Query-Driven Program Testing *

Andreas Holzer Christian Schallhart Michael Tautschnig Intig Veith

Formal Methods in Systems Engineering, FB Informatik, TUrDstadt
holzer@forsyte.de, schallhart@forsyte.de, tautschifiggpte.de, veith@forsyte.de

Abstract. We present a new approach to program testing which enaldesdh
grammer to specify test suites in terms of a versatile quamguage. Our query
language subsumes standard coverage criteria rangingsirapie basic block
coverage all the way to predicate complete coverage andmeutbndition cov-
erage, but also facilitates on-the-fly requests for tegesispecific to the code
structure, to external requirements, or to ad hoc needm@ris program un-
derstanding/exploration. The query language is suppdiyeda model checking
backend which employs the CBMC framework. Our main alganithcontribu-
tion is a method callederative constraint strengtheningshich enables us to
solve a query for an arbitrary coverage criterion by a siroglk to the model
checker and a novel form of incremental SAT solving: Whenéve SAT solver
finds a solution, our algorithm compares this solution agfdime coverage crite-
rion, and strengthens the clause database with addititenzdes which exclude
redundant new solutions. We demonstrate the scalabiliupfpproach and its
ability to compute compact test suites with experimentslirimg device drivers,
automotive controllers, and open source projects.

1 Introduction

In industrial software engineering, program testing is émain the pivotal debug-
ging and validation technology. While randomized and de&ddesting are important
to achieve global assurance about software quality, ancefrzased testing helps to
verify the conformance of the program with a high-level sfieation, there is practi-
cal need for a source code oriented white box testing metbggavhich assists the
programmer in the software engineering cycle. Such a metbgg should provide
seamless support for code-driven testing, i.e., explomaif code under development,
and requirement-driven testing for systematic qualitgetgm.

To address this need, we introduce a query language whichioesieasy naviga-
tion in real life C code with the ability to formulate complegverage criteria. Provid-
ing straightforward queries for standard coverage catenur language FQL (F&LL
query language) aims to strike the right balance betweeressjyeness and simplicity.
In FQL, aprogram queryasks for a test suite following the general form

> i n prefix cover goals passi ng scope
where the optiongbrefixdirects the query to a specific program part, e.g., a source fil
or a functiongoalsdescribes the coverage criterion to be fulfilled by the tagesand

* Supported by DFG grant FORTAS — Formal Timing Analysis StoteReal Time Programs
(VE 455/1-1).

an optionalscoperestricts test cases to pass through certain program pathskor
example, the query

> i n /bla.cicmp/ cover @blocks passi ng @call(err)

calls for a test suite which covers all blocks in functiomp of file bla.c , such that
in all test cases, a call tar insidecmp is performed. Other important and classical
coverage criteria such gsedicate coveragecondition coveragedecision coverage
modified condition/decision coverageedicate complete coveradd etc. can also be
expressed by natural queries in our language.

The added value of our language lies in the ability to defieegiinery scope and the
query goals in a quite flexible manner. Suppose for instamaein Listing 1 we want
to cover (1) all calls temp and (2) all decisions insidanp. This amounts to a coverage
criterion which combines basic block coverage for (1) andsien coverage for (2).
There are two different possibilities for this combinatieither we want to cover the
union of all call positions and all decisions, and write thexy

> in /blac/ cover @call(cmp), cmp/@decisions

or we want to cover all possibmbination®f calls tocmp and subsequent decisions
insidecmp, i.e., the Cartesian product of the individual test goals:

> in /blac/ cover @call(cmp)->cmp/@decisions

To ensure that, for each call site, each of the decisionsched before the body ofp
is left, we write

> in /blac/ cover @call(cmp)-[@func(cmp)\@exit]> cmp/@decisions

Solutions to these queries are test suites. In case of gidtithese can be most
easily described as sets of triples with input values fovéimablesx, y, z. For the first
query, the singleton test sui{¢1,0,1)} covers all blocks and decisions in Listing 1;
for the second and third case, possible solutions{éte0,1),(2,0,1),(1,0,2)} and
{(1,0,0),(0,1,0),(0,0,1)} respectively. Note that the first test suite does not satisfy
the second and third queries and the second suite does isfy she last query; the
third solution, however, satisfies all three queries.

In Section 2 we build the mathematical foundation to forrteitasting requirements
as queries. In particular, we show how to state a query as @4&)) of automata over
predicates. In this pair, thebservation automaton Aorresponds to thecopeto be
explored, and theest goal automaton Qpecifies thgoalsto be covered. In Section 3,
we provide an overview of our query language FQL and show twotrainslate FQL
queries into such a pajA, Q). Thus, the language reduces to a simple mathematical
core in which we are able to formulate all relevant coveragerta in a uniform way.

The second major contribution of this paper is an efficiemrgwengine which in-
tegrates our theoretical framework, code instrumentatimunded model checking,
and SAT enumeration into a tool of high efficiency. Our quengiae employs and
adopts the software model checking framework of Kroenirf@&MC [2]. Given a
query(A, Q), our tool performs the following conceptual steps, cf. Fel:

1 Expressions starting with “@”, such @blocks , typically denote sets of program locations,
see Section 3.1 for a detailed explanation.

Listing 1. C source code of example 1 1% =9%input();

bla.c with program counters 2 12z =1input();
rint cmp(nt x, int y) { 5 Iy =18cmp(x, y);
: int lvalue=0; u 8yz =15cmp(y, 2);
s if 2(x>y)Svalue =1; 5 Bxz =Yemp(x, 2);
« else if 4(x <y)Svalue =—1; 6 if 221y ==18& Oyz ==
s Sreturn value; 17 && Yz 1=1)
6} 1sERROR:23err();
1 %return 0;
sint main(nt argc, charx argv[]) { 20}
9 int X, y, z, Xy, yz, Xz;
10 8y = 7input(); @ ouery (A.Q)

(1) We instrument the source code with monitors Observationf | Test goal
derived from the observation automatarand the test am'fo < am'fo <
goal automatorg in such a way that the states of thfe Automaton injection |
monitors reflects the automata states. T

(2) We use the code base of CBMC to obtain a SAT CBMC |
instancep whose solutions correspond to the prograrm T
pathsrtin the scope given bj. The instrumentation of [. ive constraint swengthening |
step (1) guarantees that for each solution, we can easity I
determine which goals @ are covered. l oct sulte mmmizaton |

(3) We use the SAT solver to enumerate test cases-as
solutions to the SAT instance until we satisfy the cov-
erage criterion defined by the query. Titerative con-
straint strengtheningechnique (ICS) used in this step]
is discussed below. Fig. 1. Query processing
(4) To remove redundant test cases, we perform a test suitenimation. In our
current implementation, we only do a simple post-procggsmfuture work, we plan
to implement more aggressive minimization strategieseNioat the ICS enumeration
in (3) involves nondeterministic choices which may givedge to accelerate the al-
gorithm with suitable heuristics.

Iterative Constraint Strengthening. A naive implementation of step (3) above would
either use SAT enumeration to compute an enormous numbestafdses until the test
goals are reached, or it would call the SAT solver for eachryjgeal anew. Initer-
ative constraint strengthening (ICSye circumvent both problems by modifying the
clause database of the SAT solver on-the-fly. Whenever tiies®iver halts to output
a solution, we compare the test case obtained from thisignlagainst the test goals.
Then we add new clauses to the clause database in such a wéyetin@xt solution is
guaranteed to satisfy at least one hitherto uncovered tadt Ip this way, we exploit
incremental SAT solving to quickly enumerate a test suitdigh quality: Since we
only add new clauses to the clause database, the SAT sobtaleiso reuse information
learned in prior invocations. A similar strategy is usedioupwise constraint strength-
ening (GCS)a further refinement of ICS. In GCS, we address coveragerierisuch

as multiple condition coverage or predicate complete ayewhich have a nominally
exponential number of test goals by partitioning these godb a small number of
groups characterized by a common compound goal.

We show that FSELL has better practical performance than BLAST's test case
generation facility [3]: On comparable hardware, our testes are computed faster,
and contain fewer test cases. Due to the minimization stapesults also improve on
those reported in our previous tool paper [4].

Note that our choice of CBMC and bounded model checking aseaygeolving
backend has advantages which come at a price: On the onevwmamrdhieve excellent
performance and have the guarantee that the model-chedats ANSI-C, which is
important for low level code, our primary application ar®@a.the other hand, a bounded
model checking approach may beable to compute certain test casegolving paths
larger than the constant bound. It is easy to come up with ple@smwhere this situation
will happen, but it is is detectable by CBMC and accountedrfaur implementation;
it has neither occurred in the experiments we did for consparivith BLAST, nor in
our experiments based on real-life controller code. Inriituork, we plan to comple-
ment the CBMC backend with abstraction-based and randahtézt case generation
backends.

Related Work. Beyer et al. [3] use the C model checker BLAST [5] for test case
generation, focusing on basic block coverage only. BLASS &awo level specifica-
tion language [6]. On a low level they specify trace promsrthy observer automata
written in a C-like manner. On a high level they relate thasmmata by reachability
queries. In contrast to F&LL, their language is tailored towards verification. Fur-
thermore, BLAST is based on predicate abstraction wher&d@is a SAT-based
bounded model checker. As our experiments show, we outpmeBbAST regarding
test case generation. Lee et al. [7,8] investigate testgaseration with model check-
ers giving coverage criteria in temporal logics. Java Pathét [9] and SAL2 [10] use
model checkers for test case generation, but they do nobsupsemantics.

2 A Formal Testing Framework

Given a progran®?, we consider the possibly infiniteansition systen? = (§, R, I)
induced by? which consists of the state spaggea transition relatio® C § x S, and
a non-empty set of initial state/sC .

Definition 1 (State Sequences and Pathgpiven a transition system = (S, R,), a
state sequends a finite and non-empty woml= (sy,...,S,) € S* of statesse S. The
sequencetis apath if (s,5+1) € R holds foralll <i<nandif g € I. For a state
se S, we write se T, iff s= s holds for somd < i < n, and we denote witiZ C §+

theset of path®f 7.

We usestate predicateto describe properties of individual program states and we
usepathandpath set predicateim the description of individual test goals and coverage
criteria.

Definition 2 (State, Path, & Path Set Predicates)Given a transition systeri =
(S,R,I), we define astate predicate as a predicate on the state spagea path
predicatep as a predicate over the s@”, and apath set predicat® as a predicate

over the sets of patrﬂﬂ. We write §= p iff a state s= § satisfies p7t|= @iff a path
ne N7 satisfiesp, andl™ = @ iff a path set” C N7 satisfiesb.

We call a state predicaig a path predicate, or a path set predicate feasible over

T, iff, respectively, there exists a statec § with s |= p, there exists a patite M7

with Tt |= @, and there exists a path setc M7 with I = ®. Frequently, we are looking
for a path (path set) whicbontainsa state (a path) which satisfies a given state (path)
predicate—leading to amplicit existential quantification:

Definition 3 (Implicit Existential Quantification). To evaluate a state predicate p
over a pathrt, we implicitly interpret p to be existentially quantifieds.it= p stands
for 3s € tsk= p. Analogously, a path predicatgis existentially evaluated over a path
setl, i.e.,l = @iff Imer.nE=q.

Remark 1.Note that a pathm can satisfy a state predicgteandits negation-p, if there
exist two states, s € mwith s|= p ands' |= —p. Moreover, a state predicapecan also
be interpreted over a path detn the natural way, i.ell = piff Ime3se sk p.

Program Observations. We use sequences of state predicaties€g to specify pro-
gram paths. A trace matches a state sequence if each stdte gequence satisfies
the corresponding predicate. A trace automaton is an autona@&cepting traces; each
trace in turn specifies a set of program paths.

Definition 4 (Traces and Trace Automata).Let P be a finite set of state predicates
and S be a state space. Thentraceis a finite non-empty word=+ (t;,...,t,) € PT. A
tracematches state sequenge= (s, ...,S) € ST (denoted with =), iff s = t; for
all1<i<n.

A trace automatoover P is a nondeterministic finite state automaton A acoepti
traces over the alphabet P. We writgA) to denote the set of traces accepted by A and
acc(A) to denote the set of accepting states of A. A trace automatmreAP matches
a state sequenae(denoted witht |= A), iff there exists a traced L(A) with TT=t.

Remark 2.Although we have — for the sake of simplicity — defined tracemata as
finite state automata, our framework naturally extends heotypes of automata such
as push-down automata for which we can construct C monitbrSection 4.1.

We will use traces and trace automata as a natural tool fanidgfpath predicates
in the language FQL. In particular, we will employ trace am#&ta for two distinct ends:
First, asobservation automatahichrestrict the paths irZ” to those required in a query;
and second, a®st goal automatavhich specify the individual test goals of a coverage
criterion.

Definition 5 (Path Restriction by Observation Automata).Let7 be a transition sys-
tem and A a trace automaton. Then we define the set of pathsestricted by obser-
vation automaton A aB3 = {me N7 | j= A}.

Coverage Criteria. In the framework of this paper, we defing¢est casdo be a single
path in I'IZ and atest suiteas a subset dﬂZ. Correspondingly, @overage criterion
imposes a predicate on test suites:

Definition 6 (Test Case & Test Suite)Let 7 be a transition system and let A be an
observation automaton fof . Then atest casdor the set of pathEIZ is a single path
ne MY and atest suitd” is a finite subsel C MZ of the paths iM3.

Definition 7 (Coverage Criterion). A coverage criterioi® is a mapping from a tran-
sition systemZ” and an observation automaton A to a path set predida;feoverZHT.
We say thaf’ C I'l,"{ satisfies the coverage criterigh on 7 under the restriction A iff
[=% holds.

While our definition of coverage criteria is very general,shooverage criteria
used in practice are based on lists of test goals which nebe ®atisfied. The test
goals themselves are typically either state or path presicdhis prototypical setting
is accounted for in the next definition.

Definition 8 ((State) Regular Coverage Criterion and Test Gals). A regular cover-
age criteriond is a coverage criterion constructed in the following way:

(i) There is a mappin@(T,A) which mapsZ and A to a list ottest goalsb(7,A) =
{Wq,..., %}
(i) This mapping induces the coverage criteritln;ir as follows:

k
M=o ifft ANAEYI=TEW
i=1

Intuitively, this amounts to the following coverage criter. “For each test goal which
is feasible inM7, the test suité must contain a concrete test case”
& is astate regular coverage criterigh® (7, A) contains only state predicates.

As an example, consider basic block coversﬁ, which is a state regular cov-
erage criterion: induced by the test goBB(7,A) = {blocks,...,blockk}. Herek de-
notes the number of basic blocksdr and each predicatdock; holds true at the first
statement of théth basic block in the program.

We will now define test goal automata which are used to spehifytest goals
needed in regular coverage criteria.

Definition 9 (Test Goal Automaton).A test goal automato® is a trace automaton
where each accepting state a gives rise to a test gal

e Y, iff 3t.m=tand Q acceptst in state a

Thus, the test goal, requires a path matched by a trace which Q accepts in state a.
The test goal automaton Q naturally induces a regular cogereriterioncov|[Q] based
on the setov[Q|(7,A) = {Wa| a€ acc(Q)} of test goals.

Note that a single path may match more than one test goal tsinadusly: First,
each path is matched by a number of different traces, anchdeowore than one ac-
cepting state may be reached through a tracg.in

We conclude this section with a formal definition of programegdes, as introduced
in Section 1.

Definition 10 (Program Query & Result). A program queryA, Q) consists of an ob-
servation automaton A and a test goal automaton Q. A vagltto the query(A, Q)
on transition systerd is a test suitd” C M3 with [= cov[Q].

3 Syntax and Semantics oFQL

The FSHELL query language FQL facilitates the specification of testesuover C
source code. To decouple the language from the algorithetaild of the query engine,
and to provide leeway for different query solving backemwis,designed FSELL as
a declarative language. FQL contains three layers whichatethe formal model of
Section 2:

(i) state predicates over program variables and the progoamter,
(ii) trace automata to express both observation automatéesh goal automata, and
(iii) program queries to express coverage criteria.

In the following subsections, we will describe these lay&@mng with examples
referring to Listing 1. Due to length restrictions, the mmetation of FQL is kept infor-
mal; we refer the reader to [11] for more details. Sectiongcdbes our query solving
engine based on bounded model checking.

3.1 State Predicates

We have seen in Section 2 that sets of state predicates dre e¢mter of our formal
model. For instance, basic block coverage is induced byethef sest goal8B(7,A) =
{blocki,...,blockg}. FQL is therefore equipped withredicate generatort extract
sets of predicates from the C source code, and to create rievofspredicates. For
example, the predicate genera@blocks yields the sefblocki,...,blocky} of predi-
cates. Note that eadilock; has the formpc = const wherec is the program counter.
Syntactically, all predicate generators are prefixed wiih Semantically, a predicate
generator either yields a set of predicates over the progoamterpc, or a set of pred-
icates over the program variables.

Many predicate generators are used to extract sets of ptedifrom the source
code. Examples of such predicate generators inafide(bla.c) which captures all
program counter values of statements in the sourcebiile , @func(main) which
captures the statements in functioain , @line(3) to capture the statements in line 3,
@calllcmp) to match all function calls ofmp, and @entry as well as@exit which
capture all function entry and exit points respectivelycése of Listing 1 we get, e.g.,
@callicmp) = {pc =13 pc=15pc=17}.

To introduce new predicates not present in the source coelejse the predicate
generato@new-pred(cond) , where cond is an arbitrary side-effect free C expression.
For example@new-pred(x <= 7) generates asingleton det< 7} of state predicates.

For certain coverage criteria such as MC/DC, we also neefribdicate generator
@grouped-conditions which generates aet of setswhere each inner set captures
the program counter values of the individual predicatesctvitionstitute a decision.
Returning to Listing 1, we hav@grouped-conditons = {{pc=2},{pc=4},{pc=
19,pc = 20,pc = 21}}. To support the succinct formulation of most relevant cager
criteria, FQL contains a rich variety of predicate genamatmd can be easily extended
with further ones without conceptual changes to the lang(ia].

Operations on Sets of State Predicatéiven two setsA andB of state predicates,
FQL provides the following set-theoretic operations:

(and) A&B={anb|acAbeB} A B=AUB (union)
(or) AB={avb|acAbeB} A\B=A\B (difference)
(negation) A= {-alacA} 2A={AN|A C A} (powerset)

We addbig-and(A) = Azcaa andbig-or(A) = \/,caa to describe the conjunction
and disjunction of all elements of a set of state predica&lesapply an operation to
each element in a set, or &ach set in a set of setwe introduce theet() operator.
Moreover,union() forms a single set from a set of sets. Given aSef sets and an
operatiorn(s) on a set of state predicates, we define:

set(o(s) : sin § ={o(s)|seS} union(§ = Js

s€S

Operations on Conditionsln describing coverage criteriapnditionsoccurring in the
source code play a crucial role. A condition is an atomic eggion which is possibly
combined with other conditions usirg&g, ||, and! to compute the decision involved
in executing anif , for, while, switch or ?: statement. The generat@pred-wo-loc()
extracts conditions from source code locations identifiggpfmgram counter values.
In addition, @predicate() and @neg-predicate() conjoin the extracted conditions
with the corresponding predicate over the program couRterexample, le€ = {pc =
19,pc = 20, pc = 21} be such a set, referring to Listing 1. Then we have

@pred-wo-loc(C) = {xy=1yz=1xz# 1}
@predicate(C) = {pc=22Axy=1pc=22Ayz=1pc=22Axz# 1}
@neg-predicate(C) = {pc=22Axy# 1,pc=22Ayz# 1, pc =22 Axz=1}

Note thatpc = 22 refers to the location of the decision inside which theditions inC
occur.

State Regular Coverage Criteridesides simple test goals such@slocks , FQL can
can also describe more complex coverage criteria. We ridltesthis feature on the ex-
ample ofmultiple condition coveragdRecall that multiple condition coverage requires

a test suite to cover—for each decision—all Boolean contliina of all conditions
occurring in the respective decision. The test goals aretbee given by

union(set(
union(set(big-and(@predicate(l) & @neg-predicate(D\I)):lin 2°D)):
D in @grouped-conditions))

Hierarchical Navigation.In practical queries, the predicate genera@fite(bla.c) ,
@line(3) , @func(foo) , aswell ag@entry and@exit occur quite frequently. We there-
fore allow the following abbreviations which facilitateenarchical navigation in the
source code:

fbla.c/ = @file(bla.c) [bla.c/42 = @file(bla.c) & @line(42)
foo/ = @func(foo) [bla.c/foo/ = @file(bla.c) & @func(foo)
foo/ “= @entry(foo) foo/$ = @exit(foo)

foo/ SP= @func(foo)& SP /bla.c/ SP= @file(bla.c)& SP

In the last line SPis to be replaced by any state predicate expression. Noté&®ha
also supports macros for frequently used expressions sugimaplex coverage criteria.
Due to space restrictions we do not describe the macro featwetail.

3.2 Trace Automata

Recall that trace automata are used to define path predieatdgo act as both ob-
servation automata and test goal automata. By implicitemigal quantification, every
state predicate can also be viewed as a path predicate, andasy to construct the
corresponding automaton. Moreover, a set of state prediaaturally gives rise to
an automaton with one accepting state for each state pteditdéhe set. For exam-
ple, @blocks corresponds to an automaton wit@blocks | accepting states, one for
each basic block. The following list exemplifies the mostartpnt automata theoretic
operations of FQL which enable the user to manipulate andbawrtrace automata
explicitly: Let A;, Az, A3 be trace automata:

A, Ao =A1UA (union)
A1-> Ap = Ajotrue* o Ap (sequencing)
A[AsP> Ao =A10A50 A (restricted sequencing)

Consider for examplmain/->main/$ over Listing 1: the traces of this automaton
will match those program executions which pass the exitayf (line 19). In contrast,
main/-[@file(bla.c)\@label(ERROR)]>main/$ requires that between the entry
and the exit ofmain only locations other than those labeled “ERROR” (line 18 ar
seen. Note that each of these operations corresponds taificcpetomata theoretic
construction. Due to the special role of accepting statdefiming test goals, we cannot
use the standard automata theoretic minimization teclesicef. [11].

3.3 Program Queries

We are now ready to define the program queries introduceddtid®el . LetA andB be

FQL expressions which can be interpreted as trace autoimata(ther trace automata,

or sets of predicates as explained in the previous secfitr®@ncover Q passi ng

A expresses the program qué#; Q) with the semantics given in Definition 10.
Recall from Section 1, that FQL queries can also have a prHiiis. prefix restricts

all state predicates to a certain program part, e.g., aiodila It is easy to see that the

prefix can be moved intd andQ. For example, a query such as

> in /blac/ cover @line(4),@call(cmp)

passi ng @file(bla.c)\@call(not _implemented)
which states that both, line 4 and a function calttg in file bla.c must be covered
without ever callinghot_implemented() , is equivalent to
> cover /bla.c/4,/bla.c/@call(cmp)
passi ng @file(bla.c)\@call(not _implemented)

4 Query Processing Algorithms

In this section we describe the query processing algoritiidesfirst outline how pro-
gram source code and a query are mapped to a SAT instancéeandetail on iterative
and groupwise constraint strengthening in Section 4.2.

4.1 Program Instrumentation and Interfacing with CBMC

Bounded model checkers such as CBMC reduce questions abmyriam paths to
Boolean constraints in conjunctive normal form (CNF) whare solved by standard
SAT solvers. Our query solving algorithms ICS and GCS emfi@yfunctionality of
CBMC to obtain SAT instances suitable for test case gerraRecall that on input
of a program annotated with assertions, CBMC outputs a SAfaite whose solu-
tions describe program paths leading to assertion vigiatibo make this functionality
useful for test case generation, we first instrument thenaragvith the observation au-
tomatonA such that the resulting program reaches a failing assartithre course of an
execution, iff this program execution is matched®dy\e therefore implememtas a C
function thatmonitorsprogram execution. To this end, the progr@ns instrumented to
contain alogginglayer, which reports the matching predicates after eacbut®d step
to the monitor. Moreover, we inject the test goal automaa aecond monitor, which
only keeps track of the states of the test goal automaton iistenguished variable,
but does not cause assertion violations. Then, using CBREinstrumented program
is transformed into the CNF-formutgm € I'l,"{] which is satisfied by all program ex-
ecutions which reach an accepting stateAafkithin a bounded number of steps. By
constructiong[rt e I'IZ] contains distinguished Boolean variables referring tostiage
of the query automatof; these variables can be used to express the individual test
goals. Therefore, a constraint of the fopim € M7 | A ga) will satisfy those program
executions which (i) respect observation automatand (ii) satisfy test goa¥,. In
the rest of this section, we will for simplicity write thisnsiraint asme I'l,"{ A TIE Wy,
and tacitly assume the translation to CBMC described above.

4.2 Guided SAT Enumeration

To generate a test suifefor a transition system¥™ matching the queryA, Q), i.e., to
achieve = cov[Q]7, we introduceterative constraint strengthening (ICSh ICS, we
build a test suitd™ iteratively from a sequence of test suifesC '1 C --- C 'y with
Mo=0andlg= {T[l, . ,T[q} for 1 < g < m. In them-th iteration, we reach a fixpoint
when no more new goals can be covered.

Algorithm Overview.In theg-th iteration we build thgath constraintCSPCq (Equa-
tion (1)) and obtain the test casg,1 as one of its solutions. Hert{SPCq describes
those paths im‘IZ which cover a hitherto uncovered test goal. If no such teat gxists
any moreJCSPCq becomes unsatisfiable. Having determined a new testreasewe
build ICSPCq41 and continue the procedure with tteg+ 1)-st iteration until we reach
an iteratiormwherel CSPC,,, becomes unsatisfiable.

In order to fit the framework ofncremental SAT solvingcf. [12]), we rewrite
ICSPCq (Equation (2)) in such a way that we are able to desdf$&Cq1 incremen-
tally in terms ofICSPCq by only addingnew constraintsvithout removing or chang-
ing previously added constraints (Equation (3)). Using thesémental formulation of
ICSPCgq, we describe iterative constraint strengthening (ICSgbagon an incremen-
tal SAT solver in Listing 2. Then paths finally collected by ICS constitute indeed a
covering test suite (Theorem 1).

Path Constraints.The initial path constraintCSPCg requires that a path is ilﬁ,"{ and
covers at least one of the test gotg for a € acc(Q). Subsequently, ifCSPCq, we
require the path to cover at least one test gBawhich remainedincoveredoy the
test suitel'q. Sincel 441 must cover at least one more test goal tiignit suffices

to strengtherthe constraintCSPCq to obtainlCSPCqy, 1. Below, we writeuncovg =
{a€acc(Q) | Tq = Wa} for the set of accepting states which correspond to tessgoal
not covered i 4. Note thatuncovp = acc(Q) sincel’o = 0 covers no test goals at all.
Then, for 0< g < m, we search for a solutiory, 1 to theg-th constraint

ICSPCq(m) :=mte NMZA \/ TEW, (1)

acuncovq

Note that the empty disjunction is equivalenfitse, i.e., if uncovqg = 0, thenlCSPCq =
false. Thus,ICSPCy is satisfied by exactly those pathsl'iif which satisfy at least one
feasibletest goal stilluncoveredby I'q. If no such test goal exists, i.e., [ify achieves
coveragethenlICSPCq is unsatisfiable.

Incremental Path Constraintsin incremental SAT solving, we use a single persistent
clause database for consecutive solver invocations. WieB8AT solver finds a solu-
tion, we add new clauses to the clause database, but do noteaany clauses. When
the execution of the SAT solver is continued, the learnedsgla obtained during earlier
invocations remain valid and help to guide the search of thees Therefore, we have
to construciCSPCq41 from ICSPCq by only adding further constraints to the clause
database. Observe thatcovg,1 C uncovq holds for 0< g < m-—1. Thusin going from

ICSPCq to ICSPCq41, We have to remove all test godds with a € uncovq \ uncovgy1
from the disjunction\/ aencov, T E W, occurring in Equation (1). To do so, we intro-
duce a new Boolean variabfg for each accepting statec acc(Q) and writel CSPCq
equisatisfiable as

ICSPCq(m) = [meMiA \/ (SATEW) | A A S 2)

acacc(Q) aguncovg

ThusICSPCq consists of (a) an initial expression, shown above in sqbsaekets,
which remains unchanged throughout all iterations, ané @)njunction which is ex-
panded from one iteration to the next. Addin&, to the constraint renders the cor-
responding disjuncg A T = W, unsatisfiable, and therefore only the disjuncts for
a € uncovg remain enabled. Note that fl€SPCo we havetrue = Aa¢uncov, ~Sa- ThUs,

in each iteration step, we use

ICSPCqy1(T) := ICSPCq(TD) A A -S; (3)

acuncovg\uncovgy 1

to obtainlCSPCq, 1 from ICSPCq. Since we only add further constraints conjunctively,
this approach fits the requirements of incremental SAT aglvi

Iterative Constraint Strengthenindn our presentation of the algorithm, we assume a
SAT solver which supports the following methods: fading constraintsvith add¢):
The method takes an arbitrary constraprtver variables from arbitrary finite domains.
While we use such a general interface to simplify the pregimt of our algorithm,
our implementation is based upon the SAT instaglcec I'IK] which we described in
Section 4.1. (blChecking for satisfiabilityvith satisfiable() The method returns true iff
there exists a solution to the constraints added to the eldatabase so far. If a call
to satisfiable(yeturnstrue, a witness is cached. (€)btaining a solutiorwith solution(}
The method returns the last witness cached in a cahtisfiable()

The resulting procedurEs is shown
in Listing 2. In line 3 we initialize the it-
eration counteig, the first test suitd o,
and the set of test goalsncovy uncov-
ered bylp. Then in line 4, we add the ini-
tial expression from Equation (2) and start
the search for the first solution in line 5.
If a solution is found, it is obtained from
the solver, assigned tog.1, and added
to g41. Then, after initializinguncovgy 1,

Listing 2. Iterative Constraint
Strengthening (ICS)

1 func ICS(Z, (A,Q))

2 begin

3 Q:=0; Mp:=0; uncovg := acc(Q);

4 addfte I'IZ AVacace(Q) (SaATUE Wa));
s while satisfiable ()do begin

6 Tlq+1 ;= solution();

7 Fg+1:=FqU{Mgs1}; uncovgy :=0;
8 forall a € uncovq do

9

if Tqi1 = Wathenadd(-Sy); we update the clause database following
10 else uncovgy1 := uncovgr1U{a}; Equation (3) and fill the seincovgi1 in
1 g:=q+1; lines 8 to 10: For each yet uncovered state
2 end a € uncovg, we check whethery, ; satis-
1 return Tg; fies W,. If this is the casea € uncovg \

14 end, uncovg+1 holds, and thus we addS, in

line 9. Otherwisea remains uncovered blyg+1 and hence we add to uncovgy in
line 10. Once no further solution is found in line 5, the acalated suitd 4 is returned.

Theorem 1 (Correctness of Iterative Constraint Strengtheing). The test suitd”
returned by the algorithncs[7 (A, Q)) in Listing 2 satisfies™ |= cov[Q]7 .

Remark 3 (Nondeterminism in Choosimng1). Our algorithm leaves the particular
choice ofry1 open to the underlying SAT solver (line 6). Potential optations could
control this choice to minimize the number of test cases ssaug to obtain coverage.

Groupwise Constraint Strengthenin@.ertain regular coverage criteria, such as pred-
icate complete or multiple condition coverage, requireegponential number of test
goals.For example, recall that multiple condition coverage (B&cB.1) has one test
goal for each basic block areach possible evaluation of all conditioms/olved in
deciding which edge to choose in leaving the basic block.cddethe number of test
goals is exponential in the number of conditions in eachsieai For this reason, the
disjunction inlICSPCqp will be of exponential size—thus rendering iterative coaisit
strengthening hard for such coverage criteria.

To mitigate this situation, we introduggoupwise constraint strengthening (GCS)
as an optimization of iterative constraint strengthen@®@S can be combined with ICS
and allows to handle all test goals which are state predichtt us thus for simplicity
assume that all test goa¥, for a € acc(Q) are state predicates. To apply GCS, we
require the test goals to be partitioned iitalistinct groups G = {Wil,...,LP:“} of
mutually exclusive test goaler 1 <i <k, i.e., we require that there exists state s
with s)=W! ands=W forall 1< g#h <k and 1< i <k.

In the GCS algorithm, we avoid the construction of the ihidéiad very large dis-
junction VaeunCOVqT[= W, as it appears ifCSPCq (Equations (1) and (2)): Instead
of individual test goals, we use a small numbecompound test goalomp;, where
each compound test goal represents the goals of the whalg Gio= {LlJil,...,llJiK}
of individual test goalsPi‘. To represent grou@;, its compound test goabmp; has to

be semantically equivalent (but usually not identicaMﬁ;qui‘. Itis important to note
however that in many practical casesmp; can beformulated much more succinctly
than V'le‘#i‘. For example, in case of multiple condition coverage, wditpam the
goals into groups according to the blocks they relate tonThé-= comp; holds for a
statesiff svisits thei-th basic block, i.e.comp; has the formpc = const. _
Starting with the compound test gaalmp;, we add for each covered test g(sléfl
of group G, i.e., for eachllJiJ € Gj \ uncovy, its negatiorhllJiJ to the corresponding
compound test goal. This approach yields for each gfgugnaggregate test goal

aggriq ‘= comp; A /\ ﬁLIJiJ 4)
l~|»’ij €G;j\uncovq

Since we us¢aggriq to represent the remaining uncovered test g@alSuncovq of the
groupG; in iterationg, we will rely on the equivalence

VAR (5)

l~|»’iJ €GjNuncovq

which follows from the construction and the mutual exclesigss of the test goals
within each groupG;. Written in the form of Equation (5)aggriq does not explicitly
refer to any infeasible test goals and only involfessibletest goals as subexpressions.
This significantly reduces the size of the constructed caimgt

Having definedaggriq in this way, GCS proceeds like ICS but with Equation (1)

replaced by
k
GCSPCq(m) :=me N A\/ 1= ager! (6)
i=1
Similar to ICS we also adofiCSP(q to fit incremental SAT solving: More precisely,
we leave the overall constraint (Equation (6)) unchangeti raplaceaggr? (Equa-
tion (4)) by an equisatisfiable and incrementally expanglalspression. Thus, we can
incrementally strengthesggriq for each group individually.

The effectiveness of GCS as an optimization of ICS relieshoeet conditions: (a)
The overall number of groups must be small, since we mairitaieach groups; a
constrainbggriq. (b) The compound test goamp; must be available in a succinct for-
mulation. (c) The fraction dieasibletest goalswiJ in each groups; must be small, since
the negation of each feasible test goal is addatg@iq in some iteratiorg. Conditions
(a) and (b) hold for important coverage criteria such as ipleldecision or predicates
complete coverage. If condition (c) does not hold, then tivalmer of required test cases
will be large — but this is inherent in the coverage criterdol not an artefact of GCS.

Remark 4 (Mutual Exclusiveness: State vs. Path Predicdtas)tempting to assume
that the mutual exclusiveness defined in terms of statesity ggneralized to the level
of path predicates. However, this is not the case as mutaatijusive state predicates
do not resultin mutually exclusive path predicates because of theirigitxistential
quantification, cf. Definition 3 and Remark 1.

5 Experimental Results

In our experiments we investigated test case generatidyefic block BB) and condi-
tion coverage(C). We performed our experiments on a 3.0 GHz AMD64 system &vith
GB RAM. The table below summarizes our results with respeBILtAST. The column
“Min” shows the number of test cases removed by our test miitémization algorithm.
Our currentimplementation of FH&LL is an optimized version of that presented in [4].
It generates fewer test cases, and, after test case genei@tibasic block coverage,
FSHELL minimizes an obtained test suite. The results for BLAST aken literally
from [3], because the version of BLAST performing test caseegation is currently
unavailable. Beyer et al. performed their experiments 0196 GHz Dell Precision 650
with 4 GB RAM. FSHELL outperforms BLAST, as we achieve coverage with fewer test
cases faster. Besides the experiments on the device diiger8LAST we conducted
experiments on an engine controlleraflab.c) provided by an industrial collabora-
tor from the automotive industries. It is generated from aTAB/Simulink model.
Furthermore, we ran our tool on preprocessed soustgsp(ot.i) generated from

BLAST (BB) BB CcC
Source file LLOC #cases Time[s] #cases Time[s] Mirtcases Time[s]

Kbfiltr.i 4879 39 300 26 18 6 98 24
floppy.i 6435 111 1500 63 1041 10 175 1259
cdaudio.i 8022 85 1500 71 1240 7 161 1243
parport.i 20698 213 5460 134 1859 21 351 2915
parclass.i 45283 219 2520 156 1324 16 392 2070
matlab.c 2033 - - 5 30 1 16 31
autopilot.i 3141 - - 206 894 14 450 1358

source code in PapaBerfciThe results show that F&LL scales well when moving
from basic block coverage to condition coverage. Experimenncerning more sources
and more complex queries can be found in [11].

6

Conclusion

In this paper, we introduced a query language for test camgfagation together with a
query solving backend based on bounded model checking.&kehd is based on two
new algorithms which guide the SAT solver to efficiently erarate a test suite. Our
implementation F8ELL demonstrates the effectiveness and versatility of ourcgr.

References

1.

2.

10.

11.

12.

Ball, T.: A theory of predicate-complete test coverage generation. In: FMCO. (2004)
1-22

Clarke, E.M., Kroening, D., Lerda, F.: A Tool for CheckiA§SI-C Programs. In: TACAS.
(2004) 168-176

Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R. jlMadar, R.: Generating Tests from
Counterexamples. In: ICSE. (2004) 326-335

Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Hell: Systematic Test Case Genera-
tion for Dynamic Analysis and Measurement. In: CAV. (200892213

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: \Bafe Verification with BLAST. In:
SPIN. (2003) 235-239

Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R.jleadar, R.: The Blast Query Lan-
guage for Software Verification. In: SAS. (2004) 2-18

Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporalibfased theory of test coverage
and generation. In: TACAS. (2002) 327-341

Tan, L., Sokolsky, O., Lee, |.: Specification-based tggtiith linear temporal logic. In: IRI.
(2004) 493-498

Visser, W., Pasareanu, C.S., Khurshid, S.: Test input¢rggion with Java PathFinder. In:
ISSTA. (2004) 97-107

Hamon, G., de Moura, L.M., Rushby, J.M.: Generating kffic Test Sets with a Model
Checker. In: SEFM. (2004) 261-270

Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.u&y-driven program testing. Techni-
cal Report TUD-CS-2008-1013, TU Darmstadt (2008)

Eén, N., Sorensson, N.: An Extensible SAT-solverSAT. (2003) 502-518

2 http:/fwww.irit.fr/recherches/ARCHI/MARCH/rubrique. php3?id _rubrique=97

