
of arbitrary arity. We use a lazy evaluation approach
in handling these circuits, as the algorithm does not
check satisfiability of constraints during runtime. A final
satisfiability check is performed for each state only after
the labeling is complete.

7.2 The Algorithm in Detail
Starting from the initial labeling L of the Kripke struc-
ture, the model checking algorithm maintains a labeling
L′ that assigns subformulas together with constraints
to the nodes of the Kripke structure. More formally,
L′ ⊆ (S×Φ×C), where Φ is the set of all CTPL formulas
and C is the set of all constraints. In particular, a tuple
(s, ϕ′, C) is stored in L′, if the subformula ϕ′ holds in
state s under the constraint C.

The main loop of the algorithm in Figure 6 iterates
over all subformulas ϕ′ of ϕ in ascending order of size.
Depending on the structure of ϕ′, individual procedures
are called. After all subformulas have been processed,
the algorithm outputs all states labeled with ϕ whose
corresponding constraints are satisfiable.

The first procedure, LABELp, handles all subformulas
that are predicates, the smallest CTPL formulas. It adds
the tuple (s, ϕ′, C) to the labeling relation L′ for every
state s in which the predicate p(t1, . . . , tn) holds under
some variable bindings. The subroutine iterates over all
states: It checks for every state s whether it has been
initially labeled with an instance p(c1, . . . , cn) of the
predicate p (line 2), i.e., whether (s, p(c1, . . . , cn)) ∈ L.
Whenever such a predicate has been found, the proce-
dure creates a new constraint C from the conjunction
of all variable bindings necessary to unify ϕ′ with the
predicate present in the initial labeling of s.

The next subroutine processes negations of the form
ϕ′ = ¬ψ. If the enclosed subformula ψ does not hold in
s, i.e., s is not already labeled with ψ, then obviously
M, s |=∅ ¬ψ holds and a label (s,¬ψ,>) can be added
(line 5). If s does have a label ψ, then ¬ψ still holds in
s if the constraint for ψ in s is violated. Consequently,
the constraint for ϕ′ is created from the negation of the
constraint for ψ (unless ψ has an empty constraint).

Conjunctions are handled by the procedure LABEL∧.
It labels those states in which both subformulas ψ1 and
ψ2 hold. The constraint C ′ for their conjunction has to
be consistent with the individual constraints associated
to ψ1 and ψ2, therefore C ′ is the conjunction of the two
individual constraints, C ′ := C1 ∧ C2.

Existential quantifiers ∃xψ are processed in subroutine
LABEL∃. The subroutine iterates over all states labeled
with ψ; each state is labeled with ϕ′ and a constraint
C ′, which is a copy of C, where all occurrences of x are
replaced by a new variable xs that is unique to s. Note
that ∃xψ is always evaluated in a specific state s and that
the range of assignments for x satisfying ψ depends on s.
Thus, we are allowed to replace x with a unique variable
for each state. This assures that x is bound individually
for each state and that assignments to x from different
states do not interfere when constraints are combined in
future labeling steps.

The next procedure is responsible for EX expressions.
It iterates over the parents p of those states s labeled
with ψ and labels them with ϕ′ = EX ψ. In case the
parent state has already been labeled through another
one of its child states, the new constraint is created as
the disjunction of the constraints for parent and child.
This way, a state with multiple successors collects a
disjunction of all constraints from its children.

Subroutine LABELEU handles the until operator. The
algorithm first labels all states with ϕ′ = E[ψ1Uψ2] that
are labeled with ψ2 (line 2); note that ϕ′ trivially holds
in every state in which ψ2 holds. Then, the algorithm
iteratively labels every state with ϕ′ in which ψ1 holds
and which has a successor labeled with ϕ′. This iteration
is implemented by two nested loops: The outer for loop
(line 4) plays the role of a fixed point iteration bounded
by the maximum length of loopless paths. It ends after
|S| iterations or when a fixed point is reached (line 5).
The inner loop (line 6) iterates all states s already labeled
with ϕ′. Because ϕ′ = E[ψ1Uψ2] holds in these states,
ϕ′ will also hold in every predecessor state where ψ1

holds. Consequently, every predecessor state p that is
already labeled with ψ1 is labeled with ϕ′ (lines 7–13).
The constraint C of the new label ϕ′ in p has to take
into account both C1, which is associated with ψ1 in the
label of p, and Cs coming from the child state’s label ϕ′.
To this end, C is created as the conjunction of C1 and
Cs (line 9). The subroutine checks whether p has already
been labeled with ϕ′ during a previous step in the fixed
point iteration and adds C into a disjunction with the
existing constraint (lines 11 and 12). If the label is new,
it is added to the state together with C (line 13).

The procedure calculates constraints for ϕ′ as a chain
of conjunctions along all paths leading to states in which
ψ2 holds. Multiple paths passing through a state lead to
a disjunction of constraints for ϕ′ in this state. However,
we only need to follow loopless paths, as the constraints
collected from paths containing loops are always sub-
sumed by the constraint gained from the path that does
not repeat the loop. Thus we can safely stop the iteration
(the outer for loop) after |S| steps, which is the maximum
length of loopless paths in M .

The procedure for the operator AF ψ is similar in
structure to LABELEU. First, all states with a label ψ are
initially labeled with ϕ′, as AFψ is sure to hold where ψ
already does. The inner loop for updating labels (line 6)
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Algorithm ModelCheckCTPL:
Input: A Kripke structure M = 〈S,R,L〉, a CTPL formula ϕ
Output: The set of states in M which satisfy ϕ

1 L′ := ∅
2 for all subformulas ϕ′ of ϕ in ascending order of size
3 case ϕ′ of
4 ⊥: label no states;
5 p(t1, . . . , tn): LABELp(ϕ′);
6 ∃x (ψ): LABEL∃(ϕ′);
7 ¬ψ : LABEL¬(ϕ′);
8 ψ1 ∧ ψ2: LABEL∧(ϕ′);
9 EX ψ: LABELEX(ϕ′);
10 E[ψ1Uψ2]: LABELEU(ϕ′);
11 AF ψ: LABELAF(ϕ′);
12 output all states s where ∃C with (s, ϕ, C) ∈ L′ and SAT(C);

1 procedure LABELp(ϕ
′) // ϕ′ = p(t1, . . . , tn)

2 for all s ∈ S if (s, p(c1, . . . , cn)) ∈ L then
3 C :=

∧
i=1,...,n

(ti = ci) ;
4 L′ := L′ ∪ {(s, ϕ′, C)};

1 procedure LABEL¬(ϕ′) // ϕ′ = ¬ψ
2 for all s ∈ S
3 if ∃C with (s, ψ, C) ∈ L′ then
4 if C 6≡ > then L′ := L′ ∪ {(s, ϕ′,¬C)};
5 else L′ := L′ ∪ {(s, ϕ′,>)};

1 procedure LABEL∧(ϕ′) // ϕ′ = ψ1 ∧ ψ2

2 for all s ∈ S
3 if ∃C1, C2 with {(s, ψ1, C1), (s, ψ2, C2)} ⊆ L′ then
4 L′ := L′ ∪ {(s, ϕ′, C1 ∧ C2)};

1 procedure LABEL∃(ϕ
′) // ϕ′ = ∃x ψ

2 for all s ∈ S if ∃C with (s, ψ, C) ∈ L′ then
3 copy C into C′;
4 replace all variables x in C′ with a new variable xs;
5 L′ := L′ ∪ {(s, ϕ′, C′)};

1 procedure LABELEX(ϕ
′) // ϕ′ = EX ψ

2 for all s ∈ S
3 if ∃C with (s, ψ, C) ∈ L′ then
4 for all (p, s) ∈ R // for all parents of s
5 if ∃Cp with (p, ϕ′, Cp) ∈ L′ then
6 L′ := (L′\(p, ϕ′, Cp))∪
7 {(p, ϕ′, C ∨ Cp)};
8 else L′ := L′ ∪ {(p, ϕ′, C)};

1 procedure LABELEU(ϕ
′) // ϕ′ = E[ψ1Uψ2]

2 for all s ∈ S if ∃C with (s, ψ2, C) ∈ L′ then
3 L′ := L′ ∪ (s, ϕ′, C);
4 for i = 1 to |S| // cover all loopless paths
5 if L′ has not changed then return;
6 for all s ∈ S if ∃Cs with (s, ϕ′, Cs) ∈ L′ then
7 for all (p, s) ∈ R // for all parents of s
8 if ∃C1 with (p, ψ1, C1) ∈ L′ then
9 C := Cs ∧ C1;
10 if ∃Cp with (p, ϕ′, Cp) ∈ L′ then
11 L′ := (L′\(p, ϕ′, Cp))∪
12 {(p, ϕ′, C ∨ Cp)};
13 else L′ := L′ ∪ {(p, ϕ′, C)};

1 procedure LABELAF(ϕ
′) // ϕ′ = AF ψ

2 for all s ∈ S if ∃C with (s, ψ, C) ∈ L′ then
3 L′ := L′ ∪ (s, ϕ′, C);
4 for i = 1 to |S| // cover all loopless paths
5 if L′ has not changed then return;
6 loop: for all s ∈ S
7 C := >;
8 for all (s, c) ∈ R // for all children of s
9 if ∃Cc with (c, ϕ′, Cc) ∈ L′ then
10 C := C ∧ Cc;
11 else continue loop;
12 if ∃Cs with (s, ϕ′, Cs) ∈ L′ then
13 L′ := (L′\(s, ϕ′, Cs)) ∪ {(p, ϕ′, C ∨ Cs)};
14 else L′ := L′ ∪ {(p, ϕ′, C)};

Fig. 6. CTPL model checking algorithm.

is again enclosed by a bounded fixpoint iteration (lines
4,5). The inner loop checks for every state s whether all
successors of s are currently labeled with ϕ′. If this is the
case, s is labeled with ϕ′. The constraint C generated for
the new label has to take the constraints of all successor
states into account: This is accomplished by successively
adding the constraints from child states of s labeled with
ϕ′ into a conjunction that is initialized with >. If any
child state is not labeled with ϕ′ (line 11), the inner loop
continues with a new s. If the current state already has
a label ϕ′ (line 12), then its constraint is put into dis-
junction with the new constraint C (line 13). Otherwise,
a new label ϕ′ is added to the state with the constraint
C (line 14). The arguments as to why it is sufficient to
only cover all loopless paths are completely analogous to
the case for EU. Excessive growth of constraints can be
averted, as in the EU case, by exploiting their structural
simplicity (see Appendix B).

7.3 Complexity

This section discusses the computational complexity of
CTPL model checking in general and of our proposed
algorithm in particular.

Theorem 1: The problem of CTPL model checking, i.e.,
deciding whether M, s |= ϕ for a Kripke structure M ,
a state s of M , and a CTPL formula ϕ, is PSPACE-
complete.

We give a detailed proof of this theorem in Ap-
pendix A. Due to PSPACE-completeness, we cannot
expect a consistently efficient algorithm for CTPL model
checking. Analysis of our bottom-up labeling algorithm
(Figure 6) yields the following worst case runtime esti-
mate:

Theorem 2: The worst case runtime complexity of the
bottom-up explicit model checking algorithm for CTPL
is O

(
α|S| |ϕ|2α(2|S|)ν), where α is the maximum arity of

predicates, and ν is the maximum nesting depth of ϕ.
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We refer the reader to Appendix B for the proof of
this theorem. Note that one exponential level necessarily
comes from the time required to check satisfiability of
the constraints aggregated during the labeling process,
the size of which can grow exponentially for degenerate
formulas (checking the satisfiability of Boolean circuits
is known to be NP-complete, thus requires exponential
time in the maximum size of constraints). Note further
that the above estimate is extremely conservative. Simple
optimizations in the implementation of circuits can, in
practice, considerably reduce the constraint size for mod-
els derived from assembly programs and thus speed up
the satisfiability test. Finally, the constraint size is heavily
influenced by the nesting depth of specification formu-
las, so careful specification design can significantly im-
prove performance. Our practical observations confirm
that constraint sizes usually do not exhibit exponential
behavior; the experimental results presented in Section
8.3 show that our approach is indeed computationally
feasible.

8 THE MOCCA MALWARE DETECTOR

We have implemented the CTPL model checking algo-
rithm in Java, along with a model extraction component,
forming the Mocca Malware Detector. In this section, we
discuss details of the implementation and experimental
results obtained.

8.1 Specification Language
Although CTPL allows succinct specifications for assem-
bly programs, examples such as the formula in Figure
5 show that these specifications can grow beyond easy
legibility, and might be somewhat error prone due to the
large number of nested expressions. Mocca’s specifica-
tion language alleviates this problem by the introduction
of macros that encapsulate commonly used specification
patterns.

A common occurrence in malicious code specifications
are variables used as wildcards that match every pa-
rameter of a certain instruction. Their actual value is
of no interest, as they are not needed in other parts of
the formula. Consider the following example: To specify
that there is a path on which nothing is pushed onto
the stack before a pop instruction is reached, we would
usually write E(¬∃x push(x)) U (∃y pop(y)), which
would translate into Mocca syntax as E ( -exists x
(push(x))) U (exists y (pop(y))). To simplify
specifications and improve their human readability by
reducing the abundance of exists statements, Mocca
supports the special wildcard $*, which corresponds to
a variable that is locally existentially quantified around
the enclosing predicate. Accordingly, every predicate
p(. . . ,$*, . . . ) containing the wildcard $* is implicitly
expanded to ∃xp(. . . , x, . . . ). The above formula can thus
be written succinctly as E (-push($*)) U pop($*).

In addition to wildcards, Mocca supports the defini-
tion of macros that expand to CTPL formulas. Currently,

we use the following macros to encode common patterns
in specifications of assembly code:
• %nostack. Prohibits direct stack manipulation.
• %noassign(variable). Specifies that no value is ex-

plicitly assigned to the given variable (register or
memory location) in this state.

• %syscall(function, param1, param2, . . .). System
calls usually follow the pattern explained in Section
6.1: Parameters are pushed onto the stack either
directly or indirectly (by assigning them to a register
which is subsequently pushed) before finally the call
is executed. The %syscall macro generates a CTPL
formula that models exactly this behavior, and cov-
ers both direct and indirect parameter initialization.

As an illustrative example, the use of macros allows to
write the specification in Figure 5 much more succinctly
and naturally as:

EF(%syscall(GetModuleFileName, $*,
$pFile, 0) &

E %noassign($pFile)
U %syscall(CopyFile, $pFile))

Finally, to improve performance of the model checking
process, Mocca allows to specify clues in the form of
instructions (such as specific system calls) that must
syntactically occur in a subroutine. If they do not occur,
Mocca decides that the checked subroutine cannot fulfill
the specification.

8.2 Experimental Setup
For testing purposes, Mocca has been installed on an
AMD Athlon 64 2.2 GHz machine with 2 GB of RAM
running Windows XP Professional. To evaluate both
performance and detection accuracy, the prototype has
been tested on malicious code and benign programs.
The test suite consisted of 21 worm variants from 8
different families. Each malicious program was prepared
for analysis by disassembling the machine code with
IDA Pro. If an executable was initially packed, the file
was extracted prior to this step with a suitable tool.

Keeping the false positives rate low is vital for a mal-
ware detector. To this end, the test setup also included a
set of benign programs that should be correctly classified
as innocuous. Note that, as in the case of traditional
signature-based matching algorithms, the false positives
rate of the malware detector measures only the quality
of the specifications (for the model checking algorithm
itself always correctly answers whether an executable
matches a specification or not). Since the malicious code
specifications used in the tests heavily relied on I/O
operations, the test suite mainly contained benign pro-
grams that have file I/O as their main operation (such
as setup programs).

8.3 Results
Table 2 shows the test results for two exemplary CTPL
specifications: CopySelf refers to the formula described
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exists $r0 (
EF(lea($r0, $pfname) & EX(E %noassign($r0)

U (push($r0) & EX(E %nostack
U ((call(CreateFileA) | call(fopen))

& #loc($Lopen))
; Both CreateFile and fopen can be used

)))))
& exists $Lp1 exists $Lp2 (

EF(push($*) & #loc($Lp2) & EX(E %nostack
U (push($*) & #loc($Lp1) & EX(E %nostack

U (call(CreateProcessA) & #loc($Lproc))
))))

& (exists $r0 (
; CreateProcess parameters variant 1
EF(lea($r0, $pfname) & EX(E %noassign($r0)

U (push($r0) & #loc($Lp1)))))
| exists $r0 (
; CreateProcess parameters variant 2
EF(lea($r0, $pfname) & EX(E %noassign($r0)

U (push($r0) & #loc($Lp2)))))
& (EF(push(0) & #loc($Lp1))

| exists $r1 (
EF(mov($r1,0) & EX(E %noassign($r1)

U (push($r1) & #loc($Lp1))
))))))

& EF (call($*) & #loc($Lopen) & EF(call($*)
& #loc($Lproc)))

Fig. 7. Malicious code specification in Mocca syntax. It
specifies that a new process is created from a previously
opened executable file.

in Figure 5; ExecOpened matches a program that first
opens a file and later executes it (see Figure 7). This
second behavior might not seem malicious at first glance,
but it is exactly the behavior of Trojan droppers, which
create a file containing a Trojan horse somewhere on
the hard drive and execute it. While there might be
benign programs that also match this specification (e.g.,
integrated development environments), it is still a strong
indicator for malware if it is found in an executable that
is not expected to exhibit such behavior.

Every program in the test suite was tested against
both specifications. In the second column, we give the
number of procedures contained in the assembly file. The
processing time (in milliseconds), measured individually
for each specification, reflects the runtime of Mocca,
namely parsing of the assembly file, construction of the
control flow graph, and model checking. Time used for
unpacking (by various tools) or disassembly (by IDA
Pro) is not included.

The figure shows that Mocca was able to correctly
categorize all but one executable, producing no false pos-
itives on benign code. Recall that the CopySelf specifica-
tion was originally derived from analyzing the behavior
of the worm Klez.h. As the results show, this one specifi-
cation does not only match this family of worms, but a
whole class of functionally related malware, among them
variants of the MyDoom, Dumaru, and NetSky families.
This shows that the proposed approach is able to provide
proactive malware detection.

Analysis times on large or complex programs are
rather high (up to 30 seconds), but most worms could

TABLE 2
Experimental results.

Tested Proc. CopySelf ExecOpened Result
Program count Time Match Time Match
Badtrans.a 36 10640 n 32828 y +
Bugbear.a 226 359 y 3641 y +
Bugbear.e 199 609 n 782 n −
Dumaru.a 45 1172 y <10 n +
Dumaru.b 78 1157 y 16 n +
Klez.a 73 750 y 110 n +
Klez.e 130 1859 y 125 n +
Klez.g 130 1860 y 125 n +
Klez.h 133 1922 y 125 n +
MyDoom.a 92 750 y 1172 n +
MyDoom.i 116 766 y 16 n +
MyDoom.m 97 750 y 656 n +
MyDoom.aa 98 735 y 15 n +
NetSky.b 30 234 y 16 n +
NetSky.c 31 250 y <10 n +
NetSky.d 27 657 y 15 n +
NetSky.e 31 656 y <10 n +
NetSky.p 5 250 y <10 n +
Nimda.a 87 31 n 1360 y +
Nimda.e 87 31 n 1375 y +
Swen.a 74 27016 y 1313 n +

Notepad 74 31 n 16 n +
MSN Messenger 4376 781 n 531 n +
CVS 1057 406 n 1625 n +
Regedit 305 47 n 49 n +
Ghostscript 237 47 n 31 n +

Setup Programs:
J2RE 719 12641 n 5829 n +
Winamp 50 15078 n 20312 n +
Cygwin 2031 391 n 578 n +
Mouseware 202 49 n 2375 n +
Quicktime 629 63 n 47 n +
NVIDIA Driver 403 64 n 2203 n +
Real Player 484 47 n 46 n +
Kerio PFW 1099 297 n 6031 n +

be detected in less than 2 seconds. Analysis times below
50 milliseconds generally indicate that all procedures
were skipped due to clues. We want to stress that the
current Java implementation is not optimized for speed;
we expect that considerable speedups can be achieved.

8.4 Discussion and Future Work

Our approach, as described here, is still subject to a num-
ber of limitations, which stipulated further research in
enhancing the practical applicability of Mocca. First, the
model extraction process is purely syntactic and does not
include data flow analysis, since Mocca has no explicit
knowledge of instruction semantics. Instead, semantics
are implicit in the CTPL specifications: For example, the
%noassign macro expands to a formula that specifies
the most common ways to modify a given variable. Due
to performance reasons, the macro does not exhaustively
cover all instructions of the x86 architecture that can be
used to modify variables. This imprecision renders the
results unsound and potentially leads to false positives,
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although we did not encounter such cases in our experi-
ments. A rigorous treatment of all instruction semantics
and side-effects requires complete and exact specification
of an architecture’s instruction set. Therefore, we have
developed a semantics-driven model extraction process
which utilizes specifications of the instruction set [35];
we plan to integrate this component into the Mocca
toolchain. Besides increased precision, the data flow
analyses included in this extraction process will allow
Mocca to handle several instances of indirect control
flow and indirect memory accesses.

As mentioned above, the model checking process cur-
rently is strictly intraprocedural. Malicious behavior that
is split across several procedures cannot be identified
unless procedures are inlined, which incurs a significant
performance penalty. Selective inlining of only those
procedures which include system calls relevant to the
specification offers a remedy to this problem. A complete
solution, however, can again only be achieved using
interprocedural data flow analysis.

Mocca assumes that the external components of the
toolchain successfully unpack and disassemble all exe-
cutables; however, this assumption does not universally
hold. This is especially true for arbitrary self-modifying
code, which is not accessible to disassemblers such as
IDA Pro. One should note, though, that code which
cannot be disassembled is suspicious by its own right
and should raise a warning—a strategy employed by
most commercial virus scanners that include unpacking
modules.

It is desirable to have a streamlined and mostly au-
tomated process for the creation of CTPL specifications
from malware samples. To this end, Holzer et al. [36]
have developed a separate tool supplemental to Mocca,
which assists a user in the construction of CTPL spec-
ifications from a piece of malicious code. The tool is
designed to support automated extraction techniques
as well, and we plan to investigate how to effectively
employ methods from machine learning to extract char-
acteristic code sequences from a set of worms or viruses.

9 CONCLUSION

In this paper we proposed a proactive malware de-
tector that is specifically targeted towards detection of
functionally related worms (or worm variants) without
the need of signature updates. Technically, the detector
employs model checking. For detection, a finite state
model is extracted from a potentially malicious program
and checked against a malware specification, expressed
in the temporal logic CTPL. CTPL allows to write suc-
cinct specifications that capture the typical behavior of a
worm, thereby abstracting from implementation details.

The feasibility of the approach was demonstrated by
the implementation of a prototype CTPL model checker.
Experimental results indicate that it is easily possible to
create CTPL malware specifications that match a whole
class of functionally related malware, without risks of

false positives. Thus, CTPL model checking is a promis-
ing approach for robust detection of whole classes of
functionally similar malware.

APPENDIX A
PSPACE COMPLETENESS OF CTPL MODEL
CHECKING

We show PSPACE-hardness by a reduction from sat-
isfiability of quantified Boolean formulas (QBF). Given
a quantified Boolean formula q, we compute a CTPL
formula ϕ from q by replacing every variable ai in q
by a unique unary predicate Ai(xi) and quantifying the
variables xi in the same way as the corresponding ai. It
is obvious that q is satisfiable if and only if ϕ is satisfied
on the following Kripke structure:

s0 {A1(1), . . . , An(1)}

To prove membership in PSPACE, we use a recursive
top-down model checking algorithm for CTPL, shown
in Figure 8, that tries all possible variable bindings one
by one. It uses only polynomial space, but its high
runtime renders the algorithm unusable in practice. The
algorithm passes the formula ϕ and the initial state of the
Kripke structure M to the function check that operates
recursively on the syntax tree of ϕ.

We will prove by induction over the size of CTPL
formulas that space cost is only polynomial in the input
size (formula ϕ and model M ). As the function check is
recursive, the size of the stack frame has to be taken into
account: Every instance of the function occupies at least
the space for its two parameters, which is O(|ϕ|+log |S|)
where S is the set of all states in M . The space for
parameters can be reused for the Boolean return value,
so it does not add to the space complexity. In particular,
this allows to give the induction basis, because checking
of all atomic CTPL formulas, namely ⊥ (line 4) and all
predicates (line 28), does not use space other than its
stack frame.

The induction hypothesis is that the maximum space
cost C(n) for checking any formula ψ of size |ψ| ≤ n
is polynomial. What needs to be shown is that if an
operator is added in front of a formula of size |ψ| ≤ n,
or if two formulas of size ≤ n are combined by an
operator, the cost for checking the resulting formula
is still polynomial. This is done separately for every
operator:
• ∧: The two recursive calls are performed sequen-

tially, so the required space is bounded by O(C(n)+
|ϕ| + log |S|), which is polynomial by induction
hypothesis.

• ¬: This case is immediate from the induction hy-
pothesis.

• EX ψ: All recursive calls are sequential, thus the
space for every call can be reused. The relation R
is already given in the input, so only a counter for
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Algorithm ModelCheckCTPLTopDown:
Input: A Kripke structure M and a closed CTPL formula ϕ
Output: True iff the starting state s0 of M satisfies ϕ

1 output check(s0, ϕ);
2 function check (state s, formula ϕ′) : Boolean
3 case topOperator(ϕ′) of
4 ⊥: return false;
5 ψ1∧ψ2:return check(s, ψ1) and check(s, ψ2);
6 ¬ψ: return not check(s, ψ);
7 EX ψ: for all (s, c) ∈ R
8 if check(c, ψ) then return true;
9 return false;
10 E[ψ1Uψ2]:
11 mark(s, ϕ′);
12 if check(s, ψ2) then return true;
13 else if check(s, ψ1) then
14 for all (s, c) ∈ R
15 if (not isMarked(c, ϕ′)) and check(c, ϕ′) then
16 return true;
17 return false;
18 AF ψ:
19 mark(s, ϕ′);
20 if check(s, ψ) then return true;
21 else for all (s, c) ∈ R
22 if not (isMarked(c, ϕ′) or check(c, ϕ′)) then
23 return false;
24 return true;
25 ∃x ψ: for all t ∈ U occurring in M
26 if check(s, ψ[x\t]) then return true;
27 return false;
28 P (t): if (s, P (t)) ∈ L then return true;
29 else return false;

Fig. 8. Recursive model checking algorithm for CTPL.

the forall statement is needed. Thus the total space
is O(C(n) + |ϕ|+ 2 log |S|).

• E[ψ1Uψ2]: Note that in this case the check function
may be called with the same formula on child states.
To avoid infinite recursion caused by loops in the
model, every state is marked with the subformula
it has been already checked with, so that every
state is checked at most once. The space used by
sequential check calls inside a recursion instance
can be reused, so it is needed only once. More
influential are the maximum recursion depth of |S|
and the space needed per recursion instance for
parameters and the forall iterator. Because marks
of nested subformulas must not interfere with each
other, they need to be unique for each subformula,
causing an additional space requirement of |S| · |ϕ|.
Thus the total space consumption is

O(

marks︷ ︸︸ ︷
|S| · |ϕ|+

stack︷ ︸︸ ︷
|S| · (|ϕ|+ 2 log |S|) +

call︷︸︸︷
C(n)).

This can be simplified to O(|S|·(|ϕ|+log |S|)+C(n)),
which is obviously polynomial.

• AFψ: The case of AF is analogous to the one of EU.
• ∃x ψ: The variable t, which iterates over all symbols

of the universe U used in the model, requires at
most O(log |M |) space. The individual check calls

may reuse the same space and thus count only once;
substituting the variables in their parameters does
not take extra space. Consequently, the total space
consumption isO(C(n)+|ϕ|+log |S|+log |M |), which
is again polynomial.

This completes the proof.

APPENDIX B
COMPLEXITY OF THE BOTTOM UP ALGORITHM

We calculate the complexity of the bottom-up model
checking algorithm with respect to a number of pa-
rameters of the problem instance (the Kripke structure
M = 〈S,R,L〉 and the formula ϕ). In particular, we use
the following notation:
• α denotes the maximum arity of predicates in L,
• ι denotes the maximum number of initial labels per

state,
• δout denotes the maximum outdegree of states in S,

and
• δin denotes the maximum indegree of states in S.

For each procedure handling a specific type of sub-
formula, we recursively analyze its runtime T and the
maximum circuit size γ required to store a constraint.

For simplicity, we assume that the labeling relation
L′ used by the algorithm at runtime is implemented
as a two-dimensional array, assigning a constraint to
each pair of state and subformula. Thus, references to
constraints for states can be retrieved in constant time.
Constraints are stored as Boolean circuits of arbitrary
arity where the vertices are connected by positive or
negative edges (to express negation). Our lazy approach
to satisfiability checking together with the use of refer-
ences for constraints allows constant-time manipulation
of constraints in all subroutines except LABEL∃.

Since predicates are the smallest CTPL formulas, all
calls to LABELp are executed before any other procedure.
LABELp contains an iteration over |S| states. For every
parameter of every predicate from the initial labeling
that matches p, one variable assignment is created and
stored in the constraint. Overall, we thus have a runtime
of O(|S| · ι · α) and a maximum constraint size of
γ := 2α + 1, as we need one assignment and one edge
per parameter plus one conjunction (which can be of
arbitrary arity) to store the constraint.
LABEL¬ iterates over all states and thus has a runtime

of O(|S|), while the maximum constraint size remains
constant since negation can be expressed by inverting
the circuit’s output edge.

The runtime for LABEL∧ is again O(|S|), however here
the maximum circuit size increases to γ = 2γ + 3, since
two individual constraints are put into conjunction (and
one ∧-node and two edges are required).

The runtime for LABEL∃ is given by O(|S| · γ), as
the algorithm processes all constraints of states labeled
with ψ. Here, γ is the current maximum constraint size
at the time the procedure is called. Constraint sizes do
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not increase since the procedure just renames existing
variables.

For every state s, LABELEX iterates over all of its
parents, whose number is bounded by the maximum
indegree of nodes δin. This amounts to a runtime of
O(|S| · δin). The maximum constraint size grows to
δout · (γ + 1) + 1, as every state that is labeled with ϕ′

can inherit one constraint per child.
In LABELEU, initially all states with the label ψ2 are

iterated, requiring O(|S|) steps. Then, a second loop has
a maximum of |S| iterations, while the two inner loops
(lines 6 and 7) iterate all states with label ϕ′ and all their
parents with label ψ1, respectively. The runtime for these
three nested loops is thus O(|S|2 · δin), which is also the
runtime of the whole subroutine.

In order to keep the size of the circuit representing the
constraint C ∨ Cp (line 12) low, we exploit the structure
of the constraint Cs,ϕ′ for the formula ϕ′ = E[ψ1Uψ2]
in state s. It is easy to see that Cs,ϕ′ has the form
(Cs,ψ1 ∧ (Ct1,ϕ′ ∨ . . . ∨ Ctn,ϕ′)) ∨ Cs,ψ2 , where t1, . . . , tn
denote successor states of s for which ϕ′ holds. Note
that the constraints Cti,ϕ′ link to other constraints of
the same structure as Cs,ϕ′ . To avoid the accumulation
of large trees of constraints for every state, we reuse
references to the same constraint in the circuit. Thus,
each constraint Cs′,ϕ′ corresponding to a state s′ is stored
only once in the resulting circuit. In worst case, we
then have |S| many of these structures consisting of
one conjunction, two disjunctions, two constraints for
smaller subformulas, and δout + 2 edges. Accordingly,
the complete circuit for one state occupies a space of
|S|(2γ + δout + 5).

The initial loop of LABELAF iterates all states with
label ψ in O(|S|) steps. Following that, the outer loop
is repeated at most |S| times. Inside this loop, there
is an iteration over all states (|S|) and another nested
loop over all children (δout). Thus, the total runtime is
O(|S|+|S|2 ·δout) = O(|S|2 ·δout). Similar to the above rou-
tine for EU, we exploit the structure of the constraints
to keep their size low. A constraint Cs,ϕ′ for ϕ′ = AF ψ
in state s is of the form Cs,ψ∨(Ct1,ϕ′∧ . . .∧Ctn,ϕ′), where
t1, . . . , tn denote successor states of s whose constraints
Cti,ϕ′ for ϕ′ are of the same structure as Cs,ϕ′ . In worst
case, we get |S| such structures, which contain one
disjunction, one conjunction, one constraint for a smaller
subformula, and δout+1 edges. The final maximum circuit
size is thus |S|(γ + δout + 3).

To analyze the worst case runtime and circuit size,
we denote with Ti the total runtime of the main model
checking algorithm after i iterations of the for loop over
subformulas of ϕ. Accordingly, γj denotes the maximum
constraint size for a formula of nesting depth j. The
following table shows how Ti and γj can be recursively
computed according to the formula type. Note that
the total runtime of the algorithm is given by TN ,
where N denotes the number of subformulas of ϕ, with
N ≤ |ϕ|. Further, the maximum constraint size is given
by γν , where ν is the maximum nesting depth of ϕ.

Op. Ti+1 γj+1

p Ti +O(|S| · ι · α) 2α+ 1
¬ Ti +O(|S|) γj
∧ Ti +O(|S|) 2γj + 3
∃ Ti +O(|S| · γν) γj
EX Ti +O(|S| · δin) δout · (γj + 1) + 1
EU Ti +O(|S|2 · δin) |S|(2γj + δout + 5)
AF Ti +O(|S|2 · δout) |S|(γj + δout + 3)

First, we calculate the maximum γν . We set the base
case to γ0 = 2α + 1, i.e., the size of a constraint for a
single predicate. We obtain the worst case by taking the
maximum growth in constraint size, which occurs in EU.
Solving the recursion then yields γν = O(α(2|S|)ν). Since
γ grows exponentially, the procedure with the highest
worst case runtime is LABEL∃. Solving the recursion for
Ti accordingly yields TN = O(|ϕ| |S|γν). Taking into
account the final SAT solving procedure, which needs to
performed for each state and requires exponential time
in γν , we have

TN = O
(
α |S| |ϕ|(2 |S|)ν + |S| 2α(2 |S|)ν

)
= O

(
α |S| |ϕ|2α(2 |S|)ν

)
.

Note that if we disregard degenerate formulas consisting
predominantly of the unary operators EX and ¬, we
have ν ≈ O(log2 |ϕ|), alleviating the seemingly high
complexity of the algorithm for practical purposes.
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