
Impartial Anticipation in Runtime-Verification⋆

Wei Dong1, Martin Leucker2, and Christian Schallhart2

1 School of Computer, National University of Defense Technology, P.R.China
2 Institut für Informatik, Technische Universität München, Germany

Abstract. In this paper, a uniform approach for synthesizing monitors
checking correctness properties specified in linear-time logics at runtime
is provided. Therefore, a generic three-valued semantics is introduced re-
flecting the idea that prefixes of infinite computations are checked. Then
a conceptual framework to synthesize monitors from a logical specifica-
tion to check an execution incrementally is established, with special focus
on resorting to the automata-theoretic approach. The merits of the pre-
sented framework are shown by providing monitor synthesis approaches
for a variety of different logics such as LTL, the linear-time µ-calculus,
PLTLmod, S1S, and RLTL.

1 Introduction

Runtime verification (RV) is an emerging lightweight verification technique in
which executions of systems under scrutiny are checked for satisfaction or viola-
tion of given correctness properties. While it complements verification techniques
such as model checking and testing, it also paves the way for not-only detect-
ing incorrect behavior of a software system but also for reacting and potentially
healing the system when a correctness violation is encountered.

Typically, a monitor is employed in RV, checking whether the execution
meets a certain correctness property. Such a monitor may on one hand be used
to check the current execution of a system. In this setting, which is termed
online monitoring, the monitor should be designed to consider executions in an
incremental fashion and in an efficient manner. On the other hand, a monitor
may work on a (finite set of) recorded execution(s), in which case we speak of
offline monitoring. In this paper we focus on online monitoring.

In online monitoring, often an—at least ideally—non-terminating system is
checked. In the very end, this asks for checking correctness of an infinite execu-
tion trace. Clearly, this cannot be done at runtime. In fact, we aim at deriving
a verdict whether an infinite execution satisfies a correctness property by con-
sidering its finite prefixes. In [1], we formulated two maxims a monitor should
ideally follow to capture implications of this idea:
– Impartiality requires that a finite trace is not evaluated to true or false, if

there still exists an (infinite) continuation leading to another verdict.

⋆ This work has been supported in part by National Natural Science Foundation of
China (Grant No.60673118)

– Anticipation requires that once every (infinite) continuation of a finite trace
leads to the same verdict, then the finite trace evaluates to this verdict.

Intuitively, the first maxim postulates that a monitor only decides for false—
meaning that a misbehavior has been observed—or true—meaning that the cur-
rent behavior fulfills the correctness property, regardless of how it continues—
only if this is indeed the case. Clearly, this maxim requires to have at least three
different truth values: true, false, and inconclusive, but of course more than
three truth values might give a more precise assessment of correctness. The sec-
ond maxim requires a monitor to indeed report true or false , if the correctness
property is indeed violated or satisfied.

Typically, monitors are generated automatically from some high-level specifi-
cation. Runtime verification, which has its roots in model checking, often employs
some variant of linear temporal logic, such as Pnueli’s LTL [2]. However, typi-
cally these logics and corresponding verification algorithms are considered on in-
finite executions. To follow the ideas of impartiality and anticipation, we defined
in [3] a three-valued semantics for LTL obtaining the logic LTL3. Moreover, in
[3, 4], we presented a monitor synthesis algorithm for LTL3. Using similar ideas,
we also introduced a three-valued semantics for a real-time version of LTL and
provided a corresponding monitor synthesis algorithm.

However, there is large variety of linear-time logics, for which monitor synthe-
sis algorithms are of interest. In this paper, a uniform approach for synthesizing
monitors checking correctness properties specified in linear-time logics at run-
time is provided, which is based on our approach in [3]. To this end, we define
linear-time logics as logics interpreted over infinite words, for example, LTL,
PLTLmod [5], linear µ-calculus, timed LTL etc. Uniformly, we give an impartial
and anticipatory semantics for linear-time logics suitable for runtime verifica-
tion. We identify key decision and abstraction functions from which a monitor
for a formula of the respective logic is directly obtained.

Satisfiability and model checking are common problems addressed for logics.
A pattern emerging for solutions of these problems is the so-called automata-
theoretic approach: In satisfiability checking, it means to construct for a given
formula φ the automaton Aφ accepting (abstractions of) words satisfying φ, so
that the language of Aφ is non-empty iff φ is satisfiable. Model checking, though,
is often reduced to constructing the automaton A¬φ accepting the counter ex-
amples of φ and checking the intersection of a model and A¬φ for emptiness.
Also for the exemplifying linear-time logics the automata-theoretic approach for
checking satisfiability has been studied and it seems beneficial to reuse such
automata constructions when looking for monitors—provided this is possible.
We define precisely the automata-theoretic approach and we elaborate certain
criteria (forgettable past and faithfulness of abstraction) under which a moni-
tor is directly obtained from automata accepting the models of a formula at
hand. We show that automata constructions existing in the literature for sev-
eral linear-time logics satisfy the introduced criteria such that we derive easily
impartial and anticipating monitors, e.g., for the linear-time µ-calculus [6, 7],
monadic second-order logic (over words) [8], RLTL [9], and PLTLmod [5] which
is interpreted over sequences of integer valuations.

2 Anticipatory Monitors

Definition 1 (Linear-time Logic). A linear-time logic L defines a set FL of
L-formulae and a two-valued semantics |=L. Every L-formula φ ∈ FL has an
associated and possibly infinite alphabet Σφ. For every formula φ ∈ FL and
every word σ ∈ Σω

φ , we require the semantics to be well-defined, i.e., either
σ |=L φ or σ 6|=L φ must hold.

Furthermore, we require a linear-time logic L to satisfy the following properties:

(L1) ∀φ ∈ FL : ¬φ ∈ FL. Note that this property does not require that
negation is applicable to every subformula of φ.

(L2) ∀σ ∈ Σω
φ : (σ |=L φ ⇔ σ 6|=L ¬φ). Note that ¬φ ∈ FL must hold

because of property (L1).

Definition 2 (Anticipation Semantics). If L is a logic following Defini-
tion 1, then we define the anticipation semantics [π |= φ]L of an L-formula
φ ∈ FL and a finite word π ∈ Σ∗

φ with

[π |= φ]L =







⊤ if ∀σ ∈ Σω
φ : πσ |=L φ

⊥ if ∀σ ∈ Σω
φ : πσ 6|=L φ

? otherwise

Note that the definition of anticipation semantics fulfills both, the impartial-
ity and anticipation requirements stated in the introduction: It is impartial since
for every prefix π ∈ Σ∗ with two continuations σ, σ′ ∈ Σω such that πσ |=L φ
and πσ′ 6|=L φ hold, the semantics [π |= φ]L evaluates to the inconclusive verdict
?. On the other hand, once only satisfying or unsatisfying continuations exist,
the semantics [π |= φ]L evaluates to the corresponding verdict ⊤ or ⊥.

Since we want to use the anticipation semantics in runtime verification, we
have to develop a monitor procedure monitorφ(a) which reads a trace incremen-
tally: It takes a symbol a in each invocation and returns thereupon the valuation
of the currently processed prefix. To this end, we evaluate the core question aris-
ing in the anticipation semantics ∀σ ∈ Σω

φ : πσ |=L φ using the equivalence

∀σ ∈ Σω
φ : πσ |=L φ ⇔ ∄σ ∈ Σω

φ : πσ 6|=L φ ⇔ ∄σ ∈ Σω
φ : πσ |=L ¬φ

which holds for every logic L which satisfies property (L2). By handling the
complemented case analogously, we obtain the following rule to evaluate the
anticipation semantics:

[π |= φ]L =







⊤ if decide¬φ(π) = ⊥
⊥ if decideφ(π) = ⊥
? otherwise

where decideφ(π) is defined to return ⊤ for φ ∈ FL and π ∈ Σφ if ∃σ ∈ Σω
φ :

πσ |=L φ holds, and ⊥ otherwise. Note that decideφ(π) is well-defined since φ and
¬φ are both in FL. Observe that a computable anticipatory semantics requires
the satisfiability problem of the underlying logic to be decidable.

Remark 1. A linear-time logic has a computable anticipatory semantics, only if
the satisfiability problem for the logic is decidable.

In order to give an incrementally working monitor procedure, we have to
avoid reevaluating the entire prefix π in decideφ(π) whenever a symbol is read.
Instead, we want to use an automaton construction to compute decideφ(πa) for
π ∈ Σ∗

φ and a ∈ Σφ after having already processed π. Hence,we introduce a
procedure stepφ(S, a) which takes a set S ⊆ Sφ of states and a symbol a ∈ Σφ

and returns a new set S′ ⊆ Sφ. By executing stepφ stepwise on a finite prefix
π = a1 . . . an we obtain the automaton abstraction αφ(π) of π with

αφ(π) = stepφ(. . . (stepφ(stepφ(Iφ, a1), a2), . . .), an)

where Iφ is an initial set of states for φ. Then we apply a suitably defined
procedure checkφ on the resulting set of states αφ(π) to obtain checkφ(αφ(π)) =
decideφ(π). We summarize these terms in the following definition:

Definition 3 (Automaton Construction with Emptiness Check). A logic
L has an automaton construction with emptiness check if we have for every
formula φ ∈ FL, (a) a finite set Sφ of states, (b) a set Iφ ⊆ Sφ of initial states,
(c) a transition function stepφ(S, a) which maps a set of states S ⊆ S and a
symbol a ∈ Σφ to a new set S′ ⊆ S of states, and (d) a function checkφ(S)
with checkφ(αφ(π)) = decideφ(π) for all π ∈ Σ∗

φ where we define automaton
abstraction αφ with αφ(ǫ) = Iφ and recursively with αφ(πa) = stepφ(αφ(π), a)
for all π ∈ Σ∗

φ and a ∈ Σφ.

procedure monitorφ(a)
init

Sφ := Iφ; S¬φ := I¬φ

begin

Sφ := stepφ(Sφ, a);
S¬φ := step

¬φ(S¬φ, a);
if checkφ(Sφ) = ⊥

then return ⊥;

if check¬φ(S¬φ) = ⊥

then return ⊤;

return ?;

end

Fig. 1. Procedure monitorφ(a)

If a logic L has an automaton construction
with emptiness check, we use the following rule
to evaluate the anticipation semantics

[π |= φ]L =







⊤ if check¬φ(α¬φ(π)) = ⊥
⊥ if checkφ(αφ(π)) = ⊥
? otherwise

which leads to the procedure monitorφ(a) as
shown in Figure 1.

As an example for a logic which directly
yields an automaton abstraction with empti-
ness check, consider LTL [2]. The set of LTL
formulae is inductively defined by the grammar
φ ::= true | p | ¬φ | φ ∨ φ | φ U φ | Xφ. Recall that a (nondeterministic)
Büchi automaton (NBA) is a tuple A = (Σ, Q, Q0, δ, F), where Σ is a finite
alphabet, Q is a finite, non-empty set of states, Q0 ⊆ Q is a set of initial states,
δ : Q×Σ → 2Q is the transition function, and F ⊆ Q is a set of accepting states.
For an NBA A, we denote by A(q) the NBA that coincides with A except for
the set of initial state Q0, which is redefined in A(q) as Q0 = {q}.

Let Aφ = (Σ, Qφ, Qφ
0 , δφ, Fφ) denote the NBA which accepts all models of

the LTL-formula φ, and let A¬φ = (Σ, Q¬φ, Q¬φ
0 , δ¬φ, F¬φ) denote the NBA

which accepts all words falsifying φ. The corresponding construction is standard
[10]. Now we define step and check for LTL as follows:

– stepφ : 2Qφ

× Σ → 2Qφ

does the Büchi automaton steps of Aφ. That is,

stepφ(S, a) =
⋃

q′∈S δφ(q′, a) for S ⊆ Qφ and a ∈ Σ. Analogously, step
¬φ :

2Q¬φ

× Σ → 2Q¬φ

is defined based on A¬φ.
– checkφ : 2Qφ

→ {⊤,⊥} does the emptiness check for the states. That is,
checkφ(S) = ⊤ iff

⋃

q′∈S L(Aφ(q′)) 6= ∅ for S ⊆ Qφ, otherwise checkφ(S) =

⊥. Analogously, check¬φ : 2Q¬φ

→ {⊤,⊥} is defined in terms of A¬φ.
Note that we essentially get the monitor procedure established in [3].

3 Monitors via the automata-theoretic approach

So far, we have understood that there is a canonical anticipatory semantics well-
suited in runtime verification for a wide range of linear-time logics, which is based
on the function decideφ. Thus, for any linear-time logic, a (non-incremental) RV
semantics can be computed, provided that for each formula φ of the logic a
computable decideφ can be constructed. Moreover, a monitor construction for
checking an input sequence incrementally was developed for linear-time logics,
provided an automaton abstraction is given.

In consequence, runtime verification support for a linear-time logic is reduced
to providing the corresponding functions/abstractions. We have shown that this
task is simple in the setting of Pnueli’s LTL. However, for some relevant richer
logics, like real-time logics [11] or logics interpreted over the integers [5], this
task is considerably more involved [4]. Nevertheless, as the approach given for
LTL suggests, there is a typical pattern for deriving those functions, which
we describe in this section. In simple words, we show that whenever for the
underlying logic the so-called (a) automata-theoretic approach to satisfiability
checking is followed—as it is the case for many logics (see also Section 4)—and
certain (b) accuracy criteria are fulfilled, a general pattern is applicable to derive
monitors in a uniform manner.

We first give a generic definition of nondeterministic ω-automata which covers
various well-known classes of ω-automata such as Büchi, Muller, Rabin, Street,
Parity etc. Note that we decided against generalizing the concept to cover also
event-clock or timed automata, mainly to keep the technical details simple.

Definition 4 (Nondeterministic ω-Automata). A (non-deterministic) ω-
automaton A is a tuple A = (Σ, Q, Q0, δ,Acc), where Σ is a (possibly infinite)
alphabet, Q is a finite non-empty set of states, Q0 ⊆ Q is a set of initial states,
δ : Q × Σ → 2Q is the transition function, and Acc is an accepting component
(which varies for different automata types.)

For example, we derive the notion of non-deterministic Büchi automata with a
subset of the states Acc ⊆ Q as accepting component.

A run of an ω-automaton A = (Σ, Q, Q0, δ,Acc) on a word w = a0a1 · · · ∈
Σω is a sequence q0, q1, . . . with q0 ∈ Q0 and qi+1 ∈ δ(qi, ai) for i ≥ 0. The

run is called accepting if it meets the acceptance condition. For example in case
of Büchi automata, the acceptance condition requires at least one of the states
q ∈ Acc to be visited infinitely often. The accepted language (or language, for
short) L(A) of A is the set of words w for which an accepting run exists.

Yet dependent on the actual acceptance condition, emptiness of the accepted
language of an automaton can usually be checked easily and is one of the stan-
dard problems extensively studied for various automata types. In the following,
we silently assume that every automaton type comes with an emptiness proce-
dure.

Definition 5 (Satisfiability Check by Automata Abstraction). Given a
linear-time logic L with its formulae FL, the satisfiability check by automata
abstraction proceeds as follows.
1. Define an alphabet abstraction which yields for each formula φ ∈ FL with

its possibly infinite alphabet Σφ an abstract alphabet Σ̄φ, which is finite.
2. Define a word abstraction which yields an abstraction function βφ : Σω

φ →

Σ̄ω
φ for each φ ∈ FL .

3. Define an automaton construction (a computable function), which yields for
all φ ∈ FL an ω-automaton Aφ reading words over Σ̄φ, such that for all
σ̄ ∈ Σ̄ω

φ it holds σ̄ ∈ L(Aφ) iff ∃σ ∈ Σω : σ̄ = βφ(σ) and σ |= φ.

The satisfiability check by automata abstraction then proceeds as follows: For a
given formula φ ∈ FL of the logic L construct the automaton Aφ and check the
language of Aφ for emptiness. Clearly, φ is satisfiable iff L(Aφ) 6= ∅.

To distinguish Σφ and Σ̄φ and corresponding words literally, we call Σ̄φ an
abstract alphabet and elements of Σ̄∗

φ or Σ̄ω
φ abstract words or symbolic abstrac-

tions . To simplify notation, we often drop the subscript φ when φ is given by
the context. For example, we write A = (Σ, Q, Q0, δ,Acc) for the automaton ac-
cepting symbolic abstractions σ̄ ∈ Σ̄ω of words σ ∈ Σω (i.e. σ̄ = β(σ)) satisfying
a fixed formula φ.

For a wide range of linear-time logics, the satisfiability check by automata
abstraction is followed and corresponding automata constructions are provided
in the literature. For example, for LTL as described in the previous section,
the abstraction function β is simply the identity function and the automaton
construction was first described in [10]. In the setting of the real-time logic TLTL
[11], an event-clock automaton is constructed accepting precisely the models of
the formula at hand. In the setting of Demri’s PLTLmod [5], words over an
infinite alphabet (representing integer valuations) are abstracted to words of a
finite alphabet and a suitable construction of a Büchi automaton accepting these
symbolic evaluations is provided.

The goal is now to reuse such automata constructions for generating moni-
tors. Reconsidering the example for LTL given the previous section, one is drawn
to the following approach: Given an ω-automaton accepting symbolic abstrac-
tions of words satisfying the formula to check, reuse its transition function δ for
defining the function step. Moreover, check may be defined as checking empti-
ness of the accepted language of the automaton when starting the automaton

in the states reachable via step/δ. Recall that we assume the satisfiability check
by automata abstraction to come with an emptiness check for the automaton at
hand.

However, δ reads words π̄ over the symbolic alphabet while, in runtime ver-
ification, we want to derive the semantics for words π over Σ. Hence, we would
like to use the symbolic abstraction function β to abstract π to π̄. However,
β is defined for ω-words rather than for finite words. To deal with symbolic
abstractions of finite prefixes of infinite words, we introduce extrapolate(π) as

extrapolate(π) =
{

β(πσ)0...i | i + 1 = |π|, σ ∈ Σω
}

(1)

as the set of possible abstractions of π where β(πσ)0...i denotes the first i + 1
symbols of β(πσ). We require that there is an algorithm that yields for each φ
a computable function extrapolate : Σ∗ → 2Σ̄∗

.
By means of extrapolate, we transfer a (finite) word π to a set of symbolic

words extrapolate(π), which guide the automaton from its initial states Q0 to a
set of states

⋃

q′∈Q0
δ(q′, extrapolate(π)), for which we check the emptiness with

check(S) = ⊤, iff
⋃

q′∈S L(A(q′)) 6= ∅, and check(S) = ⊥ in all other cases, where
S is a subset of state set Q of the automaton for φ.

Now we are tempted to assume that function decide is obtained as decide(π) =

check
(

⋃

q′∈Q0,π̄∈extrapolate(π) δ(q′, π̄)
)

. However, in general this might not be cor-

rect. In the real-time setting, for example, a prefix of a timed trace typically
imposes a post-condition for the remainder of the string. Depending on the au-
tomaton construction employed, such post-conditions of prefixes are overlooked
when solely checking emptiness for states. This may then result in incorrect
results. See [4] for a detailed discussion of the real-time case.

If, however, the automaton abstraction satisfies a certain accuracy condition,
our intuition meets the facts:

Definition 6 (Accuracy of Abstract Automata). A satisfiability check by
automata abstraction for a given linear-time logic L is said to satisfy the accu-
racy of abstract automata property, if, for all π ∈ Σ∗,
– if π has a satisfying continuation σ, then there must exist an accepting ab-

stract continuation σ̄ for some π̄ ∈ extrapolate(π), i.e.: (∃σ : πσ |=L φ) ⇒
(∃π̄∃σ̄ : π̄σ̄ ∈ L(Aφ)) with π̄ ∈ extrapolate(π),

– and if an abstract prefix π̄ has an accepting abstract continuation σ̄ then there
must exist a satisfying concretization σ for some π with π̄ ∈ extrapolate(π),
i.e.: (∃σ̄ : π̄σ̄ ∈ L(Aφ)) ⇒ (∃π∃σ : πσ |=L φ) with π̄ ∈ extrapolate(π).

Note that the accuracy of abstract automata property implies that the au-
tomaton only accepts valid symbolic abstractions, i.e., A only accepts words σ̄
which are indeed images of some σ under β.

The discussion and notions introduced so far give now rise to the following
theorem:

Theorem 1 (Correctness of decide). Given a satisfiability check by automata
abstraction for a linear-time logic L satisfying the accuracy of automata prop-

erty, we have decide(π) = check
(

⋃

q′∈Q0,π̄∈extrapolate(π) δ(q′, π̄)
)

. Moreover, if

there is an algorithm yielding for each formula of L a computable function
extrapolate satisfying Equation 1, decide is computable.

However, as mentioned in the previous section, decide is mainly useful for ob-
taining non-incremental monitors, as π has to be stored for deriving abstractions
of its extensions. Nevertheless, if the abstraction β satisfies further properties,
we come up with an incremental monitor construction:

Definition 7 (Forgettable Past and Faithful Abstraction). Given β of a
satisfiability check by automata abstraction. We say that
– β satisfies the forgettable past property, iff β(πaσ)i+1...i+1 = β(aσ)0...0 for

all π ∈ Σ∗, |π| = i + 1, a ∈ Σ, and σ ∈ Σω.
– β is called faithful, iff for all π ∈ Σ∗, |π| = i + 1, a ∈ Σ, σ, σ′ ∈ Σω for

which there is some σ′′ ∈ Σω with β(πσ)0...iβ(aσ′)0...0 = β(σ′′)0...i+1 there
also exists a σ′′′ ∈ Σω with β(πσ)0...iβ(aσ′)0...0 = β(πaσ′′′)0...i+1

The intuition behind forgettable past is that a prefix of some infinite string
has no effect on the abstraction of the suffix (while the suffix might influence
the abstraction of the prefix). Moreover, for a faithful abstraction, we have the
following: whenever the prefix of length |π| of the abstraction of πσ, followed by
the first letter of the abstraction of aσ′ can be written as the abstraction of some
infinite word, then we obtain the same result for πa continued by a suitable suffix
σ′′′. Roughly speaking, this is a kind of a homomorphic property for prefixes of
representatives. We then get, setting Lβ = {β(σ) | σ ∈ Σω}:

Lemma 1 (Incremental Extrapolation). For π ∈ Σ∗, |π| = i+1, a ∈ Σ, we
have extrapolate(π)extrapolate(a) ∩ L0...i+1

β = extrapolate(πa) where β satisfies
the forgettable past and faithful abstraction properties.

Lemma 2 (Incremental Emptiness for Extrapolation). Let A be a Büchi
automaton obtained via a satisfiability check by automata abstraction satisfying
the accuracy of automaton abstraction property with a faithful abstraction func-
tion having the forgettable past property. Then, for all π ∈ Σ∗ and a ∈ Σ, it
holds L(A(extrapolate(πa))) = L(A(extrapolate(π)extrapolate(a)))

We are now ready to define the essential procedure for an incremental monitor
construction: Let step be defined by step(S, a) =

⋃

q′∈S,ā∈extrapolate(a) δ(q′, ā).

Theorem 2 (Correctness of step and check). Consider a satisfiability check
by automata abstraction that has the accuracy automaton abstraction property
and comes with a faithful abstraction function that moreover satisfies the for-
gettable past property. Then check(α(π)) = decide(π) for all π ∈ Σ∗. Moreover,
if there is an algorithm yielding for each formula of L a computable function
extrapolate satisfying Equation 1, α and check are computable.

In other words, under the mentioned criteria, we have identified an automaton
construction according to Definition 3, resulting in a monitor as depicted in
Figure 1. In the next section, we illustrate the general scheme developed in this
section for various linear-time logics.

4 Applications: Monitors for various Linear-time Logics

The anticipation semantics is suitable for various linear-time logics and a mon-
itor synthesis by the automaton construction with emptiness check is directly
obtained by establishing the functions step and check. Reusing the results of
satisfiability check by automata abstraction, these functions are obtained easily.
In the following, we present several linear-time logics as example applications
including LTL, PLTLmod, linear-time µ-calculus, RLTL and S1S.

Linear-time Temporal Logic (LTL) [2]: Because the alphabet of LTL is finite,
the abstraction functions for LTL formulae are trivial, i.e. βφ(σ) = σ and
extrapolate(π) = {π}. The resulting functions stepφ and checkφ are exactly the
ones that we get in Section 2. Furthermore, a monitor synthesis algorithm is also
obtained for the LTL enriched by past operators or forgettable past operators
[12] with a corresponding satisfiability check by automata abstraction.

PLTLmod [5]: PLTLmod is a decidable fragment of Presburger LTL, which
extends LTL with first-order integer arithmetic constraints. The alphabet of a
PLTLmod formula is infinite because it includes all valuations of variables over
Z. [5] proposed an approach of mapping all valuations to the finite symbolic valu-
ations which are equivalence classes. Let φ be a PLTLmod formula with alphabet
Σ. The symbolic alphabet Σ̄φ, the symbolic abstraction function βφ : Σω

φ → Σ̄ω
φ

and the automaton construction can be obtained, which are three essential el-
ements in satisfiability check by automata abstraction. A careful investigation
shows that the abstraction function is faithful and satisfies the forgettable past
property and that the automaton abstraction is accurate. Thus, functions stepφ

and checkφ and an anticipatory monitor can easily be constructed along the lines
of Theorem 2. Details can be found in an extended version of the paper.

Linear-time µ-calculus (νTL) [6, 13]: νTL extends standard modal logic with
maximal and minimal fixpoint quantifiers, and can express regular expressions.
In [7], a first automata-theoretic approach to νTL is presented. Given a νTL
formula φ, the Büchi automata of A that accepts precisely the pre-models of φ
and Ā that seeks an infinite regeneration sequence for least fixpoint formula in
closure of φ can be generated. The Büchi automaton Aφ that accepts precisely
the models of φ is the intersection of A and Ā. Thus, the abstraction functions
for νTL formulae are also trivial ones, and the functions stepφ and checkφ will
be established just like for LTL. A more direct automaton construction was
presented in [14], which makes use of parity automata. While emptiness of the
accepted language for a set of states is computed differently due to the parity
acceptance condition, it is easily verified that the requirements for applying
Theorem 2 are fulfilled.

RLTL and S1S: Simlar as νTL, also regular linear temporal logic RLTL is a
formalism that can express every ω-regular language [9]. For a RLTL formula
φ, an alternating Büchi automaton accepting precisely the ω-words satisfying φ
can be generated. This automaton can be translated into an equivalent Büchi
automaton. A monadic second order (MSO) logic interpreted over words, also
called S1S, consists of formulae having a single individual free variable, for

which a Büchi automaton can be generated [8]. Again, it is easily verified that
the requirements for applying Theorem 2 for RLTL and S1S are fulfilled.

5 Conclusion

In this paper, a uniform approach for synthesizing monitors checking correctness
properties specified in a linear-time logic is provided. After making the notion of
linear-time logics precise, a generic three-valued semantics has been introduced
reflecting the idea that prefixes of infinite computations are checked for correct-
ness. Then we established a conceptual framework to synthesize monitors from
a logical specification to check an execution incrementally. Moreover, the main
elements of the automata-theoretic approach for checking satisfiability of correct-
ness properties are identified as starting point in reusing them as components
for a general monitor generation procedure. We applied the presented framework
and sketched monitor synthesis algorithms for a variety of logics such as LTL,
the linear-time µ-calculus, PLTLmod, S1S, and RLTL.

Besides the plain practical benefits of the developed framework, the results
shed light on the similarities and differences of satisfiability checking, model
checking, and runtime verification.

References

1. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly—but how
ugly is ugly? In: Runtime Verification (RV). (2007) 126–138

2. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS). (1977) 46–57

3. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Foundations of Software Technology and Theoretical Com. Sci. (FSTTCS). (2006)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
Technical Report TUM-I0724, TU München (2007)

5. Demri, S.: LTL over integer periodicity constraints. Theoretical Computer Science
360(1-3) (2006) 96–123

6. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel
programs using fixpoints. In: ICALP. (1980) 169–181

7. Vardi, M.Y.: A temporal fixpoint calculus. In: POPL. (1988) 250–259
8. Büchi, J.: Weak second order logic and finite automata. Z. Math. Logik, Grundlag.

Math. 5 (1960) 66–62
9. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: International Collo-

quium on Theoretical Aspects of Computing (ICTAC). (2007) 291–305
10. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program

verification. In: Logic in Computer Science (LICS). (1986) 332–345
11. Raskin, J.F., Schobbens, P.Y.: State clock logic: A decidable real-time logic. In:

HART. (1997) 33–47
12. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past.

In: LICS. (2002)
13. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its

temporal logic. In: POPL. (1986) 173–183
14. Lange, M.: Weak automata for the linear time µ-calculus. In: VMCAI. (2005)

267–281

