
Enforcing Semantic Integrity on Untrusted Clients in

Networked Virtual Environments (Extended Abstract) ∗

Somesh Jha1 Stefan Katzenbeisser2 Christian Schallhart2 Helmut Veith2 Stephen Chenney3

1 University of Wisconsin 2 Technische Universität München 3 Emergent Game Technology

Abstract

In the computer gaming industry, large-scale simulations of

realistic physical environments over the Internet have at-

tained increasing importance. Networked virtual environ-

ments (NVES) are typically based on a client-server archi-

tecture where part of the simulation workload is delegated

to the clients. This architecture renders the simulation vul-

nerable to attacks against the semantic integrity of the sim-

ulation: malicious clients may attempt to compromise the

physical and logical rules governing the simulation, or to

alter the causality of events. This paper initiates the sys-

tematic study of semantic integrity in NVES from a security

point of view. We present a new provably secure semantic

integrity protocol which enables the server system to audit

the local computations of the clients on demand.

1. Introduction

Networked Virtual Environments (NVEs) are software

systems in which users feel immersed in an artificial world,

typically viewed through a 3D rendering. The most widely

deployed examples of NVEs are networked interactive

games, such as Unreal Tournament [9] as well as social

NVEs such as Second Life [12]. Some estimates [5] claim

the real-world value of online game assets exceeds $2 bil-

lion, while the daily real-world transactions between Sec-

ond Life users are reported at $500,000 [13].

Because of the high immersion in the game, NVE play-

ers are very sensitive to perceived cheating, and cheating in

online games is therefore one of the fastest ways to destroy

a community and commercial reputation. Cheating is an at-

tack on the semantic integrity of the online community: a

malicious user may attempt to compromise the logical rules

governing the simulation, or to alter the causality of events

a posteriori. In this paper, we initiate the systematic study

of security issues in NVEs and present security protocols

which prevent malicious participants from compromising

∗Supported in part by the European Commission through the IST Pro-

gramme under Contract IST-2002-507932 ECRYPT.

the semantic integrity of the NVE.

NVE System Architecture. We consider remote access

NVEs based on the client-server model [11, 18] where

the authoritative and central version of the NVE state is

maintained by the server system StateServer. The clients,

clii, 1 ≤ i ≤ n, connect to the server over the Internet,

and receive state updates to maintain their local models of

the environment. Seeing a graphical representation of the

model on clii, the user can initiate an action (e.g., pick

up an object, send a text message, etc.) which clii com-

municates to the server in the form of a state update re-

quest. StateServer checks whether the requested actions

are compliant with the rules of the NVE, and sends an au-

thoritative state update message to clii. This update mes-

sage contains the requested state update of clii as well as

all other changes to the central state that occurred since the

last update message was sent to clii. Finally, clii updates its

local state according to the answer received from the server

system. The procedure starting with the update request and

ending with the local state update is called the client cycle.

There is no practical measure to prevent that client soft-

ware is modified by malicious participants. Simple modi-

fications include exposing supposedly hidden state or mod-

ifying damage done by weapons. Consequently, any secu-

rity assessment of NVEs must assume that all clients are

untrusted. Thus, NVEs with remote access not only have to

cope with the deficits of the networking infrastructure (long

transmission times and frequent packet loss [17]), but also

with malicious clients attacking the NVE .

The Semantic Gap and Security. In NVES with thou-

sands of players, limited internet bandwidth and limited

server capabilities make it necessary to off-load computa-

tional work to the clients. Clearly, it is most beneficial to

transfer the most computationally demanding tasks, in par-

ticular rendering of 3D images and simulations of natural

phenomena. Consequently, the client computations must be

trusted to embody some of the rules of the simulated world.

For example, a physically-based simulation of a user’s ve-

hicle would be done on the client, and only this simulation

1

can tell us if the vehicle stays on the road as it rounds a

bend. The server has only an abstract representation of the

world: the user is in a vehicle at a certain location moving

at a certain speed. Only the client is computing the concrete

outcome of the simulation step. We refer to the difference

between server and client knowledge as the semantic gap.

The semantic gap is the primary means by which mali-

cious clients subvert semantic integrity. Exploiting the se-

mantic gap, they can submit spurious updates that are con-

sistent with the NVE on the abstract level, but violate the

NVE semantics at the concrete level. In our vehicle exam-

ple, the client may pretend that the vehicle rounds the bend,

even though the client simulation indicates that it crashes.

Closing all semantic gaps requires a very extreme form

of NVE, in which final rendered images are computed on

the server and securely sent to clients. This is totally

impractical – it takes all of the resources of a dedicated

graphics card to compute one image on a client, while a

server would have to compute thousands of these images,

not to mention the bandwidth. On the contrary, economic

concerns demand very aggressive movement of simulation

from the server to the client. Given that we cannot close the

semantic gap, our goal is to detect the presence of spurious

updates. This is challenging because the trustworthy server

does not have the clients’ complete local states, including

the rendered images, and has no hope of obtaining all such

states at every time step.

Technical Contribution. The main technical contribution

of this paper is a set of provably secure protocols that main-

tain the semantic integrity of the NVE, even in the pres-

ence of maliciously modified clients. Our approach is based

on an efficient audit procedure that is performed repeatedly

and randomly on the NVE clients. During the audit process,

it is verified whether the concrete state updates performed

by the client in a specific time frame are valid according to

the NVE semantics.

As our solution was designed from an engineering per-

spective, it has several favorable practical properties: The

protocol incurs very low additional network traffic, and uses

reliable and time critical network transmissions only for a

few small messages. Finally, the protocol can be integrated

with existing middleware approaches quite easily.

Related Work on Security. Audit trails were applied in

e-commerce (e.g. [14]). Bellare and Yee [3] identified for-

ward security as the key security property for audit trails,

i.e., even if an attacker completely compromises the audit-

ing system, the attacker should not be able to forge audit in-

formation referring to the past. The protocols described in

this paper follow the principles of audit trails, but account

for the specific particularities of NVE environments.

The approach taken is fundamentally optimistic: we al-

low cheating to happen, but aim at later detection. Under the

assumption that cheating does not occur too often, this ap-

proach incurrs only low detection overhead. The approach

is thus related to optimistic fault tolerance [20]. Replication

techniques for Byzantine fault tolerance [4, 16] also seem

applicable to our problem. However, since the client has

complete control of the replicas, these techniques cannot

address the semantic-integrity problem.

Few papers have studied security issues in online games,

see e.g. [2, 6, 8, 21, 22]. While Pritchard [15] deals with

semantic attacks, his approach requires each client to run

the entire simulation, which does not scale for MMOGS.

2. Threat Analysis

In this paper, we are concerned with semantic subver-

sion of NVES, and do not consider system security attacks

[1, 19] or meta-strategies such as collusive collaboration or

mobbing. A semantic attack is an attack targeted at circum-

venting or subverting the rules (i.e., the semantics) of the

NVE. We classify semantic attacks as follows:

1. Semantic Integrity Violation. The attacks violates

the physical and logical laws of the NVE. All attacks

in this class involve maliciously modified software:

(a) Rule Corruption: The malicious client attempts

to modify the simulation in a way that is illegal

but plausible to the server system. For example,

the client modifies their vehicle physics system

to allow higher speeds without negative road-

holding consequences. The server is not running

the complex vehicle simulation, so it does not

know precisely what the vehicle should be doing.

(b) Causality Alteration: The malicious client at-

tempts to withdraw previous state changes to ob-

tain unfair advantages, i.e., the client attempts to

“rewrite its history”. For example, position infor-

mation could be changed to avoid taking damage

from an explosion, after the explosion had hap-

pened and damage was determined by the client.

2. Client Amplification: The client runs modified soft-

ware to exploit the possibilities of the NVE in an un-

intended manner. We distinguish two categories:

(a) Sniffing: The malicious client exposes informa-

tion which has to be downloaded for technical

reasons but is not intended to be observable im-

mediately. For example, a client can be modified

to render opaque walls as transparent.

(b) Agents: The malicious client enhances the in-

tended capabilities of the human participant. For

example, an agent can employ search strategies

to guide the player, or log and replay successful

prior actions.

We consider Semantic Integrity Violation the most im-

portant NVE-specific class of attacks which needs to be

treated at the protocol level. The protocols presented in this

paper consider both rule corruption and causality alteration

attacks. To do so, the protocols enforce the following two

requirements on the client behavior:

• Rule Compliance. The client has to follow the seman-

tical rules of the NVE. This prevents rule corruption.

• Monotone History. The actions of the client must be

irrevocable and undeniable. This condition prevents

causality alteration.

3. Unsecured Client Cycle

In this section, we review the state update mechanism

that is commonly implemented in NVES that maintain a

central abstract state ASTATE. Depending on the spatial po-

sition of clii, only a portion ASTATE[clii] of the entire state

is relevant for the clii. The relevant portion of the abstracted

and centrally maintained state is transfered to the client. Lo-

cally, this abstract state is expanded to a concrete state at the

client.

Given an abstract state s, γ(s) denotes the set of possi-

ble concretizations. If S is a concrete state, then α(S) is the

corresponding unique abstract state. The pair α()/γ() can

be naturally viewed as a Galois connection between the set

of abstract and concrete states [7], i.e., S ∈ γ(α(S)) and

s = α(S) for any S ∈ γ(s). When connecting to the NVE,

clii receives a concrete state S ∈ γ(ASTATE[clii]) to ini-

tialize its local state STATE[clii]. Afterwards, clii maintains

STATE[clii] locally and only receives abstract updates.

If clii wishes to change its state, it informs the

StateServer in order to update ASTATE. For this purpose,

clii computes a compact state update description ∆ between

the current state STATE[clii]t and the intended next state; we

call ∆ a diff. S′ = S + ∆ denotes the application of a diff

∆ on state S, yielding state S′.

We apply α() and γ() not only to states, but also to diffs.

In particular, α(∆) denotes the abstraction of a diff ∆. For

S′ = S + ∆ holds, we also require α(S′) = α(S) + α(∆).

Not every concretization ∆ of an abstract diff δ is applica-

ble to a given concrete state S. Therefore, γ(S, δ) denotes

the set of concretizations of an abstract diff δ which can

be applied to S. More precisely, if S′ = S + ∆, then

∆ ∈ γ(S, α(∆)) and for all ∆′ ∈ γ(S, α(∆)), we get

α(S + ∆′) = α(S′).
One client cycle consists of the following steps: The clii

sends an abstraction δ = α(∆) of the concrete changes ∆ to

StateServer. This abstract diff δ contains the changes re-

quested by clii and is called request diff. Then StateServer

checks which changes in δ are valid according to the se-

mantics of the NVE and assembles a reply δ′ which autho-

rizes all valid request of clii and contains all updates per-

formed by other clients present in the NVE. Upon receipt

of δ′, clii computes a concretization ∆′ ∈ γ(STATE[clii], δ
′)

and updates its own state by computing STATE[clii]t+1 =
STATE[clii]t + ∆′. The response δ′ of the StateServer is

called authoritative diff.

If the clients behave according to the NVE specification,

this protocol suffices to consistently maintain the states of

the clients and the server. However, in case of malicious

clients, the protocol is susceptable to a semantic integrity

violation, as StateServer is only able to check whether the

abstract state updates δ = α(∆) are consistent with its ab-

stract state.

4. Secure Semantic Integrity Protocol (SSIP)

In this section, we show how to amend the basic client

cycle described above with cryptographic mechanisms to

prevent semantic integrity violation attacks. Our approach

uses an audit procedure, which is performed by a dedicated

and fully trusted AuditServer. During each client cycle, the

client reliably sends a piece of evidence (containing a hash

of the applied concrete state update) as action commitment

to AuditServer. From time to time, the cli commits to a

concrete state; these states will serve as possible starting

states for the audit process.

Note that our security model assumes that AuditServer

is fully trusted. In particular, the protocols do not provide

non-repudiation: a cheating audit server could frame inno-

cent clients by wrongly claiming that they behaved badly.

However, we do not consider this case, as we believe that it

is not a practical situation in commercial NVES.

When auditing is initiated, AuditServer asks a cli to pro-

vide a sequence of concrete state updates for a specific time

frame together with an initial concrete full state. Based on

this information, AuditServer simulates the requested seg-

ment of the cli computation and checks both its compliance

to the NVE rules and its consistency with the action com-

mitments sent previously.

Audit Cycles. The auditing process is subdivided into au-

dit cycles, where each audit cycle consists of exactly l client

cycles. At each l-th client cycle a new audit cycle is started.

In this paper, we assume for simplicity that l is a system-

wide announced and agreed on parameter.

At the beginning of each audit cycle, the client sends

a hash of the concrete full state as action commitment to

AuditServer. As this hash may be costly to compute be-

cause of the large state description, this message has to ar-

rive only within the current audit cycle (i.e., within the next

l client cycles). During each client cycle, the client sends

additionally an action commitment of the applied concrete

diff; as the diff is usually small, we require that this message

arrives at AuditServer during the same client cycle.

����
����
����
����
����

����
����
����
����
��������
����
����
����
����
����

����
����
����
����
����
��������
����
����
����
����
����

����
����
����
����
����
����

��
��
��

��
��
��

5l

6l

7l

8l

9l

(b)(a)

Diff

Audited history

Full state

(c)

Full state action
commitment available

Diff action commitment
available

Figure 1. Audited History – ”Sliding Window”

While StateServer only keeps the current abstracted

central state, the clients maintain their current concrete state

and retain a history of previous states in a local buffer, con-

taining up to 3 full states and 3l diffs. In particular, the cli

has to retain a copy of the complete state at the beginning of

each new audit cycle together with diffs between the states

of intermediate client cycles. All buffer content older than

three audit cycles on the client side can be safely deleted.

The buffer thus describes a “sliding window” which con-

tains the state history of the last 2l + 1 to 3l client cycles,

i.e., the last two full audit cycles and the current one. The

sliding window which is maintained at client cycle t0 ≥ 2l

contains the states Sta
, Sta+l

, St0 as well as all the interme-

diate diffs ∆′

ta+1, . . . , ∆
′

t0
where ta =

⌊

t0

l
− 2

⌋

l. Thus, ta
denotes the expiration time for client side audit information.

The client also stores all messages received from the server

within the time interval determined by the sliding window.

Figure 1 illustrates the gradual change of the buffer for one

client. The symbol • represents a fully saved state, whereas

N represents a concrete diff, both saved at the client. On the

other hand, ◦ and △ represent action commitments of full

states and diffs which are available at the AuditServer.

Audit Process. During the auditing, cli must prove that

its actions during the last two finished audit cycles and

the current audit cycle are compliant to the rules of the

NVE. For this purpose, cli sends the state information of

the current sliding window together with all corresponding

StateServer messages to AuditServer. Now, AuditServer

checks whether the received state information matches

the previously submitted action commitments, whether the

client computation is compliant to the rules of the NVE and

whether the client correctly committed itself to the start-

ing states of all audit cycles contained in the audited pe-

riod. The audit results in a positive verdict if and only if

all checks succeed. Note that the third condition is of cen-

tral importance, as this prohibits the client from cheating on

future audit starting states.

Crucial to the correctness of the audit process is the en-

forcement of the timing conditions for the action commit-

ments. The action commitment of a diff must arrive reliably

within the current client cycle, whereas action commitments

of full states must only arrive when the current audit cycle

is completed. In Figure 1 the action commitments (repre-

sented by △) for diffs are available at the AuditServer im-

mediately. In contrast, the action commitment ◦ for the full

state 7l becomes available when the system enters state 8l.

Note that the late availability of the full state action com-

mitment messages requires the audit process to audit at least

two full audit cycles, as otherwise the semantic integrity of

the future audit starting points cannot be checked.

Protocol Description. Secure integrity enforcement is

performed by three protocols Initialize, StatusUpdate and

Audit. The protocol Initialize is performed whenever a

client joins the NVE, whereas StatusUpdate is executed at

each client cycle. Finally, Audit implements the auditing

mechanism.

For the sake of simplicity, we present the protocol for

a single client cli that interacts with StateServer and

AuditServer. For multiple clients, the protocol is processed

asynchronously in parallel. Sending a message unreliably

will be denoted by . Sending a message reliably that must

arrive before the next t-th client cycle is initiated, will be

denoted by →֒t. Unreliable messages may be dropped or

delivered with delay. However, we assume that no packet

corruption occurs.

In the protocols we use a Message Authentication Code

(MAC) and a collision-free hash function as cryptographic

primitives. For computing MAC-tags, an appropriate key

k = GenMac(1n) is generated where n is the security

parameter. Then, a tag t for a message m is computed

with t = SignMac(k, m), whereas the verification al-

gorithm is written as VerifyMac(k, m, t) ∈ {true, false}.

We write M = AuthMsg(k, m, cli) as an abbreviation

for m ‖ SignMac(k, m ‖ cli), where ‖ denotes string con-

catenation. Furthermore, we will denote with M (1) and

M (2) the two parts of the message M , i.e., M (1) = m

and M (2) = SignMac(k, m ‖ cli). The hash function

CFHashh(m) is chosen from a collection of collision-free

hash functions. Let h = GenCFHash(1n) be its index,

where n is the security parameter. For the sake of simplicity

we will abbreviate STATE[cli]
t

with St. The protocols use

a single MAC key k which is mutually agreed between the

state server and the audit server and is used to authenticate

status updates sent from StateServer to cli.

1. cli initializes t := 0 and sends an initialization request

to StateServer.

2. StateServer AuditServer : k := GenMac(1n)

3. AuditServer cli : h := GenCFHash(1n)

4. StateServer chooses S ∈ γ(ASTATE[cli])

5. StateServer cli :
M0 := AuthMsg(k, S ‖n0, cli)

6. cli sets S0 := S

7. cli →֒l AuditServer : Q0 := CFHashh(S0)

Figure 2. Protocol Initialize

Protocol Initialize. This protocol initializes the state of a

cli joining the NVE (see Figure 2). Upon opening a connec-

tion to StateServer, an appropriate MAC-key k as well as

an index h for the collision-free hash function are generated

and distributed. Then, the client receives the relevant status

information together with a randomly generated nonce n0

and a MAC of the message. At this point the state server

transmits a concrete state S ∈ γ(ASTATE[cli]) to the client.

The client initializes its local state S0 with S. This is the

only point, besides the audit procedure, where a concrete

state is transmitted. Finally, the client sends as evidence a

hash of its state S0 reliably to the audit server; as the hash of

the concrete state may be costly to compute, this hash must

only arrive before the lth client cycle is initiated.

Protocol StatusUpdate. After initialization, the client

uses this protocol to update its local state in each client cy-

cle (see Figure 3). Suppose the client is in state St and

wants to change its state according to the diff ∆t+1. To

initiate the update protocol, the client reliably sends an ab-

stracted request diff δt+1 = α(∆t+1) to StateServer. The

server checks whether this request conforms to its the cur-

rent ASTATE and computes a new authoritative diff δ′t+1.

This diff δ′
t+1 contains the legitimate changes of δt+1 and

changes caused by other clients. StateServer updates its

centrally managed state ASTATE according to δ′t+1 and re-

turns Mt+1 := AuthMsg(k, δ′
t+1 ‖nt + 1, cli) (consisting

of the diff, an incremented nonce, and a MAC) to the client.

The client now computes a concrete update ∆′

t+1 ∈
γ(St, δ

′

t+1) and applies it to St to enter the next state

St+1 = St + ∆′

t+1. Finally the client sends a hash

Dt+1 := CFHashh(∆′

t+1) as action commitment reliably

to the AuditServer before the next client cycle is started.

At the beginning of each audit cycle, the client sends a hash

Qt := CFHashh(St) of its full state to AuditServer. This

message is sent reliably but must only arrive within the cur-

rent audit cycle, i.e., within the next l client cycles.

1. cli computes a desired status change ∆t+1 and its ab-

straction δt+1 = α(∆t+1)

2. cli StateServer : δt+1

3. Upon receiving δt+1, StateServer computes a new

δ′
t+1 and updates its ASTATE accordingly

4. StateServer cli :
Mt+1 := AuthMsg(k, δ′

t+1 ‖nt + 1, cli)

5. cli chooses and stores ∆′

t+1 ∈ γ(St, δ
′

t+1) and com-

putes St+1 = St + ∆′

t+1

6. cli →֒1 AuditServer : Dt+1 := CFHashh(∆′

t+1)

7. cli increments t

8. if t mod l = 0

(a) cli deletes all ∆′

t−i
with 2l ≤ i < 3l as well as

the full state St−3l (if t ≥ 3l).

(b) cli stores St and starts to compute

Qt := CFHashh(St).

(c) After computation of Qt, cli →֒l AuditServer :
Qt.

Figure 3. Protocol StatusUpdate

Protocol Audit. During the audit protocol, AuditServer

validates the computation of one cli (see Figure 4). In par-

ticular, AuditServer checks whether the client can present

concrete state updates that match the action commitments

received so far and are consistent with the NVE rules. The

auditing protocol starts with an audit message sent to the

cli during client cycle t0. The client first computes the

starting point ta of the audit. The client then (unreliably)

sends the concrete state Sta
as well as all diffs ∆′

i
and mes-

sages Mi for ta + 1 ≤ i ≤ t0 to the AuditServer. Then,

AuditServer checks, using the action commitment mes-

sages Di and Qi submitted by the client before, whether the

client adhered to the NVE semantics: AuditServer checks

whether all ∆′

i
are suitable concretizations of δ′

i
sent by the

state server in message Mi, whether all state server mes-

sages Mi (ta + 1 ≤ i ≤ t0) are unmodified and whether

all action commitment messages (Dt and Qt) submitted by

the client beforehand are valid. To perform the latter oper-

ation, the AuditServer checks the hashes in the messages

Di, ta + 1 ≤ i ≤ t0, and the hashes of the full states Sta

and Sta+l, contained in the messages Qta
and Qta+l (by

the timing conditions, these messages are already available

to AuditServer). If the first audit cycle is audited (ta = 0),

then cli is required to present M
(2)
0 = SignMac(k, S0‖cli)

to AuditServer additionally to prove that the initial state S0

has been authorized by the StateServer. If all checks pass,

the client is considered honest.

1. AuditServer cli : audit ‖ t0

2. cli computes ta =
⌊

t0

l
− 2

⌋

l

3. cli AuditServer :
Sta

‖∆′

ta+1 ‖ . . . ‖∆′

t0
‖Mta+1 ‖ . . . ‖Mt0

4. AuditServer computes Ŝi+1 = Ŝi + ∆′

i+1 for i =

ta, . . . , t0 − 1 where Ŝta
= Sta

5. For all i = ta+1, . . . , t0, AuditServer checks whether

∆′

i
is chosen from γ(Ŝi, δ

′

i
) compliant with the rules of

the NVE, where δ′
i

is taken from the message Mi

6. For all i = ta+1, . . . , t0, AuditServer checks whether

(a) VerifyMac(k, M
(1)
i

‖ cli, M
(2)
i

) = true and

(b) CFHashh(∆′

i
) = Di

7. AuditServer checks whether CFHashh(Sta
) = Qta

and CFHashh(Ŝta+l) = Qta+l.

If ta = 0, cli AuditServer : M
(2)
0 and

AuditServer checks VerifyMac(k, S0‖cli, M
(2)
0) =

true.

8. AuditServer accepts the computations of cli if and

only if all tests in steps 5 to 7 passed.

Figure 4. Protocol Audit

Security. It can be shown that the audit protocol enforces

honest client behavior if MAC tags are unforgeable and the

employed hash function is collision-resistant. In particular,

the protocol assures rule compliance and monotone history

of the clients (as introduced in Section 2) within audited

time periods. We omit a formal proof for space reasons and

refer the interested reader to [10].

5. Conclusion and Future Work

In this paper, we have argued that networked virtual en-

vironments are an emerging network technology which has

not been subject to rigorous security investigations. We

have identified semantic integrity as a one central security

problem in NVES. Untrusted and malicious clients may

utilize the fact that the central NVE server can—due to

the limited computing power and the disruptions in the net-

work connection—only maintain an abstracted version of

the NVE state. To overcome this problem, we have intro-

duced a new provably secure audit trail mechanism which

is able to verify the compliance of the client computation.

Although we allow autonomous clients, our protocols as-

sure that regularly cheating clients will be identified with

a high probability. The audit mechanism proposed in this

paper can be seamlessly integrated into current NVE archi-

tectures and incurs little engineering and resource overhead.

References

[1] R. Anderson. Security Engineering. Wiley, 2001.
[2] N. Baughman and B. Levine. Cheat-Proof Playout for Cen-

tralized and Distributed Online Games. In Proc. 20th IEEE

INFOCOM, pages 104–113, 2001.
[3] M. Bellare and B. Yee. Forward Integrity for Secure Audit

Logs. Technical report, UCSD, 1997.
[4] M. Castro and B. Liskov. Practical byzantine fault tolerance.

In Proceedings of the Third USENIX Symposium on Operat-

ing Systems Design and Implementation, 1999.
[5] E. Castronova. The Business and Culture of Online Games.

University of Chicago Press, 2005.
[6] B. Chen and M. Maheswaran. A fair synchronization proto-

col with cheat proofing for decentralized online multiplayer

games. In Proc. 3rd IEEE NCA, pages 372–375, 2004.
[7] P. Cousot and R. Cousot. Abstract Interpretation: a Unified

Lattice Model for Static Analysis of Programs by Construc-

tion or Approximation of Fixpoints. In Proc. 4th POPL,

pages 238–252, 1977.
[8] S. Davis. Why Cheating Matters. Cheating, Game Security

and the Future of On-line Gaming Business. In Game De-

velopers Conference, 2003.
[9] E. Games. Unreal Tournament. http://www.

unrealtournament.com, 1999.
[10] S. Jha, S. Katzenbeisser, C. Schallhart, H. Veith, and

S. Chenney. Enforcing semantic integrity on untrusted

clients in networked virtual environments. Cryptol-

ogy ePrint Archive, Report 2007/056, 2007. http://

eprint.iacr.org/2007/056.
[11] C. Joslin, T. D. Giacomo, and N. Magnenat-Thalmann. Col-

laborative Virtual Environments: Form Birth to Standardiza-

tion. IEEE Communications, pages 28–33, April 2004.
[12] L. Lab. Second Life. http://secondlife.com, 2003.
[13] A. Pasick. US Congress launches probe into virtual

economies. Reuters, October 15 2006.
[14] J. Peha. Electronic Commerce with Verifiable Audit Trails.

In Proceedings of INET’99, Internet Society, 1999.
[15] M. Pritchard. How to Hurt the Hackers: The Scoop on the

Internet Cheating and How You Can Combat It. Game De-

veloper Magazine, June 2000.
[16] M. Reiter. Secure Agreement Protocols: Reliable and

Atomic Group Multicast in Rampart. In Proceedings of the

ACM Conference on Computer and Communications Secu-

rity, 1994.
[17] S. Singhal. Effective Remote Modelling in Large-Scale Dis-

tributed Simulation and Visualization Environments. PhD

thesis, Stanford University, 1996.
[18] S. Singhal and M. Zyda. Networked Virtual Environments:

Design and Implementation. Addison-Wesley, 1999.
[19] W. Stallings. Cryptography and Network Security. Prentice

Hall, 2003.
[20] R. E. Strom and S. Yemini. Optimistic recovery in dis-

tributed systems. ACM Transactions on Computer Systems,

3(3):204–226, 1985.
[21] J. Yan. Security Issues in Online Games. The Electronic

Library: international journal for the application of tech-

nology in information environments, 20(2), 2002.
[22] J. Yan and H. Choi. Security Design in Online Games. In

Annual Computer Security Applications Conference, 2003.

