
Query-Driven Program Testing ⋆

Andreas Holzer Christian Schallhart Michael Tautschnig Helmut Veith

Formal Methods in Systems Engineering, FB Informatik, TU Darmstadt
holzer@forsyte.de, schallhart@forsyte.de, tautschnig@forsyte.de, veith@forsyte.de

Abstract. We present a new approach to program testing which enables the pro-
grammer to specify test suites in terms of a versatile query language. Our query
language subsumes standard coverage criteria ranging fromsimple basic block
coverage all the way to predicate complete coverage and multiple condition cov-
erage, but also facilitates on-the-fly requests for test suites specific to the code
structure, to external requirements, or to ad hoc needs arising in program un-
derstanding/exploration. The query language is supportedby a model checking
backend which employs the CBMC framework. Our main algorithmic contribu-
tion is a method callediterative constraint strengtheningwhich enables us to
solve a query for an arbitrary coverage criterion by a singlecall to the model
checker and a novel form of incremental SAT solving: Whenever the SAT solver
finds a solution, our algorithm compares this solution against the coverage crite-
rion, and strengthens the clause database with additional clauses which exclude
redundant new solutions. We demonstrate the scalability ofour approach and its
ability to compute compact test suites with experiments involving device drivers,
automotive controllers, and open source projects.

1 Introduction

In industrial software engineering, program testing is to remain the pivotal debug-
ging and validation technology. While randomized and directed testing are important
to achieve global assurance about software quality, and model-based testing helps to
verify the conformance of the program with a high-level specification, there is practi-
cal need for a source code oriented white box testing methodology which assists the
programmer in the software engineering cycle. Such a methodology should provide
seamless support for code-driven testing, i.e., exploration of code under development,
and requirement-driven testing for systematic quality assertion.

To address this need, we introduce a query language which combines easy naviga-
tion in real life C code with the ability to formulate complexcoverage criteria. Provid-
ing straightforward queries for standard coverage criteria, our language FQL (FSHELL

query language) aims to strike the right balance between expressiveness and simplicity.
In FQL, aprogram queryasks for a test suite following the general form

> in prefix cover goals passing scope

where the optionalprefixdirects the query to a specific program part, e.g., a source file
or a function,goalsdescribes the coverage criterion to be fulfilled by the test suite, and

⋆ Supported by DFG grant FORTAS – Formal Timing Analysis Suitefor Real Time Programs
(VE 455/1-1).

an optionalscoperestricts test cases to pass through certain program paths only. For
example, the query

> in /bla.c/cmp/ cover @blocks passing @call(err)

calls for a test suite which covers all blocks in functioncmp of file bla.c , such that
in all test cases, a call toerr insidecmp is performed1. Other important and classical
coverage criteria such aspredicate coverage, condition coverage, decision coverage,
modified condition/decision coverage, predicate complete coverage[1] etc. can also be
expressed by natural queries in our language.

The added value of our language lies in the ability to define the query scope and the
query goals in a quite flexible manner. Suppose for instance that in Listing 1 we want
to cover (1) all calls tocmp and (2) all decisions insidecmp. This amounts to a coverage
criterion which combines basic block coverage for (1) and decision coverage for (2).
There are two different possibilities for this combination: either we want to cover the
union of all call positions and all decisions, and write the query

> in /bla.c/ cover @call(cmp), cmp/@decisions

or we want to cover all possiblecombinationsof calls tocmp and subsequent decisions
insidecmp, i.e., the Cartesian product of the individual test goals:

> in /bla.c/ cover @call(cmp) -> cmp/@decisions

To ensure that, for each call site, each of the decisions is reached before the body ofcmp
is left, we write

> in /bla.c/ cover @call(cmp) -[@func(cmp)\@exit]> cmp/@decisions

Solutions to these queries are test suites. In case of Listing 1, these can be most
easily described as sets of triples with input values for thevariablesx,y,z. For the first
query, the singleton test suite{(1,0,1)} covers all blocks and decisions in Listing 1;
for the second and third case, possible solutions are{(1,0,1),(2,0,1),(1,0,2)} and
{(1,0,0),(0,1,0),(0,0,1)} respectively. Note that the first test suite does not satisfy
the second and third queries and the second suite does not satisfy the last query; the
third solution, however, satisfies all three queries.

In Section 2 we build the mathematical foundation to formulate testing requirements
as queries. In particular, we show how to state a query as a pair 〈A,Q〉 of automata over
predicates. In this pair, theobservation automaton Acorresponds to thescopeto be
explored, and thetest goal automaton Qspecifies thegoalsto be covered. In Section 3,
we provide an overview of our query language FQL and show how to translate FQL
queries into such a pair〈A,Q〉. Thus, the language reduces to a simple mathematical
core in which we are able to formulate all relevant coverage criteria in a uniform way.

The second major contribution of this paper is an efficient query engine which in-
tegrates our theoretical framework, code instrumentation, bounded model checking,
and SAT enumeration into a tool of high efficiency. Our query engine employs and
adopts the software model checking framework of Kroening’sCBMC [2]. Given a
query〈A,Q〉, our tool performs the following conceptual steps, cf. Figure 1:

1 Expressions starting with “@”, such as@blocks , typically denote sets of program locations,
see Section 3.1 for a detailed explanation.

Listing 1. C source code of example
bla.c with program counters

1 int cmp(int x, int y) {

2 int 1value = 0;
3 if 2(x > y) 3value = 1;
4 else if 4(x < y) 5value =−1;
5

6return value;
6}

8 int main(int argc , char∗ argv []) {
9 int x, y, z, xy, yz, xz;

10
8x = 7input();

11
10y = 9input();

12
12z = 11input();

13
14xy = 13cmp(x, y);

14
16yz = 15cmp(y, z);

15
18xz = 17cmp(x, z);

16 if 22(19xy == 1 && 20yz == 1
17 && 21xz != 1)
18ERROR:23err();
19

24return 0;
20}

C Source
P

Query 〈A,Q〉

Observation
aut. to C

Test goal
aut. to C

Automaton injection

CBMC

Iterative constraint strengthening

Test suite minimization

Test suite Γ

Fig. 1.Query processing

(1) We instrument the source code with monitors
derived from the observation automatonA and the test
goal automatonQ in such a way that the states of the
monitors reflects the automata states.

(2) We use the code base of CBMC to obtain a SAT
instanceφ whose solutions correspond to the program
pathsπ in the scope given byA. The instrumentation of
step (1) guarantees that for each solution, we can easily
determine which goals ofQ are covered.

(3) We use the SAT solver to enumerate test cases as
solutions to the SAT instance until we satisfy the cov-
erage criterion defined by the query. Theiterative con-
straint strengtheningtechnique (ICS) used in this step
is discussed below.

(4) To remove redundant test cases, we perform a test suite minimization. In our
current implementation, we only do a simple post-processing; in future work, we plan
to implement more aggressive minimization strategies. Note that the ICS enumeration
in (3) involves nondeterministic choices which may give leverage to accelerate the al-
gorithm with suitable heuristics.

Iterative Constraint Strengthening. A naive implementation of step (3) above would
either use SAT enumeration to compute an enormous number of test cases until the test
goals are reached, or it would call the SAT solver for each query goal anew. Initer-
ative constraint strengthening (ICS), we circumvent both problems by modifying the
clause database of the SAT solver on-the-fly. Whenever the SAT solver halts to output
a solution, we compare the test case obtained from this solution against the test goals.
Then we add new clauses to the clause database in such a way that the next solution is
guaranteed to satisfy at least one hitherto uncovered test goal. In this way, we exploit
incremental SAT solving to quickly enumerate a test suite ofhigh quality: Since we
only add new clauses to the clause database, the SAT solver isable to reuse information
learned in prior invocations. A similar strategy is used ingroupwise constraint strength-
ening (GCS), a further refinement of ICS. In GCS, we address coverage criteria such

as multiple condition coverage or predicate complete coverage which have a nominally
exponential number of test goals by partitioning these goals into a small number of
groups characterized by a common compound goal.

We show that FSHELL has better practical performance than BLAST’s test case
generation facility [3]: On comparable hardware, our test suites are computed faster,
and contain fewer test cases. Due to the minimization step, our results also improve on
those reported in our previous tool paper [4].

Note that our choice of CBMC and bounded model checking as a query solving
backend has advantages which come at a price: On the one hand,we achieve excellent
performance and have the guarantee that the model-checker respects ANSI-C, which is
important for low level code, our primary application area.On the other hand, a bounded
model checking approach may beunable to compute certain test casesinvolving paths
larger than the constant bound. It is easy to come up with examples where this situation
will happen, but it is is detectable by CBMC and accounted forin our implementation;
it has neither occurred in the experiments we did for comparison with BLAST, nor in
our experiments based on real-life controller code. In future work, we plan to comple-
ment the CBMC backend with abstraction-based and randomized test case generation
backends.

Related Work. Beyer et al. [3] use the C model checker BLAST [5] for test case
generation, focusing on basic block coverage only. BLAST has a two level specifica-
tion language [6]. On a low level they specify trace properties by observer automata
written in a C-like manner. On a high level they relate these automata by reachability
queries. In contrast to FSHELL, their language is tailored towards verification. Fur-
thermore, BLAST is based on predicate abstraction whereas CBMC is a SAT-based
bounded model checker. As our experiments show, we outperform BLAST regarding
test case generation. Lee et al. [7,8] investigate test casegeneration with model check-
ers giving coverage criteria in temporal logics. Java PathFinder [9] and SAL2 [10] use
model checkers for test case generation, but they do not support C semantics.

2 A Formal Testing Framework

Given a programP , we consider the possibly infinitetransition systemT = 〈S ,R ,I 〉
induced byP which consists of the state spaceS , a transition relationR ⊆ S ×S , and
a non-empty set of initial statesI ⊆ S .

Definition 1 (State Sequences and Paths).Given a transition systemT = 〈S ,R ,I 〉, a
state sequenceis a finite and non-empty wordπ = 〈s1, . . . ,sn〉 ∈ S+ of states si ∈ S . The
sequenceπ is a path, if 〈si ,si+1〉 ∈ R holds for all1≤ i < n and if s1 ∈ I . For a state
s∈ S , we write s∈ π, iff s= si holds for some1≤ i ≤ n, and we denote withΠT ⊆ S+

theset of pathsof T .

We usestate predicatesto describe properties of individual program states and we
usepathandpath set predicatesin the description of individual test goals and coverage
criteria.

Definition 2 (State, Path, & Path Set Predicates).Given a transition systemT =
〈S ,R ,I 〉, we define astate predicatep as a predicate on the state spaceS , a path
predicateφ as a predicate over the setΠT , and apath set predicateΦ as a predicate

over the sets of paths2ΠT
. We write s|= p iff a state s∈ S satisfies p,π |= φ iff a path

π ∈ ΠT satisfiesφ, andΓ |= Φ iff a path setΓ ⊆ ΠT satisfiesΦ.

We call a state predicatep, a path predicateφ, or a path set predicateΦ feasible over
T , iff, respectively, there exists a states∈ S with s |= p, there exists a pathπ ∈ ΠT

with π |= φ, and there exists a path setΓ ⊆ ΠT with Γ |= Φ. Frequently, we are looking
for a path (path set) whichcontainsa state (a path) which satisfies a given state (path)
predicate—leading to animplicit existential quantification:

Definition 3 (Implicit Existential Quantification). To evaluate a state predicate p
over a pathπ, we implicitly interpret p to be existentially quantified, i.e.,π |= p stands
for ∃s∈ π.s|= p. Analogously, a path predicateφ is existentially evaluated over a path
setΓ, i.e.,Γ |=φ iff ∃π ∈ Γ.π |=φ.

Remark 1.Note that a pathπ can satisfy a state predicatep andits negation¬p, if there
exist two statess,s′ ∈ π with s |= p ands′ |= ¬p. Moreover, a state predicatep can also
be interpreted over a path setΓ in the natural way, i.e.,Γ |= p iff ∃π ∈ Γ.∃s∈ π.s |= p.

Program Observations. We use sequences of state predicates (traces) to specify pro-
gram paths. A trace matches a state sequence if each state in the sequence satisfies
the corresponding predicate. A trace automaton is an automaton accepting traces; each
trace in turn specifies a set of program paths.

Definition 4 (Traces and Trace Automata).Let P be a finite set of state predicates
andS be a state space. Then atraceis a finite non-empty word t= 〈t1, . . . ,tn〉 ∈ P+. A
tracematchesa state sequenceπ = 〈s1, . . . ,sn〉 ∈ S+ (denoted withπ |= t), iff si |= ti for
all 1≤ i ≤ n.

A trace automatonover P is a nondeterministic finite state automaton A accepting
traces over the alphabet P. We writeL(A) to denote the set of traces accepted by A and
acc(A) to denote the set of accepting states of A. A trace automaton Aover Pmatches
a state sequenceπ (denoted withπ |= A), iff there exists a trace t∈ L(A) with π |= t.

Remark 2.Although we have – for the sake of simplicity – defined trace automata as
finite state automata, our framework naturally extends to other types of automata such
as push-down automata for which we can construct C monitors,cf. Section 4.1.

We will use traces and trace automata as a natural tool for defining path predicates
in the language FQL. In particular, we will employ trace automata for two distinct ends:
First, asobservation automatawhichrestrict the paths inT to those required in a query;
and second, astest goal automatawhich specify the individual test goals of a coverage
criterion.

Definition 5 (Path Restriction by Observation Automata).LetT be a transition sys-
tem and A a trace automaton. Then we define the set of paths inT restricted by obser-
vation automaton A asΠT

A = {π ∈ ΠT | π |= A}.

Coverage Criteria. In the framework of this paper, we define atest caseto be a single
path inΠT

A and atest suiteas a subset ofΠT
A . Correspondingly, acoverage criterion

imposes a predicate on test suites:

Definition 6 (Test Case & Test Suite).Let T be a transition system and let A be an
observation automaton forT . Then atest casefor the set of pathsΠT

A is a single path
π ∈ ΠT

A and atest suiteΓ is a finite subsetΓ ⊆ ΠT
A of the paths inΠT

A .

Definition 7 (Coverage Criterion). A coverage criterionΦ is a mapping from a tran-

sition systemT and an observation automaton A to a path set predicateΦT
A over2ΠT

.
We say thatΓ ⊆ ΠT

A satisfies the coverage criterionΦ on T under the restriction A iff
Γ |=ΦT

A holds.

While our definition of coverage criteria is very general, most coverage criteria
used in practice are based on lists of test goals which need tobe satisfied. The test
goals themselves are typically either state or path predicates. This prototypical setting
is accounted for in the next definition.

Definition 8 ((State) Regular Coverage Criterion and Test Goals).A regular cover-
age criterionΦ is a coverage criterion constructed in the following way:

(i) There is a mappingΦ(T ,A) which mapsT and A to a list oftest goalsΦ(T ,A) =
{Ψ1, . . . ,Ψk}.

(ii) This mapping induces the coverage criterionΦT
A as follows:

Γ |= ΦT
A iff

k̂

i=1

ΠT
A |= Ψi ⇒ Γ |= Ψi

Intuitively, this amounts to the following coverage criterion: “For each test goal which
is feasible inΠT

A , the test suiteΓ must contain a concrete test case.”
Φ is a state regular coverage criterion, if Φ(T ,A) contains only state predicates.

As an example, consider basic block coverageBBT
A , which is a state regular cov-

erage criterion: induced by the test goalsBB(T ,A) = {block1, . . . ,blockk}. Herek de-
notes the number of basic blocks inT , and each predicateblocki holds true at the first
statement of thei-th basic block in the program.

We will now define test goal automata which are used to specifythe test goals
needed in regular coverage criteria.

Definition 9 (Test Goal Automaton).A test goal automatonQ is a trace automaton
where each accepting state a gives rise to a test goalΨa:

π |= Ψa iff ∃t.π |= t and Q accepts t in state a

Thus, the test goalΨa requires a path matched by a trace which Q accepts in state a.
The test goal automaton Q naturally induces a regular coverage criterioncov[Q] based
on the setcov[Q](T ,A) = {Ψa | a∈ acc(Q)} of test goals.

Note that a single path may match more than one test goal simultaneously: First,
each path is matched by a number of different traces, and second, more than one ac-
cepting state may be reached through a trace inQ.

We conclude this section with a formal definition of program queries, as introduced
in Section 1.

Definition 10 (Program Query & Result). A program query〈A,Q〉 consists of an ob-
servation automaton A and a test goal automaton Q. A validresultto the query〈A,Q〉
on transition systemT is a test suiteΓ ⊆ ΠT

A with Γ |= cov[Q]TA .

3 Syntax and Semantics ofFQL

The FSHELL query language FQL facilitates the specification of test suites over C
source code. To decouple the language from the algorithmic details of the query engine,
and to provide leeway for different query solving backends,we designed FSHELL as
a declarative language. FQL contains three layers which reflect the formal model of
Section 2:

(i) state predicates over program variables and the programcounter,
(ii) trace automata to express both observation automata and test goal automata, and
(iii) program queries to express coverage criteria.

In the following subsections, we will describe these layersalong with examples
referring to Listing 1. Due to length restrictions, the presentation of FQL is kept infor-
mal; we refer the reader to [11] for more details. Section 4 describes our query solving
engine based on bounded model checking.

3.1 State Predicates

We have seen in Section 2 that sets of state predicates are at the center of our formal
model. For instance, basic block coverage is induced by the set of test goalsBB(T ,A)=
{block1, . . . ,blockk}. FQL is therefore equipped withpredicate generatorsto extract
sets of predicates from the C source code, and to create new sets of predicates. For
example, the predicate generator@blocks yields the set{block1, . . . ,blockk} of predi-
cates. Note that eachblocki has the formpc = const wherepc is the program counter.
Syntactically, all predicate generators are prefixed with “@”. Semantically, a predicate
generator either yields a set of predicates over the programcounterpc, or a set of pred-
icates over the program variables.

Many predicate generators are used to extract sets of predicates from the source
code. Examples of such predicate generators include@file(bla.c) which captures all
program counter values of statements in the source filebla.c , @func(main) which
captures the statements in functionmain , @line(3) to capture the statements in line 3,
@call(cmp) to match all function calls ofcmp, and@entry as well as@exit which
capture all function entry and exit points respectively. Incase of Listing 1 we get, e.g.,
@call(cmp) = {pc = 13,pc = 15,pc = 17}.

To introduce new predicates not present in the source code, we use the predicate
generator@new-pred(cond) , where cond is an arbitrary side-effect free C expression.
For example,@new-pred(x <= 7) generates a singleton set{x≤ 7} of state predicates.

For certain coverage criteria such as MC/DC, we also need thepredicate generator
@grouped-conditions which generates aset of sets, where each inner set captures
the program counter values of the individual predicates which constitute a decision.
Returning to Listing 1, we have@grouped-conditions = {{pc = 2},{pc = 4},{pc =
19,pc = 20,pc = 21}}. To support the succinct formulation of most relevant coverage
criteria, FQL contains a rich variety of predicate generators and can be easily extended
with further ones without conceptual changes to the language [11].

Operations on Sets of State Predicates.Given two setsA andB of state predicates,
FQL provides the following set-theoretic operations:

(and) A&B≡ {a∧b | a∈ A,b∈ B} A,B≡ A∪B (union)

(or) A|B≡ {a∨b | a∈ A,b∈ B} A\B≡ A\B (difference)

(negation) !A≡ {¬a | a∈ A} 2 Â≡ {A′|A′ ⊆ A} (powerset)

We addbig-and(A) ≡
V

a∈Aa andbig-or(A) ≡
W

a∈Aa to describe the conjunction
and disjunction of all elements of a set of state predicates.To apply an operation to
each element in a set, or toeach set in a set of sets, we introduce theset() operator.
Moreover,union() forms a single set from a set of sets. Given a setS of sets and an
operationo(s) on a setsof state predicates, we define:

set(o(s) : s in S) ≡ {o(s) | s∈ S} union(S) ≡
[

s∈S

s

Operations on Conditions.In describing coverage criteria,conditionsoccurring in the
source code play a crucial role. A condition is an atomic expression which is possibly
combined with other conditions using&& , || , and ! to compute the decision involved
in executing anif , for , while, switch or ?: statement. The generator@pred-wo-loc()
extracts conditions from source code locations identified by program counter values.
In addition,@predicate() and@neg-predicate() conjoin the extracted conditions
with the corresponding predicate over the program counter.For example, letC = {pc =
19,pc = 20,pc = 21} be such a set, referring to Listing 1. Then we have

@pred-wo-loc(C) = {xy= 1,yz= 1,xz 6= 1}

@predicate(C) = {pc = 22∧xy= 1,pc = 22∧yz= 1,pc = 22∧xz 6= 1}

@neg-predicate(C) = {pc = 22∧xy 6= 1,pc = 22∧yz 6= 1,pc = 22∧xz= 1}

Note thatpc = 22 refers to the location of the decision inside which the conditions inC
occur.

State Regular Coverage Criteria.Besides simple test goals such as@blocks , FQL can
can also describe more complex coverage criteria. We illustrate this feature on the ex-
ample ofmultiple condition coverage. Recall that multiple condition coverage requires

a test suite to cover—for each decision—all Boolean combinations of all conditions
occurring in the respective decision. The test goals are therefore given by

union(set(
union(set(big-and(@predicate(I) & @neg-predicate(D\I)) : I in 2ˆD)) :

D in @grouped-conditions))

Hierarchical Navigation.In practical queries, the predicate generators@file(bla.c) ,
@line(3) , @func(foo) , as well as@entry and@exit occur quite frequently. We there-
fore allow the following abbreviations which facilitate hierarchical navigation in the
source code:

/bla.c/ = @file(bla.c) /bla.c/42 = @file(bla.c) & @line(42)

foo/ = @func(foo) /bla.c/foo/ = @file(bla.c) & @func(foo)

foo/ ˆ= @entry(foo) foo/$ = @exit(foo)

foo/ SP= @func(foo) & SP /bla.c/ SP= @file(bla.c) & SP

In the last line,SPis to be replaced by any state predicate expression. Note that FQL
also supports macros for frequently used expressions such as complex coverage criteria.
Due to space restrictions we do not describe the macro feature in detail.

3.2 Trace Automata

Recall that trace automata are used to define path predicates, and to act as both ob-
servation automata and test goal automata. By implicit existential quantification, every
state predicate can also be viewed as a path predicate, and itis easy to construct the
corresponding automaton. Moreover, a set of state predicates naturally gives rise to
an automaton with one accepting state for each state predicate in the set. For exam-
ple, @blocks corresponds to an automaton with|@blocks | accepting states, one for
each basic block. The following list exemplifies the most important automata theoretic
operations of FQL which enable the user to manipulate and combine trace automata
explicitly: Let A1,A2,A3 be trace automata:

A1,A2 ≡ A1∪A2 (union)

A1-> A2 ≡ A1◦ true∗ ◦A2 (sequencing)

A1-[A3]> A2 ≡ A1◦A∗
3◦A2 (restricted sequencing)

Consider for examplemain/ˆ->main/$ over Listing 1: the traces of this automaton
will match those program executions which pass the exit ofmain (line 19). In contrast,
main/ˆ-[@file(bla.c)\@label(ERROR)]>main/$ requires that between the entry
and the exit ofmain only locations other than those labeled “ERROR” (line 18) are
seen. Note that each of these operations corresponds to a specific automata theoretic
construction. Due to the special role of accepting states indefining test goals, we cannot
use the standard automata theoretic minimization techniques, cf. [11].

3.3 Program Queries

We are now ready to define the program queries introduced in Section 1. LetA andB be
FQL expressions which can be interpreted as trace automata (i.e., either trace automata,
or sets of predicates as explained in the previous section).Thencover Q passing
A expresses the program query〈A,Q〉 with the semantics given in Definition 10.

Recall from Section 1, that FQL queries can also have a prefix.This prefix restricts
all state predicates to a certain program part, e.g., a certain file. It is easy to see that the
prefix can be moved intoA andQ. For example, a query such as

> in /bla.c/ cover @line(4),@call(cmp)
passing @file(bla.c)\@call(not implemented)

which states that both, line 4 and a function call tocmp in file bla.c must be covered
without ever callingnot_implemented() , is equivalent to

> cover /bla.c/4,/bla.c/@call(cmp)
passing @file(bla.c)\@call(not implemented)

4 Query Processing Algorithms

In this section we describe the query processing algorithms. We first outline how pro-
gram source code and a query are mapped to a SAT instance, and then detail on iterative
and groupwise constraint strengthening in Section 4.2.

4.1 Program Instrumentation and Interfacing with CBMC

Bounded model checkers such as CBMC reduce questions about program paths to
Boolean constraints in conjunctive normal form (CNF) whichare solved by standard
SAT solvers. Our query solving algorithms ICS and GCS employthe functionality of
CBMC to obtain SAT instances suitable for test case generation. Recall that on input
of a program annotated with assertions, CBMC outputs a SAT instance whose solu-
tions describe program paths leading to assertion violations. To make this functionality
useful for test case generation, we first instrument the program with the observation au-
tomatonA such that the resulting program reaches a failing assertionin the course of an
execution, iff this program execution is matched byA. We therefore implementA as a C
function thatmonitorsprogram execution. To this end, the programP is instrumented to
contain alogginglayer, which reports the matching predicates after each executed step
to the monitor. Moreover, we inject the test goal automaton as a second monitor, which
only keeps track of the states of the test goal automaton in a distinguished variable,
but does not cause assertion violations. Then, using CBMC, the instrumented program
is transformed into the CNF-formulaφ[π ∈ ΠT

A] which is satisfied by all program ex-
ecutions which reach an accepting state ofA within a bounded number of steps. By
construction,φ[π ∈ ΠT

A] contains distinguished Boolean variables referring to thestate
of the query automatonQ; these variables can be used to express the individual test
goals. Therefore, a constraint of the formφ[π ∈ ΠT

A]∧φ[a] will satisfy those program
executions which (i) respect observation automatonA and (ii) satisfy test goalΨa. In
the rest of this section, we will for simplicity write this constraint asπ ∈ ΠT

A ∧ π |= Ψa,
and tacitly assume the translation to CBMC described above.

4.2 Guided SAT Enumeration

To generate a test suiteΓ for a transition systemT matching the query〈A,Q〉, i.e., to
achieveΓ |= cov[Q]TA , we introduceiterative constraint strengthening (ICS). In ICS, we
build a test suiteΓ iteratively from a sequence of test suitesΓ0 ⊂ Γ1 ⊂ ·· · ⊂ Γm with
Γ0 = /0 andΓq =

{

π1, . . . ,πq
}

for 1≤ q≤ m. In them-th iteration, we reach a fixpoint
when no more new goals can be covered.

Algorithm Overview.In theq-th iteration we build thepath constraintICSPCq (Equa-
tion (1)) and obtain the test caseπq+1 as one of its solutions. Here,ICSPCq describes
those paths inΠT

A which cover a hitherto uncovered test goal. If no such test goal exists
any more,ICSPCq becomes unsatisfiable. Having determined a new test caseπq+1, we
build ICSPCq+1 and continue the procedure with the(q+1)-st iteration until we reach
an iterationmwhereICSPCm becomes unsatisfiable.

In order to fit the framework ofincremental SAT solving(cf. [12]), we rewrite
ICSPCq (Equation (2)) in such a way that we are able to describeICSPCq+1 incremen-
tally in terms ofICSPCq by only addingnew constraintswithout removing or chang-
ing previously added constraints (Equation (3)). Using this incremental formulation of
ICSPCq, we describe iterative constraint strengthening (ICS) based upon an incremen-
tal SAT solver in Listing 2. Them paths finally collected by ICS constitute indeed a
covering test suite (Theorem 1).

Path Constraints.The initial path constraintICSPC0 requires that a path is inΠT
A and

covers at least one of the test goalsΨa for a ∈ acc(Q). Subsequently, inICSPCq, we
require the path to cover at least one test goalΨa which remaineduncoveredby the
test suiteΓq. SinceΓq+1 must cover at least one more test goal thanΓq, it suffices
to strengthenthe constraintICSPCq to obtainICSPCq+1. Below, we writeuncovq =
{

a∈ acc(Q) | Γq 6|= Ψa
}

for the set of accepting states which correspond to test goals
not covered inΓq. Note thatuncov0 = acc(Q) sinceΓ0 = /0 covers no test goals at all.
Then, for 0≤ q≤ m, we search for a solutionπq+1 to theq-th constraint

ICSPCq(π) := π ∈ ΠT
A ∧

_

a∈uncovq

π |= Ψa (1)

Note that the empty disjunction is equivalent tofalse, i.e., ifuncovq = /0, thenICSPCq ≡

false. Thus,ICSPCq is satisfied by exactly those paths inΠT
A which satisfy at least one

feasibletest goal stilluncoveredby Γq. If no such test goal exists, i.e., ifΓq achieves
coverage,thenICSPCq is unsatisfiable.

Incremental Path Constraints.In incremental SAT solving, we use a single persistent
clause database for consecutive solver invocations. When the SAT solver finds a solu-
tion, we add new clauses to the clause database, but do not remove any clauses. When
the execution of the SAT solver is continued, the learned clauses obtained during earlier
invocations remain valid and help to guide the search of the solver. Therefore, we have
to constructICSPCq+1 from ICSPCq by only adding further constraints to the clause
database. Observe thatuncovq+1 ⊂ uncovq holds for 0≤ q≤m−1. Thus in going from

ICSPCq to ICSPCq+1, we have to remove all test goalsΨa with a∈ uncovq \uncovq+1

from the disjunction
W

a∈uncovq
π |= Ψa occurring in Equation (1). To do so, we intro-

duce a new Boolean variableSa for each accepting statea∈ acc(Q) and writeICSPCq

equisatisfiable as

ICSPCq(π) :=



π ∈ ΠT
A ∧

_

a∈acc(Q)

(Sa∧π |= Ψa)



∧
^

a/∈uncovq

¬Sa (2)

Thus ICSPCq consists of (a) an initial expression, shown above in squarebrackets,
which remains unchanged throughout all iterations, and (b)a conjunction which is ex-
panded from one iteration to the next. Adding¬Sa to the constraint renders the cor-
responding disjunctSa ∧ π |= Ψa unsatisfiable, and therefore only the disjuncts for
a∈ uncovq remain enabled. Note that forICSPC0 we havetrue≡

V

a/∈uncov0
¬Sa. Thus,

in each iteration step, we use

ICSPCq+1(π) := ICSPCq(π)∧
^

a∈uncovq\uncovq+1

¬Sa (3)

to obtainICSPCq+1 from ICSPCq. Since we only add further constraints conjunctively,
this approach fits the requirements of incremental SAT solving.

Iterative Constraint Strengthening.In our presentation of the algorithm, we assume a
SAT solver which supports the following methods: (a)Adding constraintswith add(φ):
The method takes an arbitrary constraintφ over variables from arbitrary finite domains.
While we use such a general interface to simplify the presentation of our algorithm,
our implementation is based upon the SAT instanceφ[π ∈ ΠT

A] which we described in
Section 4.1. (b)Checking for satisfiabilitywith satisfiable(): The method returns true iff
there exists a solution to the constraints added to the clause database so far. If a call
to satisfiable()returnstrue, a witness is cached. (c)Obtaining a solutionwith solution():
The method returns the last witness cached in a call tosatisfiable().

Listing 2. Iterative Constraint
Strengthening (ICS)

1 func ICS(ΠT
A , 〈A,Q〉)

2 begin
3 q := 0; Γ0 := /0; uncov0 := acc(Q);

4 add(π ∈ ΠT
A ∧

W

a∈acc(Q) (Sa∧π |= Ψa));
5 while satisfiable ()do begin
6 πq+1 := solution();
7 Γq+1 := Γq∪{πq+1}; uncovq+1 := /0;
8 forall a∈ uncovq do
9 if πq+1 |= Ψa then add(¬Sa);

10 else uncovq+1 := uncovq+1∪{a};
11 q := q+1;
12 end;
13 return Γq;
14 end;

The resulting procedureICS is shown
in Listing 2. In line 3 we initialize the it-
eration counterq, the first test suiteΓ0,
and the set of test goalsuncov0 uncov-
ered byΓ0. Then in line 4, we add the ini-
tial expression from Equation (2) and start
the search for the first solution in line 5.
If a solution is found, it is obtained from
the solver, assigned toπq+1, and added
to Γq+1. Then, after initializinguncovq+1,
we update the clause database following
Equation (3) and fill the setuncovq+1 in
lines 8 to 10: For each yet uncovered state
a∈ uncovq, we check whetherπq+1 satis-
fies Ψa. If this is the case,a ∈ uncovq \
uncovq+1 holds, and thus we add¬Sa in

line 9. Otherwisea remains uncovered byΓq+1 and hence we adda to uncovq+1 in
line 10. Once no further solution is found in line 5, the accumulated suiteΓq is returned.

Theorem 1 (Correctness of Iterative Constraint Strengthening). The test suiteΓ
returned by the algorithmICS(ΠT

A ,〈A,Q〉) in Listing 2 satisfiesΓ |= cov[Q]TA .

Remark 3 (Nondeterminism in Choosingπq+1). Our algorithm leaves the particular
choice ofπq+1 open to the underlying SAT solver (line 6). Potential optimizations could
control this choice to minimize the number of test cases necessary to obtain coverage.

Groupwise Constraint Strengthening.Certain regular coverage criteria, such as pred-
icate complete or multiple condition coverage, require anexponential number of test
goals.For example, recall that multiple condition coverage (Section 3.1) has one test
goal for each basic block andeach possible evaluation of all conditionsinvolved in
deciding which edge to choose in leaving the basic block. Hence, the number of test
goals is exponential in the number of conditions in each decision. For this reason, the
disjunction inICSPC0 will be of exponential size—thus rendering iterative constraint
strengthening hard for such coverage criteria.

To mitigate this situation, we introducegroupwise constraint strengthening (GCS)
as an optimization of iterative constraint strengthening.GCS can be combined with ICS
and allows to handle all test goals which are state predicates. Let us thus for simplicity
assume that all test goalsΨa for a ∈ acc(Q) are state predicates. To apply GCS, we
require the test goals to be partitioned intok distinct groups Gi = {Ψ1

i , . . . ,Ψ
ki
i } of

mutually exclusive test goalsfor 1 ≤ i ≤ k, i.e., we require that there exists nostate s
with s|=Ψg

i ands|=Ψh
i for all 1≤ g 6= h≤ ki and 1≤ i ≤ k.

In the GCS algorithm, we avoid the construction of the initial and very large dis-
junction

W

a∈uncovq
π |= Ψa, as it appears inICSPCq (Equations (1) and (2)): Instead

of individual test goals, we use a small number ofcompound test goalscompi , where
each compound test goal represents the goals of the whole group Gi = {Ψ1

i , . . . ,Ψ
ki
i }

of individual test goalsΨ j
i . To represent groupGi , its compound test goalcompi has to

be semantically equivalent (but usually not identical) to
Wki

j=1 Ψ j
i . It is important to note

however that in many practical cases,compi can beformulated much more succinctly
than

Wki
j=1Ψ j

i . For example, in case of multiple condition coverage, we partition the
goals into groups according to the blocks they relate to. Then, s |= compi holds for a
states iff svisits thei-th basic block, i.e.,compi has the formpc = const.

Starting with the compound test goalcompi , we add for each covered test goalΨ j
i

of groupGi , i.e., for eachΨ j
i ∈ Gi \ uncovq, its negation¬Ψ j

i to the corresponding
compound test goal. This approach yields for each groupGi anaggregate test goal

aggr
q
i := compi ∧

^

Ψ j
i ∈Gi\uncovq

¬Ψ j
i (4)

Since we useaggr
q
i to represent the remaining uncovered test goalsGi ∩uncovq of the

groupGi in iterationq, we will rely on the equivalence

aggr
q
i ≡

_

Ψ j
i ∈Gi∩uncovq

Ψ j
i (5)

which follows from the construction and the mutual exclusiveness of the test goals
within each groupGi . Written in the form of Equation (5),aggr

q
i does not explicitly

refer to any infeasible test goals and only involvesfeasibletest goals as subexpressions.
This significantly reduces the size of the constructed constraint.

Having definedaggr
q
i in this way, GCS proceeds like ICS but with Equation (1)

replaced by

GCSPCq(π) := π ∈ ΠT
A ∧

k
_

i=1

π |= aggr
q
i (6)

Similar to ICS we also adoptGCSPCq to fit incremental SAT solving: More precisely,
we leave the overall constraint (Equation (6)) unchanged and replaceaggr

q
i (Equa-

tion (4)) by an equisatisfiable and incrementally expandable expression. Thus, we can
incrementally strengthenaggr

q
i for each group individually.

The effectiveness of GCS as an optimization of ICS relies on three conditions: (a)
The overall number of groups must be small, since we maintainfor each groupGi a
constraintaggr

q
i . (b) The compound test goalcompi must be available in a succinct for-

mulation. (c) The fraction offeasibletest goalsΨ j
i in each groupGi must be small, since

the negation of each feasible test goal is added toaggr
q
i in some iterationq. Conditions

(a) and (b) hold for important coverage criteria such as multiple decision or predicates
complete coverage. If condition (c) does not hold, then the number of required test cases
will be large – but this is inherent in the coverage criterionand not an artefact of GCS.

Remark 4 (Mutual Exclusiveness: State vs. Path Predicates). It is tempting to assume
that the mutual exclusiveness defined in terms of states is easily generalized to the level
of path predicates. However, this is not the case as mutuallyexclusive state predicates
do not resultin mutually exclusive path predicates because of their implicit existential
quantification, cf. Definition 3 and Remark 1.

5 Experimental Results

In our experiments we investigated test case generation forbasic block (BB) and condi-
tion coverage (CC). We performed our experiments on a 3.0 GHz AMD64 system with8
GB RAM. The table below summarizes our results with respect to BLAST. The column
“Min” shows the number of test cases removed by our test suiteminimization algorithm.
Our current implementation of FSHELL is an optimized version of that presented in [4].
It generates fewer test cases, and, after test case generation for basic block coverage,
FSHELL minimizes an obtained test suite. The results for BLAST are taken literally
from [3], because the version of BLAST performing test case generation is currently
unavailable. Beyer et al. performed their experiments on a 3.06 GHz Dell Precision 650
with 4 GB RAM. FSHELL outperforms BLAST, as we achieve coverage with fewer test
cases faster. Besides the experiments on the device driversfrom BLAST we conducted
experiments on an engine controller (matlab.c) provided by an industrial collabora-
tor from the automotive industries. It is generated from a MATLAB/Simulink model.
Furthermore, we ran our tool on preprocessed sources (autopilot.i) generated from

BLAST (BB) BB CC

Source file LLOC #cases Time[s] #cases Time[s] Min∗ #cases Time[s]

kbfiltr.i 4879 39 300 26 18 6 98 24
floppy.i 6435 111 1500 63 1041 10 175 1259
cdaudio.i 8022 85 1500 71 1240 7 161 1243
parport.i 20698 213 5460 134 1859 21 351 2915
parclass.i 45283 219 2520 156 1324 16 392 2070

matlab.c 2033 - - 5 30 1 16 31
autopilot.i 3141 - - 206 894 14 450 1358

source code in PapaBench2. The results show that FSHELL scales well when moving
from basic block coverage to condition coverage. Experiments concerning more sources
and more complex queries can be found in [11].

6 Conclusion

In this paper, we introduced a query language for test case specification together with a
query solving backend based on bounded model checking. Our backend is based on two
new algorithms which guide the SAT solver to efficiently enumerate a test suite. Our
implementation FSHELL demonstrates the effectiveness and versatility of our approach.

References

1. Ball, T.: A theory of predicate-complete test coverage and generation. In: FMCO. (2004)
1–22

2. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for CheckingANSI-C Programs. In: TACAS.
(2004) 168–176

3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating Tests from
Counterexamples. In: ICSE. (2004) 326–335

4. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic Test Case Genera-
tion for Dynamic Analysis and Measurement. In: CAV. (2008) 209–213

5. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
SPIN. (2003) 235–239

6. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The Blast Query Lan-
guage for Software Verification. In: SAS. (2004) 2–18

7. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test coverage
and generation. In: TACAS. (2002) 327–341

8. Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal logic. In: IRI.
(2004) 493–498

9. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java PathFinder. In:
ISSTA. (2004) 97–107

10. Hamon, G., de Moura, L.M., Rushby, J.M.: Generating Efficient Test Sets with a Model
Checker. In: SEFM. (2004) 261–270

11. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing. Techni-
cal Report TUD-CS-2008-1013, TU Darmstadt (2008)

12. Eén, N., Sörensson, N.: An Extensible SAT-solver. In:SAT. (2003) 502–518

2 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique. php3?id rubrique=97

