
An Introduction to Test Specification in FQL?

Andreas Holzer1, Michael Tautschnig1, Christian Schallhart2, and
Helmut Veith1

1 Vienna University of Technology
Formal Methods in Systems Engineering
{holzer, tautschnig, veith}@forsyte.at
2 Oxford University Computing Laboratory
christian.schallhart@comlab.ox.ac.uk

Abstract. In a recent series of papers, we introduced a new framework
for white-box testing which aims at a separation of concerns between test
specifications and test generation engines. We believe that establishing
a common language for test criteria will have similar benefits to test-
ing as temporal logic had to model checking and SQL had to databases.
The main challenge was to find a specification language which is expres-
sive, simple, and precise. This paper gives an introduction to the test
specification language FQL and its tool environment.

1 Introduction

Testing is an integral part of software development. Applications of testing range
from ad hoc debugging to software certification of safety-critical systems:

1. For debugging, we need program specific ad hoc test suites that cover, e.g.,
certain lines or functions or enforce a precondition in the execution of a
function high up in the call stack.

2. For requirement-based testing, we need test suites which reflect the intended
system behavior.

3. For certification, we need test suites that ensure standard coverage criteria
(e.g., condition coverage), in connection with industry standards such as
DO-178B [1].

In most practical cases the situation is even more complex: For instance, while
a system is still under development, we may want to assure condition coverage,
but avoid covering certain unimplemented functions. Or we may want to com-
bine basic block coverage in a large piece of code with full path coverage in a
small (but critical) function. We possibly want to repeat this procedure for each
function. When full path coverage is not achievable, we may want to approxi-
mate it by covering all pairs (or triples) of basic blocks in the program that can

? Supported by BMWI grant 20H0804B in the frame of LuFo IV-2 project INTECO
and by DFG grant FORTAS – Formal Timing Analysis Suite for Real Time Programs
(VE 455/1-1).



be reached. In fact, the moment you start thinking about testing requirements,
the wishes quickly exceed the possibilities of existing technology. Current best
practice therefore requires a lot of tedious manual work to find test suites. Man-
ual test case generation incurs both high costs and imprecision. On the other
hand, heuristic automated test case generation techniques such as random test-
ing or directed testing [2,3,4,5,6,7] are very useful for general debugging, but can
usually not achieve the coverage goals discussed here.

Approaching testing from a model checking background, we were quite sur-
prised that the literature contains a rich taxonomy and discussions of test cov-
erage criteria, but is lacking a systematic framework for their specification. We
believe that such a framework helps to reason about specifications and build
tools which are working towards common goals. Absence of a formal specifica-
tion means imprecision: In [8] we showed that commercial tools can be brought
to disagree on condition coverage for programs of a few bytes length.

History of computer science has shown that the introduction of temporal
logic was essential to model checking, similarly as SQL/relational algebra was to
databases. In particular, a formal and well-designed language helps to separate
the problem specification from the algorithmic solution.

Having a precise language to specify test criteria over a piece of source code
opens many interesting research directions and development workflows:

1. Tools for test case generation [9,10,11]
2. Tools for the measurement of coverage [11]
3. Model-based tool chains which translate test specifications from model level

to source-code level [12]
4. Hybrid tools which combine underapproximations by testing with overap-

proximations by model checking [4,6,13]
5. Distributed test case generation guided by precise specifications
6. Hybrid tools which take existing test suites, measure them and add the test

cases needed for a certain coverage criterion; this naturally combines with
randomized and directed testing, and regression testing

Our challenge therefore was to find a language that enables us to work towards
these goals, but is simple enough to be used by practitioners, and clean enough
to facilitate a clear semantics. The role models for our language were languages
such as LTL and SQL. We believe that our language FQL is a valuable first
step towards a test specification language bearing the quality of these classics.
It is easy to find a complicated very rich test specification language, but the
challenge was to find a simple and clean one. The main difficulty we were facing
in the design of FQL stems from the need to talk about both the syntax and
the semantics of the program under test in one formalism.

The current paper is a pragmatic introduction to FQL. For a more thorough
treatment of FQL, we refer the reader to [8].



2 The Language Design Challenge

It is natural to specify a single program execution – a test case – on a fixed given
program by a regular expression. For instance, to obtain a test case which leads
through line number 4 (covers line 4) of the program, we can write a regular
expression ID* . @4 . ID*, where ‘ID’ denotes a wildcard. We will refer to such
regular expressions as path patterns. Equipped with a suitable alphabet which
involves statements, assertions and other program elements, path patterns are
the backbone of our language.

Writing path patterns as test specifications is simple and natural, but has a
principal limitation: it only works for individual tests, and not for test suites.
Let us discuss the problem on the example of basic block coverage. Basic block
coverage requires a test suite where

“for each basic block in the program there is a test case in the test suite
which covers this basic block.”

It is clear that basic block coverage can be achieved manually by writing one
path pattern for each basic block in the program. The challenge is to find a spec-
ification language from which the path patterns can be automatically derived.
This language should work not only for simple criteria such as basic block cover-
age, but, on the contrary, facilitate the specification of complex coverage criteria,
such as those described in the introduction. To understand the requirements for
the specification language, let us analyze the above verbal specification:

A The specification requires a test suite, i.e., multiple test cases, which together
have to achieve coverage.

B The specification contains a universal quantifier, saying that each basic block
must be covered by a test case in the test suite.

C Referring to entities such as “basic blocks” the specification assumes knowl-
edge about program structure.

D The specification has a meaning which is independent of the concrete pro-
gram under test. In fact, it can be translated into a set of path patterns only
after the program under test is fixed.

The challenge is to find a language with a syntax, expressive power, and usability
appropriate to the task. Our solution is to evolve regular expressions into a richer
formalism (FQL) which is able to address the issues A-D.

3 Quoted Regular Expressions

Quoted regular expressions are a simple extension of regular expressions which
enable us to selectively generate multiple regular expressions from a single one.
Thus, quoted regular expressions can also be thought of as “meta-regular expres-
sions”. The use of quoted regular expressions will enable us to specify multiple
tests in a single expression.



b
a

a

a

b

a

c

d

(a) a ∗ b.a ∗+c.d∗

a?ba? +
cd?

(b) "a ∗ .b.a ∗+c.d ∗ "

a?ba?

cd?

(c) "a ∗ .b.a ∗ " + "c.d ∗ "

Fig. 1. Automata resulting from expansion of path patterns and coverage specifications

Syntactically, a quoted regular expression is just a regular expression with
quoted subexpressions. We illustrate the effect of quoting on a simple example:
A path pattern a ∗ .b.a ∗+c.d∗ describes an infinite language

Lq(a ∗ .b.a ∗+c.d∗) = {b, c, ab, cd, aba, cdd, aab, aaba, aabaa, . . .}

with a corresponding finite automaton shown in Figure 1(a). If we enclose this
pattern into quotes, then the expansion of the regular expression will be blocked.
Thus, "a ∗ .b.a ∗+c.d ∗ " defines a finite language

Lq("a ∗ .b.a ∗+c.d ∗ ") = {a?ba? + cd?}

and the automaton shown in Figure 1(b). If only the two subexpressions are
quoted, i.e., we study "a∗ .b.a∗"+"c.d∗", we obtain two words, cf. Figure 1(c):

Lq("a ∗ .b.a ∗ " + "c.d ∗ ") = {a?ba?, cd?}.

Formally, we treat the quoted regular expressions "a ∗ .b.a ∗ " and "c.d ∗ "
as temporary alphabet symbols x and y and obtain all words in the resulting
regular language x + y.

We can now easily specify test suites by quoted regular expressions. Each
word of a quoted regular expression – a path pattern again describing a formal
language – defines one test goal to be covered. For instance, "ID* . @4 . ID*" +

"ID* . @6 . ID*" requires that our test suite will contain one test case through
line 4, and one (possibly the same one) through line 6.

In the following, we will disallow the use of the Kleene star ∗ outside quotes
to assure finiteness of the test suite. On the other hand, we note that for path
patterns, i.e., inside the quotes, we can possibly use pattern matching formalisms
that are more powerful than regular expressions. We can allow, e.g., context-free
features such as bracket matching.

4 The FQL Language Concept

In the following we will discuss the main features of FQL. We use the C code
snippet shown in Listing 1 to explain basic aspects of FQL. To exemplify more
complex test specifications and their FQL counterparts we will augment this
snippet with additional program code.



1 int cmp(int x, int y) {
2 int value = 0;
3 if (x > y)
4 value = 1;
5 else if (x < y)
6 value = −1;
7 return value;
8}

Listing 1. C source code of function cmp

4.1 Path Patterns: Regular Expressions

FQL is a natural extension of regular expressions. To cover line 4, we just write

> cover "ID* . @4 . ID*"

The quotes indicate that this regular expression is a path pattern for which we
request a matching program path. We use the operators ‘+’, ‘*’, ‘.’ for alternative,
Kleene star and concatenation. Note that the regular expressions can contain
combinations of conditions and actions, as in

> cover "ID* . { x==42 } . @4 . ID*"

which requests a test where the value of variable x is 42 at line 4. For the first
query a suitable pair of inputs is, e.g., x = 1, y = 0, whereas the second query
requires x = 42 and a value of variable y smaller than 42, such as y = 0.

4.2 Coverage Specifications: Quoted Regular Expressions

Using the regular alternative operator ‘+’ we can build a path pattern matching
all basic block entries in Listing 1. These map to line numbers 2, 4, 6, and 7.
Consequently we can describe the basic block entries using the path pattern @2

+ @4 + @6 + @7 and use a query

> cover "ID* . (@2 + @4 + @6 + @7) . ID*"

to request one matching test case. For basic block coverage, however, we are
interested in multiple test cases covering all of these four lines – a test suite.
Towards this end, we will introduce coverage specifications, i.e., quoted regular
expressions, which describe a finite language over path patterns, where each word
defines one test goal.

To specify a test suite achieving basic block coverage we hence write

> cover "ID*" . (@2 + @4 + @6 + @7) . "ID*"

which is tantamount to a list of four path patterns:

> cover "ID* . @2 . ID*"

> cover "ID* . @4 . ID*"



> cover "ID* . @6 . ID*"

> cover "ID* . @7 . ID*"

We emphasize the finiteness achieved by the omission of the Kleene star
outside quotes: An infinite number of test goals would lead test case generation
ad absurdum.

To summarize, the notion of coverage specifications/quoted regular expres-
sions allows us to address issues A and B of the above list. In the following
section, we will show how to address the remaining issues C and D.

4.3 Target Graphs and Filter Functions

For a fixed given program, coverage specifications using ID and line numbers such
as @7 are useful to give ad hoc coverage specifications. For program independence
and generality, FQL supports to access additional natural program entities such
as basic blocks, files, decisions, etc. We call these functions filter functions.

For instance, in the above example, the filter function @BASICBLOCKENTRY is
essentially a shorthand for the regular expression @2+@4+@6+@7. Thus, the query

> cover "ID*" .@BASICBLOCKENTRY. "ID*"

will achieve basic block coverage. To make this approach work in practice, of
course we have to do more engineering work. It is only for simplicity of presen-
tation that we identify program locations with line numbers.

2

3

4 5

6

7

8

value := 0

[x > y]

value := 1

[x <= y]

[x >= y]

[x < y]

value := −1

return value

Fig. 2. CFA for Listing 1

Towards this goal, we represent pro-
grams as control flow automata (CFA).
Henzinger et al. [14] proposed CFAs as a
variant of control flow graphs where state-
ments are attached to edges instead of
nodes. The nodes then correspond to pro-
gram locations. In Figure 2 the CFA for
Listing 1 is shown; for illustration, we use
line numbers as program locations. This
CFA contains assignments, a function re-
turn edge, and assume edges: bracketed
expressions describe assumptions resulting
from Boolean conditions.

We define target graphs is a subgraphs
of the CFA. Filter functions are used to ex-
tract different target graphs from a given
program. For instance, we have filter func-
tions for individual program lines such as
@4, basic blocks (@BASICBLOCKENTRY), func-
tions (as in @FUNC(sort)), etc. To consider another example, the filter function
@CONDITIONEDGE refers to the true/false outcomes of all atomic Boolean conditions
in the source code.



Thus, filter functions and target graphs provide the link to the individual
programming language. The evaluation of filter functions to target graphs is the
only language-dependent part of FQL.

Let us return to our running example: The filter function ID selects the
entire CFA as target graph. For the program in Listing 1 with the CFA of
Figure 2 an expression @2 selects the edge (2, 3), and @BASICBLOCKENTRY yields the
edges (2, 3), (4, 7), (6, 7) and (7, 8). For @CONDITIONEDGE we obtain the subgraph
consisting of the edges (3, 4), (3, 5), (5, 6) and (5, 7); the same result could have
been obtained by combining the target graphs of @3 (edges (3, 4), (3, 5)) and @5

(edges (5, 6), (5, 7)), using set union: FQL provides functionality to extract and
manipulate target graphs from programs, for instance the operations ‘&’ and ‘|’
for intersection and union of graphs, or ‘NOT’ for complementation. For example,
to extract the conditions of function cmp only, we intersect the target graphs of
@FUNC(cmp), which yields all edges in function cmp, and @CONDITIONEDGE. In FQL,
we write this intersection as @FUNC(cmp) & @CONDITIONEDGE.

4.4 Target Alphabet: CFA Edges, Nodes, Paths

In our test specifications, we can interpret target graphs via their edges, their
nodes or their paths. In most cases, it is most natural to view them as sets of
edges. In the above examples, we implicitly interpreted a target graph resulting
from the application of a filter function @BASICBLOCKENTRY as a set of edges: for
Listing 1 we obtained four edges.

In fact, expressions such as @BASICBLOCKENTRY, which we used throughout
the section, are shorthands for regular expressions constructed from the set of
CFA edges, which can be made explicit by stating EDGES(@BASICBLOCKENTRY). By
default, FQL will interpret every target graph as a set of edges.

The target graph, however, may also be understood as a set of nodes – or
even as a description of a set of finite paths. Let us study these three cases on
practical examples of coverage requirements for the program in Listing 1.

– Edges. In FQL, EDGES(@FUNC(cmp)), or simply @FUNC(cmp), yields the expres-
sion (2, 3) + (3, 4) + (3, 5) + (4, 7) + (5, 7) + (5, 6) + (6, 7) + (7, 8). Hence the
coverage specification of a query

> cover "EDGES(ID)*" . EDGES(@FUNC(cmp)) . "EDGES(ID)*"

has eight goals, one for each edge. Three different test inputs, e.g., (x = 0, y
= -1), (x = 0, y = 0), and (x = -1, y = 1), are required to cover all edges.

– Nodes. Statement coverage requires that each program statement is covered
by some test case. In this case, it is not necessary to cover each edge of
a CFA, which would yield branch coverage; for an if (cond) stmt; with-
out else it suffices to reach the CFA nodes with outgoing edges for cond
and stmt. Hence, to request statement coverage of function cmp we use
NODES(@FUNC(cmp)), which yields the expression 2 + 3 + 4 + 5 + 6 + 7 + 8.
Consequently the corresponding query

> cover "ID*" . NODES(@FUNC(cmp)) . "ID*"



2

3

3′

3′′

4

5

6

7

8

value := 0

[x != 0]

[x == 0]

[y != 0]

[y == 0]

[x > y]
[x <= y]

value := 1
[x >= y]

[x < y]

value := −1

return value

x y x > y

true ∗ true
true ∗ false
false true true
false true false
false false ∗

2

3

3′

3′′

4

5

6

7

8

2

3

3′

3′′

4

5

6

7

8

2

3

3′

3′′

4

5

6

7

8

2

3

3′

3′′

4

5

6

7

8

2

3

3′

3′′

4

5

6

7

8

Fig. 3. Multiple condition coverage of (x || y) && x > y

yields only seven test goals (words). In this case, two pairs of test inputs
suffice, e.g., (x = 0, y = -1) and (x = -1, y = 1).

– Paths. The operator PATHS(T,k) extracts the target graph computed by a
filter function T such that no node occurs more than k times. For a practical
example assume we replace the condition x > y in line 3 with (x || y) &&
x > y to additionally test for at least one of x or y to be non-zero. The CFA
for the modified function cmp is shown in Figure 3. To exercise this com-
plex condition with multiple condition coverage we have to test all Boolean
combinations of atomic conditions. Owing to short-circuit semantics only
five cases remain to be distinguished, as described by the table in Figure 3.
These five cases exactly correspond to the paths of the target graph com-
puted by the filter function @3, i.e., the edges corresponding to line 3 of the
program. In FQL we use PATHS(@3, 1) to describe the bounded paths in this
target graph, i.e., (3, 3′′, 4) + (3, 3′′, 5) + (3, 3′, 3′′, 4) + (3, 3′, 3′′, 5) + (3, 3′, 5),
as illustrated with bold edges in the CFAs at the right side of Figure 3. The
query

> cover "ID*" . PATHS(@3, 1) . "ID*"

gives rise to five test goals. We require a bound to be specified, which in this
case is 1, as cyclic target graphs would otherwise yield an infinite number of
paths, and hence an infinite number of test goals.



4.5 Full FQL Specifications

General FQL specifications have the form

in G cover C passing P

where both in G and passing P can be omitted. Table 1 summarizes the full
syntax of FQL.

– The clause ’in G’ states that all filter functions in the cover clause are
applied to a target graph resulting from first applying the filter function G.
In practice, this is often used as

in @FUNC(foo) cover EDGES(@DEF(x))

which is equivalent to the specification

cover EDGES(COMPOSE(@DEF(x),@FUNC(foo)))

– To restrict testing to a certain area of interest, FQL contains passing clauses,
i.e., path patterns which every test case has to satisfy. For instance, by
writing

> cover "ID*" . @BASICBLOCKENTRY . "ID*"

passing ^NOT(@CALL(unimplemented))*$

we request basic block coverage with test cases restricted to paths where
function unimplemented is never called. Such specifications enable testing
of unfinished code, where only selected parts will be exercised. Furthermore,
we can use passing clauses to specify invariants: Using the query

> cover "ID*" . @BASICBLOCKENTRY . "ID*"

passing ^(ID.{x >= 0})*$

we request basic block coverage through a test suite where variable x never
becomes negative. Note that the passing clause contains only path patterns
and does not contain quotes. The symbols ‘^’ and ‘$’ are explained below.

FQL also contains syntactic sugar to simplify test specifications. In particular, ->
stands for .ID*. (or ."ID*". when used in coverage specifications). Moreover, as
stated above, EDGES is assumed as default target alphabet constructor. Therefore
the above query for not calling function unimplemented expands to

> cover "EDGES(ID)*" . EDGES(@BASICBLOCKENTRY) . "EDGES(ID)*"

passing EDGES(NOT(@CALL(unimplemented)))*

In addition, "EDGES(ID)*" is by default added before and after a coverage speci-
fication in the cover clause of an FQL query; for the passing clause we add the
unquoted version:

> cover "EDGES(ID)*" . EDGES(@BASICBLOCKENTRY) . "EDGES(ID)*"

passing EDGES(ID)*.EDGES(NOT(@CALL(unimplemented)))*.EDGES(ID)*

To avoid this implicit prefix/suffix being added, Unix grep style anchoring using
‘^’ and ‘$’ may be used. As shown above, this is mainly necessary when required
invariants are specified, which have to hold for the entire path, or to ensure that
the example function unimplemented is never called.



Φ ::= in T cover C′
passing P ′

C′ ::= C | Ĉ | Ĉ$ | C$

P ′ ::= P | P̂ | P̂$ | P$

C ::= C + C | C.C | (C) | N | S | "P"
P ::= P + P | P.P | (P ) | N | S | P ?

N ::= T | NODES(T ) | EDGES(T ) | PATHS(T ,k)

T ::= F | COMPOSE(T ,T ) | T |T | T&T | SETMINUS(T ,T )

F ::= ID | @BASICBLOCKENTRY | @CONDITIONEDGE | @CONDITIONGRAPH

| @DECISIONEDGE | @FILE(a) | @LINE(x) | @FUNC(f) | @STMTTYPE(types)

| @DEF(t) | @USE(t) | @CALL(f) | @ENTRY(f) | @EXIT(f)

Table 1. Syntax of FQL

5 Example Specifications

In the preceding sections we described the framework and basic concepts of FQL.
In the following we give a number of practical usage scenarios and resulting FQL
queries.

– Statement coverage. This standard coverage criterion requires a set of pro-
gram runs such that every statement in the program is executed at least once.
To specify a test suite achieving statement coverage for the entire program
at hand we use the FQL query

> cover NODES(ID)

– Basic block coverage with invariant. FQL makes it easy to modify standard
coverage criteria. Consider for instance basic block coverage with the addi-
tional requirement that the variable errno should remain zero at all times:

> cover @BASICBLOCKENTRY passing ^(ID.{errno==0})*$

– Multiple condition coverage in specified scope. It is often desirable to apply
automated test input generation to a restricted scope only. This situation
comes in two flavors: First we consider coverage for a certain function only.
In FQL we use the query

> in @FUNC(foo) cover @CONDITIONEDGE

to request condition coverage for decisions in function foo only. The second
interesting restriction is to avoid execution of parts of the program, e.g.,
unfinished code. The following query achieves condition coverage and uses
the passing clause to disallow calls to function unfinished:

> cover @CONDITIONEDGE passing ^NOT(@CALL(unfinished))*$



To achieve multiple condition coverage, all feasible Boolean combinations
of atomic conditions must be covered. This corresponds to all paths in the
control flow graphs of the decisions in the program. In FQL, this is expressed
as follows:

> cover PATHS(@CONDITIONGRAPH, 1) passing ^NOT(@CALL(unfinished))*$

– Combining coverage criteria. When full path coverage is not achievable, we
may either choose to approximate it, or to restrict it to the most critical
program parts and use, e.g., basic block coverage elsewhere. As an approx-
imation of path coverage we suggest covering all pairs (or triples) of basic
blocks in the program. This is easily expressed using the following queries

> cover @BASICBLOCKENTRY -> @BASICBLOCKENTRY

> cover @BASICBLOCKENTRY -> @BASICBLOCKENTRY -> @BASICBLOCKENTRY

for pairs and triples, respectively. If path coverage is a must, but can be
restricted to function critical, we use a query

> cover PATHS(@FUNC(critical), 3) + @BASICBLOCKENTRY

to achieve basic block coverage for the entire program and path coverage
with an unwinding bound of 3 in function critical only. If necessary, this
procedure can be repeated for other important functions.

– Predicate complete coverage. Ball suggested predicate complete coverage [15]
as a new coverage criterion that subsumes several standard coverage criteria,
except for path coverage. Given a set of predicates, e.g., x ≥ 0 and y = 0,
we state the query

> cover ({x>=0}+{x<0}).({y==0}+{y!=0}).EDGES(ID)
.({x>=0}+{x<0}).({y==0}+{y!=0})

It is not difficult to extend FQL with features to automatically extract lists
of predicates.

– Testing recent changes. In incremental software development we often want
to assess the effects of changes to the software. Assume that in a recent
change lines 5, 6, and 7 were modified, and that the code in line 8 calls a
function bar. We would therefore like to systematically consider the effects
of lines 5, 6, and 7 on function bar. In FQL this is easily done using the
query

> cover (@5+@6+@7) -> (@CONDITIONEDGE&@FUNC(bar))

which for each of lines 5, 6, and 7 requests condition coverage inside bar.
– Reproducing stack traces. During program debugging it is easy to obtain a

call stack of current execution state. It is, however, a lot harder to reproduce
the same call stack to understand the cause of a problem. With FQL, this
task is simple. Given a call stack of foo, bar, foo we turn this into a query

> cover @CALL(foo) -> @CALL(bar) -> @CALL(foo)

Note that this query may be too imprecise if, e.g., foo can be left such that
bar is called outside foo. Therefore the query may be refined to



> cover @CALL(foo)."NOT(@EXIT(foo))*".@CALL(bar)

."NOT(@EXIT(bar))*".@CALL(foo)

– Testing according to requirements. In industrial development processes test
cases are often specified on a model rather than the source code. These spec-
ifications may be given for instance as a sequence diagram which describes
a series of events. Once these events are translated to code locations, e.g.,
“call function foo”, “reach line 42”, “call function bar”, we can use an FQL
query

> cover @CALL(foo) -> @42 -> @CALL(bar)

to express this requirement. Our recent paper [12] is studying the application
of FQL to model-based testing systematically.

6 Tool Support

We realized test case generation and coverage measurement engines for C in
our tools FShell 2 and FShell 3. FShell 2 offers an interactive (shell-like)
frontend where users state their FQL specifications. As backend, FShell 2
uses components of CBMC [16], which enables support for full C syntax and
semantics. FShell 2 is available for download in binary form for the most
popular platforms at http://code.forsyte.de/fshell. In contrast, FShell 3
builds upon the predicate abstraction based software verification framework
CPAchecker [17,18]. In addition to test generation, FShell 3 also supports
measurement of coverage achieved by an existing test suite.

7 Related Work

Several papers have addressed test specifications from different angles. Beyer
et al. [19] use the C model checker BLAST [20] for test case generation, fo-
cusing on basic block coverage only. BLAST has a two level specification lan-
guage [21]. Contrary to FQL, their language is tailored towards verification. Hes-
sel et al. [22,23,24] present the automatic test case generator Uppaal Cover [22]
based on Uppaal [25]. They present a specification language, based on param-
eterized observer automata, for describing coverage criteria. Their method is
based on models of a system under test whilst we are able to generate test cases
from source code directly. Lee et al. [26,27] investigate test case generation with
model checkers giving coverage criteria in temporal logics. Java PathFinder [28]
and SAL2 [29] use model checkers for test case generation, but, they do not
support C semantics. Geist et al. [30] apply symbolic model checking in test
generation for hardware systems.

Most existing formalisms for test specifications focus on the description of
test data, e.g., TTCN-3 [31] and UML TP [32], but none of them allows to
describe structural coverage criteria.



8 Conclusion

We presented a brief overview of our research on query-driven program test-
ing with a focus on the query language FQL. Together with our query solving
backends this versatile test case specification language supports automated test
input generation for sequential C programs. One of our major next steps will be
developing support for concurrent software, both in the backend as well as at
language level, following earlier work such as [33] or [34].

References

1. RTCA DO-178B: Software considerations in airborne systems and equipment cer-
tification (1992)

2. Bird, D.L., Munoz, C.U.: Automatic generation of random self-checking test cases.
IBM Systems Journal 22(3) (1983) 229–245

3. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Draves, R., van Renesse,
R., eds.: OSDI, USENIX Association (2008) 209–224

4. Godefroid, P.: Compositional dynamic test generation. In Hofmann, M., Felleisen,
M., eds.: POPL, ACM (2007) 47–54

5. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing.
In Sarkar, V., Hall, M.W., eds.: PLDI, ACM (2005) 213–223

6. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-
ergy: a new algorithm for property checking. In Young, M., Devanbu, P.T., eds.:
SIGSOFT FSE, ACM (2006) 117–127

7. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In
Wermelinger, M., Gall, H., eds.: ESEC/SIGSOFT FSE, ACM (2005) 263–272

8. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your test
suite. In Pecheur, C., Andrews, J., Nitto, E.D., eds.: ASE, ACM (2010) 407–416

9. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Fshell: Systematic test case
generation for dynamic analysis and measurement. In Gupta, A., Malik, S., eds.:
CAV. Volume 5123 of Lecture Notes in Computer Science., Springer (2008) 209–213

10. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program test-
ing. In Jones, N.D., Müller-Olm, M., eds.: VMCAI. Volume 5403 of Lecture Notes
in Computer Science., Springer (2009) 151–166

11. Beyer, D., Holzer, A., Tautschnig, M., Veith, H.: Directed software verification.
(2010) Technical Report.

12. Holzer, A., Januzaj, V., Kugele, S., Langer, B., Schallhart, C., Tautschnig, M.,
Veith, H.: Seamless testing for models and code. (2010) Technical Report.

13. Godefroid, P., Kinder, J.: Proving memory safety of floating-point computations
by combining static and dynamic program analysis. In Tonella, P., Orso, A., eds.:
ISSTA, ACM (2010) 1–12

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL.
(2002) 58–70

15. Ball, T.: A theory of predicate-complete test coverage and generation. In de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.P., eds.: FMCO. Volume 3657 of
Lecture Notes in Computer Science., Springer (2004) 1–22



16. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. In
Jensen, K., Podelski, A., eds.: TACAS. Volume 2988 of Lecture Notes in Computer
Science., Springer (2004) 168–176

17. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: ASE, IEEE (2008) 29–38

18. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software verifi-
cation. CoRR abs/0902.0019 (2009)

19. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: ICSE, IEEE Computer Society (2004) 326–335

20. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
blast. In Ball, T., Rajamani, S.K., eds.: SPIN. Volume 2648 of Lecture Notes in
Computer Science., Springer (2003) 235–239

21. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The blast
query language for software verification. In Giacobazzi, R., ed.: SAS. Volume 3148
of Lecture Notes in Computer Science., Springer (2004) 2–18

22. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using uppaal. In Hierons, R.M., Bowen, J.P., Harman,
M., eds.: Formal Methods and Testing. Volume 4949 of Lecture Notes in Computer
Science., Springer (2008) 77–117

23. Hessel, A., Pettersson, P.: A global algorithm for model-based test suite generation.
Electr. Notes Theor. Comput. Sci. 190(2) (2007) 47–59

24. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In Grabowski, J., Nielsen, B., eds.: FATES. Volume
3395 of Lecture Notes in Computer Science., Springer (2004) 125–139

25. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2) (1997)
134–152

26. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage and generation. In Katoen, J.P., Stevens, P., eds.: TACAS. Volume 2280
of Lecture Notes in Computer Science., Springer (2002) 327–341

27. Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal
logic. In Zhang, D., Grégoire, É., DeGroot, D., eds.: IRI, IEEE Systems, Man, and
Cybernetics Society (2004) 493–498

28. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In Avrunin, G.S., Rothermel, G., eds.: ISSTA, ACM (2004) 97–107

29. Hamon, G., de Moura, L.M., Rushby, J.M.: Generating efficient test sets with a
model checker. In: SEFM, IEEE Computer Society (2004) 261–270

30. Geist, D., Farkas, M., Landver, A., Lichtenstein, Y., Ur, S., Wolfsthal, Y.:
Coverage-directed test generation using symbolic techniques. In Srivas, M.K.,
Camilleri, A.J., eds.: FMCAD. Volume 1166 of Lecture Notes in Computer Sci-
ence., Springer (1996) 143–158

31. Din, G.: Ttcn-3. In Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner,
A., eds.: Model-Based Testing of Reactive Systems. Volume 3472 of Lecture Notes
in Computer Science., Springer (2004) 465–496

32. Schieferdecker, I., Dai, Z.R., Grabowski, J., Rennoch, A.: The uml 2.0 testing
profile and its relation to ttcn-3. In Hogrefe, D., Wiles, A., eds.: TestCom. Volume
2644 of Lecture Notes in Computer Science., Springer (2003) 79–94

33. Ben-Asher, Y., Eytani, Y., Farchi, E., Ur, S.: Producing scheduling that causes
concurrent programs to fail. In Ur, S., Farchi, E., eds.: PADTAD, ACM (2006)
37–40

34. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In:
IPDPS, IEEE Computer Society (2003) 286


