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Abstract. This paper describes a method for combin-
ing “off-the-shelf” SAT and constraint solvers for build-
ing an efficient Satisfiability Modulo Theories (SMT)
solver for a wide range of theories. Our method follows
the abstraction/refinement approach to simplify the im-
plementation of custom SMT solvers. The expected per-
formance penalty by not using an interweaved combi-
nation of SAT and theory solvers is reduced by gen-
eralising a Boolean solution of an SMT problem first
via assigning don’t care to as many variables as possi-
ble. We then use the generalised solution to determine a
thereby smaller constraint set to be handed over to the
constraint solver for a background theory. We show that
for many benchmarks and real-world problems, this opti-
misation results in considerably smaller and less complex
constraint problems.

The presented approach is particularly useful for as-
sembling a practically viable SMT solver quickly, when
neither a suitable SMT solver nor a corresponding incre-
mental theory solver is available. We have implemented
our approach in the ABsolver framework and applied
the resulting solver successfully to an industrial case-
study: The verification problems arising in verifying an
electronic car steering control system impose non-linear
arithmetic constraints, which do not fall into the domain
of any other available solver.
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1 Introduction

Satisfiability modulo theories (SMT) is the problem of
deciding whether a formula in quantifier-free first-order
logic is satisfiable with respect to a given background
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theory. For example, one is interested whether the for-
mula φ ≡ (i ≥ 0) ∧ (¬(2i + j < 10) ∨ (i + j < 5)) is
satisfiable in the theory of linear integer arithmetic.

Generally, a theory refers to the set of statements
that are deducable from given axioms via some dedu-
cability relation. In the context of this paper, we con-
sider quantifier-free first-order theories, i.e., statements
are built-up from function and predicate symbols and
are interpreted over a fixed domain. Thus, depending on
the considered domain (like integer versus reals), the in-
volved function and predicate symbols, and axioms, dif-
ferent theories arise. The simplest perhaps being equal-
ity logic, as it does not offer any function symbols at all,
and has only one binary predicate, the equality predicate
(cf. Zantema and Groote (2003)). In the more expressive
difference logic, which is also used for reasoning about
programs (cf. Ball et al (2005)), statements use inter-
preted predicates of the form ti − tj ≤ d, where ti and tj
are numerical variables or compound terms and d an in-
teger constant. In linear integer arithmetic used above,
one can basically specify general inequalities over the do-
main of the integers (cf. Shostak (1981)). In that sense,
a SAT solver is a theory solver for the propositional do-
main, where only null-ary predicate symbols (i.e., propo-
sitional variables) are allowed. While it is known that the
general theory of integers is not decidable, there exist de-
cidable fragments in it which are commonly used in the
area of SMT or automated theorem proving.

In recent years, research on SMT has attracted a lot
of attention. SMT solvers for dedicated theories have
been developed, such as Yices (Dutertre and de Moura,
2006; Rushby, 2006b), MathSAT (Bozzano et al, 2005),
or CVC (Barrett and Berezin, 2004). The growing ef-
ficiency of these solvers in their respective domains is
witnessed in the annual SMT competition (http://www.
smtcomp.org).

Amongst others, SMT has its applications in ar-
eas such as model checking and abstraction (Lahiri
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et al, 2006), (symbolic) test-case generation (Roorda and
Claessen, 2006), or in the verification of hybrid control
systems (Bauer et al, 2007b; Rushby, 2006a), to name
just a few common examples. Especially for the latter,
however, one is often faced with the task of having to
solve problems with respect to theories that are not (yet)
supported by existing SMT solvers, although constraint
solvers for the required theories are available. These
powerful constraint solvers have been developed for ded-
icated theories, such as general linear arithmetic over
integer and real numbers (Wächter and Biegler, 2005).
In contrast to SMT solvers, such constraint solvers only
accept a conjunction rather than an arbitrary Boolean
combination of atoms.

In this paper, we propose a method for combining
off-the-shelf Boolean satisfiability (SAT) and constraint
solvers without altering them to assemble SMT solvers
for a wide range of different theories with a minimal en-
gineering overhead, yet with a reasonable practical per-
formance.

Organisation. In the next section, we give an account
of the different approaches to SMT solving, and put
some of the key ideas underlying our own work into
context. In Section 3, we provide the foundations for
the abstraction/refinement approach followed by AB-

solver, before we describe the relation between gen-
eralised abstract solutions and concrete solutions to an
SMT problem. In Section 4, we provide an algorithmic
solution to the SMT problem, based on generalisation.
In Section 5, we discuss implementational aspects. Ex-
perimental results in form of comparative benchmarks
and several case studies are given in Section 6. Section 7
concludes our paper.

This paper is based on earlier versions that appeared
as Bauer et al (2007a) and Bauer et al (2007b).

2 Existing approaches to SMT

The existing approaches to solve SMT problems can be
subdivided into three main categories (see also (Sheini
and Sakallah, 2006) for an overview).

In the translation approach (Sheini and Sakallah,
2006), given an SMT instance, the entire problem is en-
coded as an equi-satisfiable pure SAT instance such that
a solution to the SAT problem translates into a solu-
tion of the original SMT instance. For example, if the
above mentioned φ is solved over the 16 bit integers,
then it is straightforward to formulate φ’s constraints
in terms of bits yielding a purely propositional formula.
With the advent of highly efficient SAT solvers (cf. Een
and Sörensson (2003); Moskewicz et al (2001); Prasad
et al (2005)) this approach turned out quite successful—
at least for certain background theories, see for exam-
ple Jones and Dill (1994); Rodeh and Strichman (2006).

However, such a translation involves a non-obvious in-
terplay between the SAT solver and the encoding, where
the structure of the underlying problem is difficult to re-
flect in the encoding.

In the abstraction/refinement approach (Sheini and
Sakallah, 2005), one represents each occurring theory
constraint with a Boolean variable. By substituting these
Boolean variables for their respective constraints, an ab-
stract SAT problem is produced and solved first. This
determines the set of constraints to be satisfied. If such
a Boolean representative variable has been set to true,
then the corresponding constraint is selected, and re-
spectively, if a Boolean representative variable has been
assigned false, then the negation of the corresponding
constraint is added to the constraint set. Finally, this
constraint set is passed on to a dedicated solver for the
background theory of the problem. If the solver finds a
solution, then the original SMT problem has been solved,
and a solution has been determined. On the other hand,
if the theory solver fails, then the Boolean abstraction is
refined, a new solution for the abstract SAT instance is
computed and the process continues.

In the online solving approach (Ganzinger et al,
2004), both the abstract Boolean problem and the the-
ory constraints are solved simultaneously, i. e., whenever
a Boolean variable which represents a constraint is as-
signed, the corresponding constraint or its negation is
added to the set of constraints to be satisfied. This set is
checked for satisfiability immediately and consequently
conflicts can be detected at an early stage of the search
process and can be pruned from the remaining search
space. This approach allows for building highly efficient
SMT solvers and is followed by most modern tools. How-
ever, it requires a tight interaction between the SAT
solver and the constraint solver: the SAT solver must
call the constraint solver whenever a new constraint is
added and therefore, the solver should be able to han-
dle this growing constraint set efficiently. Furthermore,
when the SAT solver backtracks, the constraint solver
must follow the backtracking step, and remove the cor-
responding constraints from the incrementally growing
set. Such a tight interaction complicates the integration
of existing constraint solvers since they need an interface
supporting backtracking, similar to the one described
by Ganzinger et al (2004). Thus, when building custom
SMT solvers using off-the-shelf constraint solvers that
do not support backtracking, this approach is often im-
practical, especially in presence of limited development
resources.

Foremost for this reason, our framework, ABsolver

(Bauer et al, 2007b), which allows the integration of
efficient SAT and constraint solvers to build-up cus-
tom SMT solvers, follows the abstraction/refinement
approach. As this method proved to be inferior to
the online solving approach, we employ a simple yet
surprisingly efficacious optimisation to the abstrac-
tion/refinement scheme: once a SAT solver has deter-
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mined a solution to the Boolean abstraction of an SMT
problem, we first generalise this solution, before gen-
erating and solving the underlying constraint problem.
This yields fewer and smaller constraint problems than
the traditional approach. More specifically, we use a sim-
ple greedy-algorithm to find a minimal assignment (in a
sense made precise in Section 3) which still satisfies the
Boolean abstraction, i. e., each completion of the assign-
ment must still satisfy the Boolean abstraction. Having
found such a partial assignment, each variable is assigned
either true, false, or don’t care. For each representative
variable being assigned true, we add the corresponding
constraint to the constraint set. Respectively, for each
representative variable being assigned false, we add the
negation of the constraint. All other representative vari-
ables, i. e., all variables being assigned don’t care, are
ignored. Thus, the smaller the assignment, the smaller
the constraint set to be handed to the corresponding
constraint solver. Furthermore, if such a smaller assign-
ment is found to be conflicting by the theory solvers, a
set of possible Boolean solutions is invalidated by a sin-
gle assignment. The size of this set is exponential in the
number of don’t cares.

Our generalisation of a SAT solver’s solution is based
on the efficient computation of a minimal solution of
a given conjunctive normal form (CNF) formula. Our
approach is thus similar in spirit to the so-called Min-

Sat problem and its variations (Belov and Stachniak,
2005; Delgrande and Gupta, 1996; Kirousis and Kolaitis,
2003), which, however, are known to be NP-complete
(Delgrande and Gupta, 1996). These complexity theo-
retic results imply that we cannot hope to find any gen-
erally efficient algorithm and therefore, we need to resort
to heuristic approaches which (as our benchmarks in this
paper indicate) work well in most practically relevant
cases.

We have implemented the suggested optimisation
within our ABsolver framework. Even though we have
to admit that our approach does not reach the perfor-
mance of other participants of the SMT-COMP in their
respective domains, our solver has been successfully ap-
plied to an industrial case-study involving non-linear
constraints which are not supported by other solvers
(see Section 6). Using ABsolver, we were able to ver-
ify properties of a car’s electronic steering control sys-
tem whose behaviour was given by a MATLAB/Simulink
model. Such models typically capture the dynamics of
the closed control loop, involving the actual system and
part of its environment. This loop can then often, as it
was in our case, only be expressed in terms of a non-
linear equation system.

3 Abstraction and refinement for SMT

In this section, we develop the framework in which we
describe our approach. Since we are faced with formulas

which involve variables ranging over different domains,
we use a typed setting.

Domains and variables. Let Σ be a finite set of types
and D = (Dσ)(σ∈Σ) be a family of respective domains.
We require that every domain is non-trivial, i.e., every
domain has at least two elements. Furthermore, let V =
(Vσ)(σ∈Σ) be a family of finite sets of variables of the
respective type. Abusing notation, we also denote by D
the union

⋃
σ∈Σ Dσ and by V the union

⋃
σ∈Σ Vσ . We

also call the elements of D values.
B denotes the Boolean type as well as the domain

B = {tt, ff}. We always assume B ∈ Σ and we mostly
consider the reals R and integers Z as additional types.

To represent partial assignments with total map-
pings, we introduce ? to denote the don’t care value
and let D? = {?} ⊎ (Dσ)(σ∈Σ) be the family of domains
enriched with don’t care.

Assignments. An assignment is a mapping τ : V → D?

assigning to all variables either a value of the correspond-
ing domain or ?. We call τ complete, iff τ(v) 6= ? for
all v ∈ V . To establish an information preorder, we set
? ≺ d for all d ∈ D, ordering ? below all domain values
and leaving these values unordered. Let � denote the
reflexive closure of ≺. The information preorder extends
to assignments by

τ � τ ′ iff for all v ∈ V τ(v) � τ ′(v).

Thus, τ is smaller than τ ′ w. r. t. ≺, if reassigning ? to
a number of variables in τ ′ results in τ . Likewise, τ ′ is
larger than τ if τ ′ coincides with τ , except that it at
most assigns values to variables that yield ? under τ .

The weight |τ | of an assignment τ is the number of
values different from ?, i.e.,

|τ | = |{τ(v) 6= ? | v ∈ V}|

Dually, we define the freedom of τ , denoted by |τ |?, as
the number of don’t cares in its range:

|τ |? = |{τ(v) = ? | v ∈ V}|

The set of assignments generated by τ , denoted by
〈τ〉, is given by a set of assignments τ ′ which are larger
than τ , i.e.,

〈τ〉 = {τ ′ | τ � τ ′}

Similarly, the set of complete assignments generated by
τ , denoted by 〈τ〉, is given by the set of complete assign-
ments larger than τ , i.e.,

〈τ〉 = {τ ′ | τ � τ ′ and τ ′ complete}

Remark 1. The number of complete assignments gener-
ated by an assignment τ is exponential in its freedom:

|〈τ〉| ≥ 2|τ |?

We have |〈τ〉| = 2|τ |? when all domains have exactly two
elements.
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Formulas. Let F = (Fσ)σ∈Σ be a family of ranked func-
tion symbols and P = (Pσ)σ∈Σ be a family of ranked
predicate symbols. The set of (typed) terms is induc-
tively defined by the two rules below:

– Every variable of Vσ is a term of type σ, and,
– if f ∈ Fσ of rank n is a function symbol of type σ and
a1, . . . , an are terms of type σ, then f(a1, . . . , an) is
a term of type σ.

The set of (typed) atoms is defined as follows: If

– p ∈ Pσ of rank n is a predicate symbol of type σ
– and a1, . . . , an are terms of type σ,

then p(a1, . . . , an) is an atom of type σ. Note that the
above definition does not allow terms and atoms which
involve two or more types. Each such atom represents
a constraint formulated in the background theory of the
respective type.

A literal is a possibly negated atom, a clause is a dis-
junction of literals, and a formula in conjunctive normal
form (CNF) is a conjunction of clauses. Thus, a formula
φ in CNF, as considered subsequently, has the form

φ ≡
∧

i∈I

∨

j∈Ji

(¬)pij(a1, . . . , anij
).

Finally, for a formula φ, we use Vσ(φ) to denote the
variables of type σ occurring in φ.

Example 1. As a running example, we use the following
formula φ consisting of four clauses over the variables
VZ(φ) = {i, j, k, l} and VB(φ) = {x, y}:

φ ≡ {(i ≥ 0) ∨ y}
∧{¬(2i+ j < 10) ∨ (i+ j < 5)}
∧{x ∨ ¬(j ≥ 0)}
∧{(k + (4 − k) + 2l ≥ 7)}

Solutions. A structure T pairs the domain D with an
interpretation of the function and relational symbols over
the respective domains.

A complete solution of φ (with respect to the struc-
ture T ) is a complete assignment to the variables in V ,
such that φ evaluates to tt in the usual sense. For exam-
ple, we can define τ as an assignment for φ (as shown in
Example 1) with τ(i) = 3, τ(j) = 1, τ(k) = 0, τ(l) = 2,
τ(x) = tt, and τ(y) = ff . This assignment satisfies all
clauses and assigns values other than ? to all variables.
It is therefore called a complete solution of φ. For a given
formula φ, the SMT problem is to decide whether there
is a complete solution for φ.

Note that, opposed to the literature, we identify in
this paper solutions with respect to structures and the-
ories. However, as long as faced with first-order logic,
there is no significant difference.

In general, an assignment τ is a solution of φ iff every
complete assignment τ ′ with τ � τ ′ (i.e. every τ ′ ∈ 〈τ〉)
is a solution of φ. In other words, the values assigned by τ

to variables guarantee that φ evaluates to tt, regardless
of what value a ? may take when making τ complete.
For example, an assignment τ with τ(i) = 3, τ(j) = 1,
τ(k) = ?, τ(l) = 2, τ(x) = tt, and τ(y) = ff is also a
solution for formula φ of Example 1 since the value of k
can be set arbitrarily.

The assignment τ is called a minimal solution iff τ

is a solution of φ and minimal w. r. t. �: Thus, if any
further variable in τ is assigned ?, then there would be a
τ ′ with τ � τ ′ which does not satisfy φ. In other words,
trying to reduce τ ′ further by reassigning one of its val-
ues to ? would violate the property that all assignments
generated by τ ′ are solutions. A solution τ is a solution
of minimal weight iff it is a solution and for all solutions
τ ′ we have |τ | ≤ |τ ′|.

For example, the τ above is not minimal, since τ ′ with
τ ′ � τ by setting τ ′(i) = 3, τ ′(j) = 1, and τ ′(l) = 2 and
assigning ? to all remaining variables is also a solution
of φ. This τ ′ is not only a minimal solution but also a
solution of minimal weight for φ since every solution for
φ must at least assign values to i, j, and l to satisfy the
second and the fourth clause, respectively.

3.1 Deciding SMT by abstraction and concretisation

We integrate a Boolean SAT solver as well as constraint
solvers for the occurring background theories into a com-
bined SMT solver. Thereby, we require the constraint
solvers to decide the satisfiability of conjunctions of pos-
sibly negated constraints. Thus, our goal is to reduce the
SMT problem to Boolean SAT problems and constraint
solving problems. We follow the well-known idea of solv-
ing first a Boolean abstraction of φ yielding a constraint
problem for each type at hand.

Boolean abstraction. Given a formula φ in CNF, its
Boolean abstraction abst(φ) is defined as follows: Every
atom pij(a1, . . . , anij

) is replaced by a new representa-
tive Boolean variable pij which does not occur otherwise
in φ. Thus, ψ := abst(φ) is of the form

ψ ≡
∧

i∈I

∨

j∈Ji

(¬)pij .

The representative Boolean variables of a Boolean ab-
straction abst(φ) are denoted by the set

VR
B

(abst(φ)) ⊆ VB(abst(φ)).

Since all representative variables do not occur otherwise
in φ, we have VR

B
(abst(φ)) ∩ V(φ) = ∅.

Example 2. The Boolean abstraction of φ shown in Ex-
ample 1 is given as

abst(φ) ≡ {v1 ∨ y} ∧ {¬v2 ∨ v3} ∧ {x ∨ ¬v4} ∧ {v5}

with VR
B

(abst(φ)) = {v1, . . . , v5}. Here, we use v1 as a
representative Boolean variable for the atom (i ≥ 0),
and v2 as representative (2i+ j < 10), and so forth.
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Abstract solutions. Let φ be a formula and ψ := abst(φ)
its Boolean abstraction. Every complete assignment to
the variables of φ yields a truth value for the atoms of
φ. As the atoms are mapped to Boolean variables in ψ,
this yields a complete assignment for the variables of ψ.
More formally, every assignment τ to the variables in
φ induces an assignment ν := abst(τ) to the Boolean
variables in ψ by

ν(pij) := (pij(a1, . . . , anij
))[τ ]

where (pij(a1, . . . , anij
))[τ ] denotes the truth value of

the atom pij(a1, . . . , anij
) under assignment τ (if some

ai is assigned ?, then pij is assigned ? as well). We have
immediately:

Remark 2. Let τ be a solution of φ. Then abst(τ) is a
solution of abst(φ). If τ is moreover complete, abst(τ) is
also complete.

Concretisation. We now turn our attention towards
concretisations of abstract solutions. Let

conc(φ, ν) := {τ : V(φ) → D? | abst(τ) = ν}

be the set of all concretisations of ν with respect to φ.
As a consequence of Remark 2, the satisfiability of φ can
be checked by first

1. searching for a complete solution ν of abst(φ) and
then

2. checking whether there is a τ ∈ conc(φ, ν) which sat-
isfies φ.

While the first problem is an ordinary Boolean SAT
problem, the second problem is a constraint problem,
i.e., one has to check whether

constr(φ, ν) ≡
∧

ν(pij)=tt pij(a1, . . . , anij
)∧∧

ν(pij)=ff ¬pij(a1, . . . , anij
)

is satisfiable. This suggests the abstraction/refinement
approach for checking satisfiability of φ, i. e., to search
for an abstract complete solution ν for abst(φ) and to
then search for a complete solution for constr(φ, ν). We
summarise this procedure in the following lemma:

Lemma 1. φ is satisfiable iff there is

1. a complete solution ν of abst(φ) and
2. constr(φ, ν) is satisfiable.

Note that the application of this lemma requires each
invoked constraint solver to be able to handle negated
atoms.

Example 3. Let us come back to our running example
(see Example 1/2). One solution of

abst(φ) ≡ {v1 ∨ y} ∧ {¬v2 ∨ v3} ∧ {x ∨ ¬v4} ∧ {v5}

is given by ν(v1) = ν(y) = ν(v3) = ν(x) = ν(v4) =
ν(v5) = tt and ν(v2) = ff resulting in the constraint
problem

φ ≡ (i ≥ 0) ∧ y
∧¬(2i+ j < 10) ∧ (i+ j < 5)
∧x ∧ (j ≥ 0)
∧(k + (4 − k) + 2l ≥ 7)

However, this constraint problem is not satisfiable since
¬(2i+ j < 10) ∧ (i+ j < 5) is not satisfiable when both
i and j are required to be positive. A further solution of
the abstract system is given by ν(v1) = ν(v2) = ν(v3) =
ν(v4) = ν(x) = ν(v5) = tt and ν(y) = ff resulting in the
constraint problem

φ ≡ (i ≥ 0) ∧ ¬y
∧(2i+ j < 10) ∧ (i+ j < 5)
∧x ∧ (j ≥ 0)
∧(k + (4 − k) + 2l ≥ 7)

which is satisfiable, for example, with the aforemen-
tioned complete solution τ(i) = 3, τ(j) = 1, τ(k) = 0,
τ(l) = 2, τ(x) = tt, and τ(y) = ff .

The previous example shows that the typical abstrac-
tion/refinement approach does not yield incomplete and
especially no minimal solutions. This, however, can be
achieve by generalising abstract solutions, a concept
which we introduce next.

3.2 Generalisation

We adapt the approach in order to reduce the number of
calls to the constraint solvers and such that the individu-
ally processed constraint sets involve fewer constraints—
ultimately yielding a much better overall performance.

The simple yet efficacious idea is to generalise a given
solution obtained by a SAT solver before considering
the constraint problem. Given a complete solution ν for
abst(φ), we derive a minimal solution ν′ � ν and replace
ν with ν′ in all subsequent steps.

For a not necessarily complete solution ν′, the
constraint set constr(φ, ν′) is exactly defined as for
a complete solution. Note, however, all constrains
pij(a1, . . . , anij

) with ν′(pij) = ? are not part of
constr(φ, ν′). In other words, constr(φ, ν′) has |ν′|? less
atoms than constr(φ, ν) for a complete solution ν. But
still, the statement of Lemma 1 holds for incomplete so-
lutions:

Lemma 2. φ is satisfiable iff there is

1. a (possibly incomplete) solution ν′ of abst(φ) and
2. constr(φ, ν′) is satisfiable.

Proof. Consider a solution τ ′ of constr(φ, ν′). If τ ′ is not
complete, take an arbitrary complete solution τ with
τ ′ � τ . Then we have (pij(a1, . . . , anij

))[τ ] = ν′(pij)
whenever ν′(pij) 6= ?, i. e., ν′ � abst(τ). Since ν′ satisfies
abst(φ), abst(τ) satisfies abst(φ) as well and thus τ sat-
isfies φ. The other direction is immediate by Lemma 1.
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The next lemma shows that we can resort to incom-
plete solutions to prune the search space:

Lemma 3. Let ν and ν′ be solutions of abst(φ) with
ν′ � ν. Then satisfiability of constr(φ, ν) implies satisfi-
ability of constr(φ, ν′).

Proof. Since constr(φ, ν′) contains a subset of the con-
straints of constr(φ, ν), every assignment τ which satis-
fies constr(φ, ν) must satisfy constr(φ, ν′) as well.

Therefore if ν′ is a solution of abst(φ) and
constr(φ, ν′) is not satisfiable, then constr(φ, ν) is not
satisfiable for all ν with ν′ � ν. This gives rise to an
efficient procedure for checking the satisfiability of a for-
mula φ:

Lemma 4. Let ν
′ be a set of solutions whose elements

generate all complete solutions of a formula φ, i. e.,
⋃

ν′∈ν ′

〈ν′〉 = {ν | ν is a complete solution of abst(φ)}

Then φ is satisfiable iff there exists a ν′ ∈ ν
′ such that

constr(φ, ν′) is satisfiable.

Note the following important facts on the approach
sketched above: First, every ν′ generates an exponen-
tial number of solutions with respect to its freedom |ν′|?
(Remark 1). Furthermore, the number of atoms to check
is reduced by the freedom |ν′|? of ν′. Both reasons give
an intuitive explanation for the benefit of our approach
empirically confirmed in Section 6.

Example 4. Reconsider

abst(φ) ≡ {v1 ∨ y} ∧ {¬v2 ∨ v3} ∧ {x ∨ ¬v4} ∧ {v5}

from Example 2. In Example 3, we have identified
ν(v1) = ν(v2) = ν(v3) = ν(v4) = ν(x) = ν(v5) = tt and
ν(y) = ff as a solution of this abstract system. However,
this solution is clearly not minimal: For example, the val-
ues of y, v2, and v4 do not influence the truth value of
the abstract system, if the values for the other variables
are fixed. Thus, ν(v1) = ν(v3) = ν(x) = ν(v5) = tt and
ν(y) = ν(v2) = ν(v4) = ? is a smaller and even minimal
solution, resulting in the constraint problem

φ ≡ (i ≥ 0)
∧(i+ j < 5)
∧x
∧(k + (4 − k) + 2l ≥ 7)

which is satisfiable, for example, with the incomplete
solution τ(i) = 3, τ(j) = 1, τ(k) = 0, τ(l) = 2, τ(x) = tt.

This minimisation approach suggests to find some
optimal set ν

′ of solutions to generate all complete ones.
However, as even computing a single solution of mini-
mum weight from a given one is NP-complete and enu-
merating all possible solutions is #P-complete, it is in-
feasible to construct such an optimal set ν

′ (Delgrande
and Gupta, 1996).

Thus, instead of building a set ν
′ of minimal solutions

at the beginning, we minimise each solution as generated
by the SAT solver according to simple heuristics. If the
obtained minimal solution does not yield a concrete so-
lution, we use the SAT solver to produce a new solution
outside the already visited search space. In the next sec-
tion, we introduce the corresponding algorithm, and we
discuss its efficiency in Section 6.

4 Solving algorithm and minimisation

We now present ABsolver, which implements the ab-
straction/refinement approach with generalisation, fol-
lowing the ideas that were laid out in the previous sec-
tion. We start with the main loop of ABsolver and sub-
sequently discuss the minimisation algorithm which is
used to generalise the arising Boolean solutions. Finally
we present and discuss a number of selection heuristics
we used in the minimisation algorithm.

4.1 Main loop

ABsolver’s main procedure solve for deciding an SMT
problem is shown in Figure 1. The procedure takes a
formula φ as input and returns a solution τ iff φ is sat-
isfiable. To do so, in line 5, a Boolean abstraction φ′ is
computed with φ′ := abst(φ) before entering the main
loop. Subsequently, solve adds further clauses to φ′ when-
ever it discovers unsatisfiable conjunctions of (possibly
negated) constraints. In the main loop, we first com-
pute a solution ν to the Boolean abstraction φ′ with
ν := boolean solver(φ′) (line 7). If no such solution ex-
ists (line 8), then there exists no solution to the original
SMT instance φ and the procedure returns ff (line 9).

Otherwise, following the ideas of Section 3.2, the
Boolean solution ν is generalised by reducing the weight
|ν| of ν with ν := minimisation(φ′, ν) (line 11). The min-
imisation algorithm (minimisation) is discussed in Section
4.2. Using the now generalised solution ν to the Boolean
abstraction, we construct the corresponding constraint
constr(φ, ν) and use a constraint solver to search for a
concrete solution τ (line 12). If a solution τ exists (line
13), then τ is indeed a solution to the original problem φ

and accordingly, the algorithm returns τ as the solution.

If no such τ exists, an unsatisfiable subset conflicts(τ)
of the literals of constr(φ, ν) is identified by the proce-
dure conflicts and added as a conflict clause ¬conflicts(τ)
to φ′ (line 16). In our implementation, conflicts returns
those literals which are reported to be mutually incon-
sistent by the employed constraint solver. If the con-
straint solver does not return such an unsatisfiable core,
conflicts(τ) returns all literals of constr(φ, ν) and con-
sequently, all of them are added into the new conflict
clause.
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1: INPUT: SMT instance φ
2: OUTPUT: if φ is satisfiable, a solution τ to φ
3: otherwise ff
4: proc solve(φ)
5: φ′ := abst(φ) // initial Boolean Abstraction
6: while tt do

7: ν := boolean solver(φ′) // Boolean abstract solution
8: if ν = fail then

9: return ff // no concrete solution exists anymore
10: end if

11: ν := minimisation(φ′, ν) // generalisation via minimisation.
12: τ := constraint solver(constr(φ, ν)) // concretisation via constraint solver.
13: if τ 6= fail then

14: return τ // concrete solution found
15: end if

16: φ′ := φ′ ∧ ¬(conflicts(τ)) // avoid this conflict in the future
17: end while

Fig. 1: ABsolver’s solving algorithm

4.2 Minimisation

Let us now turn our attention to the generalisation al-
gorithm minimisation shown in Figure 2. It starts with
a complete Boolean assignment ν as returned by the
function boolean solver, which we have to minimise.
minimisation takes a Boolean formula φ′ and an assign-
ment ν which must satisfy φ′ initially. The procedure
maintains a set of variables V which are subsequently
considered for being assigned ?. At first, V is initialised
to the set of all variables VB(φ′) of φ′ (line 5).

Then, a loop is entered in which in each iteration
at least one variable is removed from V . This loop has
two parts: In lines 7–13, the clauses which are only sat-
isfied by a single literal v or ¬v (line 9) are removed
(line 10) from φ′ and the corresponding variable v from
the set of variables V (line 11), because when a con-
straint is satisfied by a single literal, the corresponding
variable cannot be assigned ?. Moreover, this step also
potentially removes all occurrences of v in the remaining
clauses, thus shortening them iteratively. If no candidate
variable remains in V (line 14), the algorithm returns the
resulting assignment ν. Otherwise, all variables in V can
be selected to be assigned ?. Thus, the algorithm chooses
a variable v ∈ V with select variable (line 17) according
to heuristics discussed below and reassigns ? to v (line
18). This v is then removed from V (line 19)—and a
new iteration starts. Note that the number of iterations
is bounded by the number of variables.

4.3 Selection heuristics

Presumably the choice of the variable to be assigned ?
(implemented by select variable) plays a crucial role in
the efficiency of the overall decision procedure. There-

fore, we experimented with the following three different
heuristics:

– Input-order rule: In the simplest form, variables are
chosen according to the structure of the input for-
mula.

– Purity-frequency rule: Pure literals are those which
occur in a given formula either only negative, or only
positive. In this case, select variable always prefers a
pure variable over a non-pure one.

– Representative rule: Applying this heuristic, vari-
ables that represent constraints of the background
theory are preferably assigned ?.

Observe that minimisation runs with the proposed selec-
tion heuristics in polynomial time with respect to the
size of φ.

It is easy to construct test cases which strongly dis-
criminate between these variants, as well as test cases
where the heuristics are not useful. Interestingly enough,
in the benchmarks described in the next section, which
are taken from the SMT-LIB, the heuristics performed
roughly equal. The measured differences in performance
were only on a marginal scale, indicating that either way
good (or, bad) candidates for elimination were found.

Note that the minimisation algorithm is easily in-
tegrated into other abstraction/refinement solvers as a
subsequent step after the Boolean part of an SMT prob-
lem has been solved by an arbitrary SAT solver, as shown
in Figure 1. Moreover, it would be possible (and, ar-
guably, sometimes even more efficient) to modify the in-
ternals of a SAT solver in order to obtain a generalisation
directly. However, this requires more development effort
and ties the SMT solver to a particular version of a par-
ticular tool. Additionally, most of today’s competitive
SAT solvers make use of highly integrated algorithms,
such that making modifications to them, even small
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Fig. 3: Architecture of ABsolver.

ones, becomes a non-trivial and error-prone task. Conse-
quently, having a separate generalisation algorithm gives
us the flexibility we need, and eases implementation.

5 Implementation

ABsolver as originally introduced by Bauer et al
(2007b), is a C++ framework that, once combined with
the appropriate solvers, can be either used as a stand-
alone tool, or integrated in terms of a system library,
e. g., to extend other constraint-handling systems. In the
discussion that follows, we refer to ABsolver as the
framework in its original form, and ABsolverDC as the
framework that has now been extended with the iterative
minimisation algorithm described above. An overview of
the architecture of the framework is presented in Fig-
ure 3.

ABsolver’s core comprises a data structure for
modelling an integrated circuit where arithmetic and
Boolean operations are represented as gates taking either
a single (e. g., negation), a pair (e. g., arithmetic compar-
ison), or an arbitrary number of inputs. The variables are
then seen as the input pins of a circuit, and the single
output pin provides the formula’s truth value, which is
either tt, ff , or ⊥ indicating that further treatment is
necessary, internally.

An input problem to ABsolver (and, therefore, to
ABsolverDC) then consists of a standard DIMACS
(DIMACS, 1993) format SAT problem, where the back-
ground constraints are expressed in a custom language,
encoded in the DIMACS comments, briefly shown in Fig-
ure 4. This way, the abstract part of an ABsolver prob-
lem is already understood by any standard SAT solver,
but naturally “wrapper” code has to be written for pro-
cessing the solver’s return set correctly.

p cnf 4 3

1 0 ((i ≥ 0) ∧ (j ≥ 0))

-2 3 0 ∧
“

¬(2i + j < 10) ∨ ( i + j < 5)
”

4 0 ∧
“

a · x + 3.5

4−y
+ 2y ≥ 7.1

”

c def int 1 i >= 0

c def int 1 j >= 0

c def int 2 2*i + j < 10

c def int 3 i + j < 5

c def real 4 a * x + 3.5 / ( 4 - y ) + 2 * y >= 7.1

Fig. 4: An SMT instance and ABsolver’s representation.

This processing is performed by the solver inter-
face layer. Using the circuit-object as described above,
the solver interface computes variable assignments. Cur-
rently, ABsolver interfaces with LSAT (Bauer, 2005),
grasp (Marques-Silva and Sakallah, 1996) and (z)Chaff
(Moskewicz et al, 2001), although in this paper, only the
latter was used to run benchmarks. The concretisation is
handled by specialised solvers offered by the COIN-OR
library (Lougee-Heimer, 2003). Basically, the COIN-OR
library is a collection of dedicated, and more or less in-
dependently developed constraint solvers, covering, e. g.,
linear arithmetic, or non-linear arithmetic, each with a
different solver.

Part of the SAT solver interface is also the iterative
minimisation algorithm for the SAT solver, i. e., each as-
signment produced by the SAT solver is first generalised,
before the concrete solution is determined. Moreover, the
wrapper is also responsible for evaluating the return val-
ues of the constraint solver, and for adding the negated
abstract solution back to the input clause, if necessary.
This design facilitates a loose integration of the indi-
vidual solver, where it is used as a black box. Which
solver actually gets used to solve a problem, i.e., the lin-
ear or the non-linear solver, is determined solely by the
background theory. However, we expect some constant
penalty on all benchmarks, because the wrapper has to
do type or character marshalling of input and return
values to solvers, rather than accessing a solver’s data
structures directly in terms of, say, pointers to memory
locations.

6 Experimental results

This section gives three kinds of benchmarks showing
the efficiency of our approach. First, we show the speed-
up of using the generalisation approach by comparing
ABsolver without and with generalisation on existing
benchmarks. Second, we compare ABsolver with third-
party SMT solvers that follow both an iterative approach
and an abstraction/refinement approach, showing that
our approach yields an inferior but still estimable solver.
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1: INPUT: Boolean abstraction φ′ of an SMT instance,
2: an assignment ν satisfying φ′

3: OUTPUT: an assignment ν′ satisfying φ′ with ν′ � ν

4: proc minimisation(φ′, ν)
5: V := VB(φ′) // extract Boolean variables as dontcare-candidates
6: while tt do

7: for all clauses Ci of φ′ do

8: L := satisfying literals(Ci, ν)
9: if L = {v} or L = {¬v} then

10: φ′ := remove clause(Ci, φ
′) // remove all clauses satisfied by a single variable

11: V := remove variable(v, V ) // remove the variable as dontcare-candidate
12: end if

13: end for

14: if V = ∅ then

15: return ν // no more candidates, return assignment
16: end if

17: v := select variable(V ) // select dontcare variable
18: assign v in ν to ? // generalise assignment
19: V := remove variable(v, V ) // remove as candidate
20: end while

Fig. 2: Iterative minimisation algorithm.
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Fig. 5: With and without don’t cares.

Most interestingly, we report that we indeed easily ob-
tained an SMT solver for non-linear arithmetic con-
straints that helped us to verify a car’s electronic steering
control system.

The benchmarks presented in the following sections
have been executed using a timeout of two hours, and a
memory limit of 1.2 GB on a 3.2 GHz Intel Xeon sys-
tem, equipped with 2 GB of RAM. All test cases are
taken from the QF LIA suite that is part of the SMT-
LIB benchmarks (Ranise and Tinelli, 2006).

6.1 ABsolver vs. ABsolverDC

A direct comparison between ABsolver and AB-

solverDC is shown in Figure 5. Each test case is
represented by a cross in the diagram, where the x-

coordinate reflects the runtime of ABsolverDC, and
the y-coordinate the runtime of ABsolver. Conse-
quently, when ABsolverDC outperforms ABsolver,
the corresponding cross is located within the upper left
area of the diagram. Both, the x- and y-axis show the
runtime in seconds, based on a logarithmic scale. Marks
at the upper and rightmost end of the diagram de-
note timeouts of ABsolver and ABsolverDC, respec-
tively. Figure 5 indicates that, in all test cases, AB-

solverDC is at least as efficient as ABsolver, and
even outperforms ABsolver in roughly one quarter of
the test cases by more than an order of magnitude. Those
runs, in turn, exhibit speed ups of more than three orders
of magnitude. Note that more than 20 test cases resulted
in timeouts of ABsolver, whereas ABsolverDC was
still able to solve these efficiently.

6.2 Comparison with other solvers

In Figure 6, ABsolverDC is compared to CVC 3,
MathSAT, Yices, Ario, HTP and ExtSAT, individually.
These solvers where chosen, because they competed in
SMT-COMP 06. Let us use the same type of diagram
as for the comparison between ABsolverDC and AB-

solver above, i. e., for each test run, a cross is added
in a square such that the x- and y-coordinate reflect
the runtime of ABsolverDC and the other solver on
a logarithmic scale, respectively. Not surprisingly, other
solvers which employ an iterative approach, still perform
better in these test runs than ABsolverDC does. How-
ever, ABsolverDC shows a comparatively stable and
reliable performance compared to these solvers. In fact,
due to the optimisations in place, ABsolverDC is able
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(f) ABsolver vs. ExtSAT.

Fig. 6: A detailed comparison.

to solve most test runs in additional time which is only
greater by a constant factor. As seen from Figure 6f AB-

solverDC outperforms ExtSAT on most of the bench-
marks that took more than one second to solve. Further-
more, as shown in Figure 6a, ABsolverDC is compara-
ble to CVC 3, since most test runs are clustered around
the diagonal line, and since both tools are able to solve
some test cases which cannot be solved by the respective
competitor. Figure 6b, and 6c, 6d, and 6e show that AB-

solverDC is clearly slower than MathSAT, Yices, Ario
and HTP. However, 60% of all benchmarks are solved
by ABsolverDC within a runtime which is only larger
by a constant factor. This is indicated by the diagonal
lines, as due to the logarithmic scale of the diagrams a
constant factor translates to diagonal corridors. The cor-
ridors represent factors of 20, and 100. Note that part
of this overhead is due to the text/file-based interface to
the underlying solver.

6.3 Sudoku

To evaluate the strength of the mathematical solvers
we encoded instances of the Sudoku puzzle as SMT in-
stances. Sudoku is a logic problem, where the player has
to arrange numbers from 1 to 9 horizontally as well as
vertically in 9× 9 squares, such that no numbers appear
twice in a row.

The problem is known to be hard for NP and trans-
lations to SAT are well established (cf. Lynce and Ouak-
nine (2006); Weber (2005)). Having a solver at hand
which solves Boolean as well as linear problems, how-
ever, the Sudoku puzzle can be tackled more efficiently
as a mixed problem and the encoding is more natural as
it can make use of integers. The resulting problems then
constitute hard integer programming problems with a
simple Boolean part.

The benchmark results shown in Figure 7 where
obtained for Sudoku instances presented at http://

sudoku.zeit.de/; dates indicate the magazine’s respec-
tive issue and given hardness.

We used the LSAT and COIN-OR solvers provided
with ABsolverDC, and compared to Yices and Math-
SAT. The results indicate that our specialised arith-
metic solver is as powerful as that of Yices. Contrariwise,
MathSAT, which had performed very well on generic
SMT-LIB benchmark instances, is slower by several or-
ders of magnitude.

6.4 Industrial case-study with non-linear arithmetic
constraints

The ABsolver framework was originally developed
to handle general mixed arithmetic and Boolean
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Benchmark ABsolverDC Yices MathSAT

2006 05 23 hard 0.283 0.187 5047.385
2006 05 24 hard 0.283 0.131 5988.447
2006 05 25 hard 0.282 0.378 6420.860
2006 05 26 hard 0.289 0.422 6750.929
2006 05 27 hard 0.289 0.532 5388.470
2006 05 28 hard 0.282 0.162 7049.500
2006 05 29 easy 0.279 0.128 4887.008
2006 05 29 hard 0.283 0.201 8251.245
2006 05 30 easy 0.287 0.151 4517.435
2006 05 30 hard 0.283 0.142 5675.672

Fig. 7: Results: Sudoku puzzles.

Fig. 8: Automated conversion work-flow.

constraints as arising in the verification of MAT-
LAB/Simulink models (Bauer et al, 2007b). To the best
of our knowledge, no pre-existing tools supported the
occurring non-linear constraints imposed by these mod-
els. Consequently, we integrated a specialised non-linear
constraint solver, as provided by the COIN-OR library,
into ABsolver.

We have employed successfully ABsolver in ver-
ifying a number of properties of a car’s steering con-
trol system. The continuous dynamics of the controller
and its environment had been modelled using MAT-
LAB/Simulink, where the environment consisted of non-
linear functions modelling the physical behaviour of the
car.

We therefore implemented a prototype tool-chain as
outlined in Figure 8 to convert the control model from
MATLAB/Simulink to ABsolver’s input format. Note
that conversion takes advantage of the SCADE mod-
elling and verification suite which can import MAT-
LAB/Simulink models. However, using SCADE in the
conversion was merely a matter of convenience, because
internally, SCADE uses a textual representation of the
model in terms of the programming language Lustre

(Halbwachs et al, 1991), from which we could then ex-
tract the multi-domain constraint satisfaction problems.
An automated conversion (using a custom tool-chain)

resulted in 976 CNF-clauses, and 24 (non-) linear ex-
pressions representing the constraints.

Currently, ABsolver in its original version is able to
solve the imposed constraint problem in 17 seconds. On
the other hand, our optimised solver ABsolverDC, was
able to solve the same problem in only 9 seconds, giving
a speed-up of roughly 50%. In both cases the employed
theory solvers were COIN (Lougee-Heimer, 2003) (for
the linear part), zChaff (Moskewicz et al, 2001) (for the
Boolean part), and IPOPT (Wächter and Biegler, 2005)
(for the non-linear part).

7 Conclusions

We have presented a simple yet surprisingly efficacious
optimisation to the abstraction/ refinement approach
in SMT solving. Starting with our ABsolver frame-
work as originally presented by Bauer et al (2007b), we
were able to improve the performance of the solver sub-
stantially by generalising a SAT solver’s solution, before
generating and solving the underlying constraint prob-
lem. This yields fewer and smaller constraint problems
than the traditional approach. Our experiments confirm
that the optimisation improves the traditional abstrac-
tion/refinement approach and pushes our framework in
a practically applicable range.

In many domains, specialised SMT solvers exist and
ABsolver cannot compete with these solvers. However,
to build an SMT solver with our framework, it is suf-
ficient to integrate a SAT solver and non-incremental
theory solvers as black boxes. Therefore, ABsolver pro-
vides a useful trade-off point between research and de-
velopment effort on the one hand side, and the domain
of solvable problems on the other: With a minimum en-
gineering effort, we were able to build a solver for non-
linear arithmetic SMT problems and to successfully ap-
ply this solver in verifying a car’s electronic steering con-
trol system—no other solver was able to process these
non-linear constraints before. As such our framework
somewhat closes the gap between more advanced SMT
solvers being developed in research, and currently arising
industrial problems which are often based upon hitherto
unsupported theories.

Acknowledgements. Thanks to Jinbo Huang, National
ICT Australia (NICTA), for comments on an earlier ver-
sion of this paper.
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A Full table of benchmarks

The table of all performed benchmarks is given below. Entries of “–(TO)” denote a timeout or exhausted memory
resources, entries of “–(E)” are used where the result reported by the solver was wrong. All times are given in seconds.

# Benchmark ABsolverDC ABsolver CVC 3 MathSAT yices Ario HTP ExtSAT

1 multiplier prime 2 0.036 0.040 0.036 0.004 0.000 0.012 0.024 –(E)
2 fischer1-1-fair 0.052 0.120 0.016 0.008 0.004 0.004 0.024 –(E)
3 fischer2-1-fair 0.100 0.492 0.028 0.008 0.008 0.008 0.024 –(E)
4 multiplier 2 0.104 157.518 0.164 0.084 0.004 0.004 0.008 6619.914
5 fischer1-3-fair 0.120 0.124 0.040 0.008 0.008 0.020 0.020 0.028
6 fischer1-2-fair 0.156 0.856 0.028 0.012 0.000 0.016 0.020 0.184
7 fischer1-4-fair 0.156 0.160 0.060 0.012 0.008 0.008 0.024 0.036
8 fischer3-1-fair 0.176 0.988 0.044 0.008 0.008 0.008 0.024 –(E)
9 fischer1-5-fair 0.204 0.200 0.060 0.016 0.004 0.020 0.036 0.048
10 fischer4-1-fair 0.236 1.824 0.068 0.012 0.008 0.024 0.036 –(E)
11 fischer1-6-fair 0.244 0.232 0.088 0.020 0.008 0.024 0.032 0.056
12 fischer2-3-fair 0.248 0.240 0.084 0.020 0.008 0.024 0.044 0.052
13 fischer5-1-fair 0.272 2.580 0.080 0.020 0.008 0.028 0.044 –(E)
14 simplebitadder compose 2 0.304 195.756 0.088 0.056 0.004 0.004 0.028 –(TO)
15 fischer2-4-fair 0.324 0.328 0.152 0.024 0.012 0.040 0.068 0.080
16 fischer6-1-fair 0.328 3.716 0.104 0.016 0.012 0.036 0.056 –(TO)
17 fischer3-3-fair 0.356 0.360 0.172 0.028 0.012 0.044 0.072 0.104
18 multiplier 3 0.412 –(TO) 3.788 0.380 0.008 0.012 0.028 –(TO)
19 fischer7-1-fair 0.416 4.940 0.112 0.024 0.012 0.040 0.068 –(TO)
20 fischer3-4-fair 0.496 0.496 0.284 0.028 0.012 0.060 0.124 0.176
21 fischer4-3-fair 0.500 0.492 0.244 0.040 0.016 0.060 0.120 0.148
22 fischer8-1-fair 0.528 6.936 0.168 0.028 0.012 0.048 0.084 –(TO)
23 fischer9-1-fair 0.556 9.001 0.152 0.032 0.012 0.060 0.104 –(TO)
24 fischer10-1-fair 0.620 11.061 0.176 0.036 0.012 0.072 0.116 –(TO)
25 fischer5-3-fair 0.620 0.632 0.324 0.048 0.024 0.080 0.176 0.216
26 fischer4-4-fair 0.668 0.656 0.440 0.056 0.020 0.088 0.180 0.236
27 fischer11-1-fair 0.708 14.205 0.204 0.048 0.020 0.088 0.148 –(TO)
28 fischer6-3-fair 0.816 0.804 0.452 0.060 0.040 0.116 0.268 0.300
29 fischer7-3-fair 0.884 0.920 0.524 0.072 0.032 0.160 0.364 0.484
30 fischer5-4-fair 0.900 0.848 0.644 0.064 0.036 0.140 0.296 0.368
31 fischer8-3-fair 1.040 1.036 0.644 0.084 0.036 0.200 0.520 0.584
32 fischer6-4-fair 1.120 1.096 0.896 0.100 0.040 0.184 0.456 0.504
33 fischer2-5-fair 1.200 4.764 0.180 0.028 0.012 0.052 0.092 –(TO)
34 fischer9-3-fair 1.216 1.204 0.756 0.088 0.048 0.252 0.820 0.884
35 fischer7-4-fair 1.224 1.220 1.312 0.100 0.040 0.264 0.620 0.768
36 fischer2-2-fair 1.256 482.574 0.060 0.024 0.008 0.024 0.032 12.173
37 fischer10-3-fair 1.336 1.324 0.852 0.116 0.044 0.328 –(TO) 0.912
38 fischer8-4-fair 1.416 1.436 2.052 0.128 0.056 0.328 1.136 1.112
39 simplebitadder compose 3 1.436 –(TO) 0.724 0.296 0.004 0.012 0.060 –(TO)
40 fischer11-3-fair 1.484 1.496 1.112 0.132 0.060 0.376 1.308 1.172
41 fischer9-4-fair 1.624 1.604 2.716 0.136 0.076 0.444 1.508 1.624
42 fischer10-4-fair 1.848 1.872 3.428 0.168 0.084 0.544 1.948 2.164
43 multiplier 4 1.892 –(TO) –(TO) 2.008 0.024 0.032 0.100 –(TO)
44 fischer11-4-fair 2.044 2.060 7.376 0.192 0.080 0.624 3.116 2.860
45 fischer3-5-fair 4.604 12.913 0.336 0.048 0.024 0.084 0.212 –(TO)
46 multiplier prime 3 5.528 5.908 0.060 0.012 0.004 0.008 0.016 –(E)
47 multiplier prime 4 6.900 14.053 7.496 0.012 0.004 0.008 0.028 –(E)
48 simplebitadder compose 4 6.900 –(TO) 5.476 1.316 0.016 0.020 0.136 –(TO)
49 fischer4-5-fair 7.424 25.250 0.732 0.072 0.028 0.148 0.324 –(TO)
50 multiplier 5 9.153 –(TO) –(TO) 9.577 0.100 0.176 0.372 –(TO)
51 multiplier prime 5 9.469 12.241 0.552 0.012 0.000 0.004 0.032 –(TO)
52 multiplier prime 6 12.237 171.859 –(TO) 0.024 0.000 0.004 0.024 –(TO)
53 multiplier prime 7 14.853 742.854 5.236 0.028 0.000 0.000 0.036 –(TO)
54 fischer3-2-fair 15.221 –(TO) 0.100 0.020 0.008 0.032 0.048 2856.795
55 multiplier prime 8 16.841 –(TO) –(TO) 0.076 0.004 0.016 0.036 –(TO)
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56 fischer5-5-fair 17.157 45.455 1.548 0.104 0.040 0.248 0.544 –(TO)
57 multiplier prime 9 20.921 –(TO) –(TO) 0.040 0.004 0.004 0.032 –(TO)
58 multiplier prime 10 25.126 –(TO) –(TO) 0.052 0.012 0.012 0.044 –(TO)
59 multiplier prime 11 25.574 –(TO) –(TO) 0.116 0.008 0.016 0.044 –(TO)
60 fischer6-5-fair 26.138 82.229 2.132 0.116 0.044 0.344 0.672 –(TO)
61 fischer7-5-fair 26.578 111.559 3.540 0.140 0.060 0.532 1.216 –(TO)
62 multiplier prime 12 31.082 –(TO) –(TO) 0.088 0.004 0.008 0.064 –(TO)
63 multiplier prime 13 33.234 –(TO) 161.858 0.072 0.004 0.016 0.064 –(TO)
64 simplebitadder compose 5 34.210 –(TO) 43.931 6.140 0.064 0.040 0.508 –(TO)
65 multiplier prime 14 35.250 –(TO) –(TO) 0.108 0.008 0.020 0.064 –(TO)
66 fischer8-5-fair 41.207 146.389 5.664 0.164 0.068 0.836 1.788 –(TO)
67 multiplier 6 46.811 –(TO) –(TO) 50.187 0.472 0.852 2.084 –(TO)
68 fischer9-5-fair 53.703 220.246 10.465 0.200 0.080 0.836 2.716 –(TO)
69 fischer10-5-fair 1m12.625 267.165 12.005 0.240 0.096 1.184 3.724 –(TO)
70 simplebitadder compose 6 176.495 –(TO) 117.283 30.162 0.280 0.076 2.984 –(TO)
71 fischer4-2-fair 209.013 –(TO) 0.132 0.032 0.012 0.048 0.056 –(TO)
72 multiplier 7 309.223 –(TO) –(TO) 254.708 2.812 5.468 20.701 –(TO)
73 simplebitadder compose 7 1140.939 –(TO) –(TO) 149.673 1.528 0.172 24.750 –(TO)
74 fischer2-6-fair 1341.424 –(TO) 0.280 0.040 0.016 0.072 0.144 –(TO)
75 multiplier 8 3050.831 –(TO) –(TO) 1256.907 28.086 55.803 219.554 –(TO)
76 fischer5-2-fair 3280.273 –(TO) 0.180 0.036 0.012 0.056 0.084 –(TO)
77 fischer10-2-fair –(TO) –(TO) 0.428 0.088 0.024 0.228 0.400 –(TO)
78 fischer11-2-fair –(TO) –(TO) 0.496 0.096 0.036 0.292 0.456 –(TO)
79 fischer2-7-fair –(TO) –(TO) 0.296 0.064 0.020 0.112 0.220 –(TO)
80 fischer3-6-fair –(TO) –(TO) 0.752 0.064 0.032 0.160 0.308 –(TO)
81 fischer3-7-fair –(TO) –(TO) 1.128 0.128 0.036 0.252 0.680 –(TO)
82 fischer3-8-fair –(TO) –(TO) 1.992 0.284 0.036 0.432 0.732 –(TO)
83 fischer4-6-fair –(TO) –(TO) 1.384 0.096 0.040 0.324 0.484 –(TO)
84 fischer6-2-fair –(TO) –(TO) 0.236 0.052 0.020 0.080 0.148 –(TO)
85 fischer6-6-fair –(TO) –(TO) 6.584 0.160 0.064 0.728 1.256 –(TO)
86 fischer6-7-fair –(TO) –(TO) 13.441 0.328 0.100 1.956 2.432 –(TO)
87 fischer6-8-fair –(TO) –(TO) 21.865 0.692 0.132 8.181 4.480 –(TO)
88 fischer6-9-fair –(TO) –(TO) 44.979 2.368 0.200 40.891 7.752 –(TO)
89 fischer7-2-fair –(TO) –(TO) 0.296 0.056 0.020 0.100 0.180 –(TO)
90 fischer7-6-fair –(TO) –(TO) 8.601 0.196 0.084 1.348 2.188 –(TO)
91 fischer7-7-fair –(TO) –(TO) 18.773 0.436 0.120 4.536 4.544 –(TO)
92 fischer8-2-fair –(TO) –(TO) 0.360 0.064 0.024 0.136 0.248 –(TO)
93 fischer8-6-fair –(TO) –(TO) 11.189 0.244 0.100 1.424 3.960 –(TO)
94 fischer9-2-fair –(TO) –(TO) 0.436 0.064 0.028 0.192 0.308 –(TO)
95 multiplier 10 –(TO) –(TO) –(TO) –(TO) 2436.764 6610.073 –(TO) –(TO)
96 multiplier 11 –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO)
97 multiplier 12 –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO)
98 multiplier 13 –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO)
99 multiplier 14 –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO) –(TO)
100 multiplier 9 –(TO) –(TO) –(TO) –(TO) 314.944 468.821 1821.458 –(TO)
101 simplebitadder compose 10 –(TO) –(TO) –(TO) –(TO) 1301.677 11.709 –(TO) –(TO)
102 simplebitadder compose 11 –(TO) –(TO) –(TO) –(TO) –(TO) 25.174 –(TO) –(TO)
103 simplebitadder compose 12 –(TO) –(TO) –(TO) –(TO) –(TO) 67.488 –(TO) –(TO)
104 simplebitadder compose 13 –(TO) –(TO) –(TO) –(TO) –(TO) 147.345 –(TO) –(TO)
105 simplebitadder compose 14 –(TO) –(TO) –(TO) –(TO) –(TO) 774.620 –(TO) –(TO)
106 simplebitadder compose 8 –(TO) –(TO) –(TO) 925.098 18.845 0.480 195.356 –(TO)
107 simplebitadder compose 9 –(TO) –(TO) –(TO) –(TO) 258.396 1.188 2161.831 –(TO)


