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Abstract. In many industries, the share of software components provided by
third-party suppliers is steadily increasing. As the suppliers seek toestweir
intellectual property (IP) rights, the customer usually has no direcsadoethe
suppliers’ source code, and is able to enforce the use of verificatiés doty

by legal requirements. In turn, the supplier has no means to convinauthe
tomer about successful verification without revealing the source. ddus pa-

per presents a hew approach to resolve the conflict between the IFsiatefe
the supplier and the quality interests of the customer. We introduce a protoco
in which a dedicated server (called the “amanat”) is controlled by both partie
the customer controls the verification task performed by the amanat, while th
supplier controls the communication channels of the amanat to ensurihé¢hat
amanat does not leak information about the source code. We arduledfpaoto-

col is both practically useful and mathematically sound. As the protocalsed

on well-known (and relatively lightweight) cryptographic primitives, it alkow

a straightforward implementation on top of existing verification tool chains. T
substantiate our security claims, we establish the correctness of thegbrayoc
cryptographic reduction proofs.

1 Introduction

In the classical verification scenario, the software auttrat the verification engineer
share a common interest to verify a piece of software; theaayrovides the source
code to be analyzed, whereon the verification engineer carnuaies the verification
verdict. Both parties are mutually trusted, i.e., the veaifion engineer trusts that he
has verified production code, and the author trusts thatetiBoation engineer will not
use the source code for unintended purposes.

Industrial production of software-intensive technologyever often employs sup-
ply chains which render this simple scenario obsolete. Gexproducts are being
increasingly assembled from multiple components whoseldpment is outsourced
to supplying companies. Typical examples of outsourcetiveo& components com-
prise embedded controller software in automobiles andwues electronics [1, 2] as
well as Windows device drivers [3]. Although the supplieraymvell use verification
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Fig. 1. A High-Level View of the Amanat Protocol

techniques for internal use, they are usually not willingdweal their source code,
as the intellectual property (IP) contained in the sourageds a major asset for their
company.

This setting constitutes a principal conflict betweengbpplierSup who owns the
source code, and thmistomerCus who purchases n 1 y the executable. While both
parties share a basic interest in producing high qualitgsog, it is in the customer’s
interest to have the source code inspected, and in the stppliterest to protect the
source code. More formally, this amounts to the followingibaequirements:

(a) Conformance.The customer must be able to validate that the purchasedtakde
was compiled from successfully verified source code.

(b) Secrecy.The supplier must be able to validate that no informatioruabiwe source
code other than the verification result is revealed to théooost.

The main technical contribution of this paper is a new crgpaphic verification proto-
col tailored for IP-aware verification. Our protocol is bdge standard cryptographic
primitives, and provably satisfies both the above requirdmwith little overhead in
the system configuration. Notably, the proposed schemeéegppdt only to automated
verification in a model checking style, but also encompaaseisie range of validation
techniques, both automated and semi-manual.

Our solution centers around the notion of amanat This terminology is derived
from the historic judicial notion of amanats, i.e., noblespners who were kept hostage
as part of a contract. Intuitively, our protocol appliesraitar principle: The amanat is
atrusted expert of the customer who settles down in the ptemuplant of the supplier
and executes whatever verification job the customer hassatt on him. The supplier
accepts this procedure because (i) all of the amanat’s cameations are subject to the
censorship of the supplier, and, (ii) the amanat will nee¢unn to the customer again.



It is evident that clauses (i) and (ii) above make it impdesibr a human inspector
to act as the amanat; instead, our protocol will utilize aickted serveAma for this
task. The protocol guarantees thaha is simultaneously controlled by both parties:
Cus controls the verification task performed Byna, while Sup controls the commu-
nication channels oAma. To convinceCus about conformance, the verification tool
executed o\ma produces a cryptographic certificate which proves that thelmased
executable is derived from the same source file as the veidiiceerdict.

To achieve this goal, we use public key cryptography; thererhases the secret
private key of the customer, and signs outgoing informatiudth this secret key such
thatno additional information can be hidden in the signaturhis enables the supplier
to inspect (and possibly block) all outgoing informationdasimultaneously enables
the customer to validate that the certificate indeed steora the amanat. Thus, the
amanat protocol achieves the two requirements above. &ijyresents a high-level
illustration of the protocol.

Verification by Model Checking and Beyond. Motivated by discussions with indus-
trial companies, our primary intention for the protocol iagacilitate software model
checking across IP boundaries in a B2B setting where thelisugmd the customer
are businesses. Our guiding examples for this B2B setting haen Windows device
drivers and automotive controller software, for which otwtpcols are practically fea-
sible with state-of-the-art technology.

Software model checking is now able to verify important gndies of simply struc-
tured code [4-6]. Most notably, SLAM/SDV is a fully auton@atool for a narrow ap-
plication area, and we expect to see more such tools. Nat&bBM has built-in speci-
fications because the device drivers access and implemésdrdyaefined API. Other
tools such as Terminator [7] and Slayer [8] do not requireijoations as they are built
to verify specific critical properties — termination and magsafety, respectively. Au-
tomotive software is similar to device drivers in that itakccesses standardized APIs.

For less standardized software and more specific propgttieay be necessary for
the customer and the supplier to negotiate about the fotionlaf the specification
without revealing the source code. In the course of this tiggeon, the supplier can
decide to reveal a blueprint of the software, and the amaratertify the accuracy of
the blueprint by a mutually agreed algorithm.

The example of blueprints shows that the amanat protocuaitisestrictedo model
checking, because the amanat can run any verificationatadid tool whose output
does not compromise the secrecy of the source code. For éxamfuture work and
applicationsAma can:

1. apply static analysis tools such as ASTREE [9] and TVLA[10

2. check the correctness of a manual proof providefidpy e.g., in PVS, ISABELLE,
Coq or another prover [11].

3. evaluate worst case execution times experimentallydi 8tatically [13].

4. generate white box test cases, and execute them.

5. validate that the source code comes with a set of test edseh satisfies previ-
ously agreed coverage criteria.

6. check that the source code is syntactically safe, e.ggusNT.



7. compute numerical quality and quantity measures whiehagreed betweebup
andCus, e.g. nesting depth, LOC, etc.
8. compare two versions of the source code, and quantifyitteeehce between them;
this is important in situations whefaip claims charges for a reimplementation.
9. check if third party IP is included in the source code, kEbgaries etc.
10. ensure that certain algorithms are (not) used.
11. check that the source is well documented.
12. ensure a certain senior programmer has put his name souihee code.
13. validate the development steps by analyzing the CVS & B&k.
14. ensure compatibility of the source code with languagedsrds.

We note that in all scenarios the code suptiears the burden of prooéither the
supplier has to write the source code in such a way that itds@ed byAma as is, or
the supplier has to provide auxiliary informatioa.d. proofs, command line options,
abstraction functions, test cases, etc.) which help thenatia the verification without
affecting correctness.

Security of the Amanat Protocol. In Section 4, we present a cryptographic proof for
the secrecyand conformanceof the amanat verification protocol. Stronger than term-
based proofs in the Dolev-Yao model, these proofs assuteaititker standard crypto-
graphic assumptions, randomized polynomial time attagksnat the protocol (which
may involve e.g. guessing the private keys) can succeedvattynegligible probabil-
ity [14]. The practical security of the protocol is also eresliby the simplicity of our
protocol: As the protocol is based on well-known cryptodpiagencryption and signing
schemes, it can be readily implemented.

The IP boundary between the supplier and the customer malkesvitable that the
amanat owns aecretunknown to the supplier, namely the private key of the custom
this secret enables the amanat to prove its identity to tlséomer and to compute
the certificate. Consequently, the cryptographic prootdne assume a system con-
figuration whereAma can neither be reverse-engineered, nor closely monitoredeb
supplier. Thus, from the point of view of the suppli&ma is a black box with input
and output channels. For secrecy, the supplier requiresi@hip ofAma to make sure
it will not return to the customer after verification. Theme &vo natural scenarios to
realize this hardware configuration:

A Ama is physically located at the site of a trusted third party. @&dmmunication
channels ofAma are hardwired to go through a second server, the commuumicati
filter of the supplier, cf. Figure 1.

While scenario A involves a trusted third party, its role mitied to providing physical
security for the servers. Thus, the third party does not aegdxpertise beyond server
hosting. For the supplier, scenario A has the disadvantaafetihe encrypted source
code has to be sent to the third party, and thus, to leave pisusite.

B Ama is physically located at the site of the supplier, but in alestdocation or
box whose integrity is assured through (i) regular checkshieycustomer, (ii) a
third party, (iii) a traditional alarm system, or (iv) theeusf sealed hardware. All



communication channels &ma are hardwired to the communication filter of the
supplier.

In scenarios B(ii) and Biii), the third party again playsexylimited role in that it only
ensures physical integrity of the amanat. We believe thatimB2B settings, scenario
B is realistic. We do not require custom-made hardware Ustig sealed location at the
supplier’s site, e.g. a locked room. Off-the-shelf hardwemsures that neither party can
evade the protocol by radio transmission etc. In the B2Brggtit is realistic that before
final deployment of a new controller software (but after tieeification), the integrity
of the seal is checked. Thus, there is no business incemtivtbé supplier to break the
seal.

The supplier has total control over the information leavttmgproduction site. Thus,
it can also prevent attempts by the amanat to leak informdtjosending messages at
specific time points. Because the supplier can read all ouggoessages, there is also
a convincing argument for the supplier's non-technical aggment that no sensitive
information is leaking. In our opinion, this simplicity dfi¢ amanat protocol is a major
advantage for practical application.

Organization of the Paper. In Section 2, we survey related work and discuss alterna-
tive approaches to the amanat protocol. The protocol isritbestin detail in Section 3,
and the correctness is addressed in Section 4. The paperdkided in Section 5.

2 Related Work and Alternative Solutions

The last years have seen renewed activity in the analysiseaiables from the verifi-
cation and programming languages community. Despite feabée advances (see e.g.
[15-18]), the computer-aided analysis of executables irsyahard problem; natural
applications are reverse engineering, automatic detectidow level errors such as
memory violations, as well as malicious code detection209, The technical difficul-
ties in the direct analysis of executables are often exatedbby code obfuscation to
prevent reverse engineering, or, in the case of malwaregretion of the malicious
code. Although dynamic analysis [21] and black box testR®)y R3] are relatively im-
mune to obfuscation, they only give a limited assurance stfiesy correctness.

The current paper is orthogonal to executable analysis. tvsider a scenario
where the software author is willing to assert the qualitytref source code by for-
mal methods, but not willing or able to make the source codéae to the customer.
It is evident that the visibility of the source code to the amaizand the cooperation of
the software author/supplier significantly increase tierage of formal methods.

Proof-Carrying Code [24] is able to generate certificatesatly from binaries, but
only for a restricted class of safety policies. It is eviddrdt a proof for a non-trivial
system property will for all practical purposes explain thiernal logic of the binary.
Thus, publishing this proof is tantamount to losing intefilel property.

The current paper takes an engineer’s view on computerigecihie results of the
paper are quite specific to verification, as it exploits theceptual difference between
the source code and the executable. While we are aware of aetvamethods such as



secure multiparty computation [25] and zero-knowledgeofe¢26], we believe that
they are not practicable for our problem. To implement secoultiparty computation,
it would be necessary to convert significant parts of the rhdgecking tool chain into
a Boolean circuit which is not a realistic option. To applye&nowledge proofs, one
would require the verification tools to produce highly staed and detailed formal
proofs. Except for the provers in item 2 of the list in Sectinit is impractical to

obtain such proofs by state of the art technology. More gelyemwe believe that any
advanced method for which secrecy is not intuitively cleathie supplier will be hard
to establish in practice. Thus, we are convinced that theejotaal simplicity of our

protocol is an asset for practical applicability.

3 The Amanat Protocol

The amanat protocol aims to resolve the conflict betweendde customef€us who
wants to verify the source code, and the code supBlierwho needs to protect its IP.
To this end, the amanaima computes a certificate which contains enough information
to assure the correctness of the program. On the other hasédctire the IP obup,

the certificate must not reveal any information beyond thentionally communicated
correctness properties.

3.1 Requirements and Tool Landscape

To make the protocol requirements more precise, we fix sortaion and assumptions
about the tool landscape. Note that all tools are availabédl involved parties.

The compiler Compiler takes an inputource and computes an executalbec =
Compiler(source). Note thatCompiler does not take any other input. In practice, this
means thatource can be thought of as a directory tree containing a make fild, an
Compiler stands for the tool chain composed of the make command, theit, the
linker etc.

The verification toolVerifier also takes the inpuource and computes two verifi-
cation verdictslogs,, andlogc,s. Here,logs,, is the “internal” verdict for the supplier
which may contain, for example, detailed IP-critical infa@tion such as counterexam-
ples or witnesses for certain properties. The second oldpyls in contrast contains
only uncritical verification verdicts about whidup andCus have agreed beforehand.
Similar as for the compiler, we assume thatifier does not take any other input pa-
rameters. In particular, this means that the specificatoapart okource, i.e., they are
agreed between the parties and output Inpe s together with the verification result.
Moreover, all auxiliary information necessary for a susfelsrun of Verifier— com-
mand line parameters, code annotations, abstractionifunsattc. — are provided by
Sup as part okource.

Before we formally describe the cryptographic primitives $igning and verifying
messages, we note that the underlying algorithms are netrdigtistic but randomized.
This randomization is a countermeasure to attacks agaaigt implementations of
RSA and other schemes which exploit algebraically relatedsages, see for exam-
ple [27]. In most applications, the randomization is not aripnt for the protocol, as



each patrticipant can locally generate random values. Ipmiocol however, we have
to make sure that the signatures generatedy do not contain hidden information
for Cus. The way forAma to leak information toCus would be to replace the ran-
dom bits by specifically chosen bits which describe (parttiof) source code, similar
to steganography [28]. The&us could try to reconstruct the bits from the received
message. To exclude this possibility, our protocol will@néAma to commit its ran-
dom bitsbeforeit sees the source code. Thus, in our description of the agypphic
primitives, we have to treat the random values explicitly.

We also note that in our discussions of randomized algosthwe usually describe
the behavior of the algorithm as it occurs in all but a negligfraction of the executions
of the algorithm [29].

— All parties employ the samesymmetric encryption and signing sche8@ which
is based upon RSA [31] and SHA [32]. Given a key pdif,;, ;) and a mes-
sagem, we writec = K,,;(m) for the encryption ofn with key K,,,; yielding
the cipher text. Similarly, m = K,,,;(c) denotes the decryption of the cipher text
c with key K,,; resulting again in the original message Furthermore, we write
s = csign(K,,;, m, R) for the signatures of a message: signed with keyk,,,
and generated with random seRdIf a signatures is valid and has been generated
with seedR, thencverify (K., m, s, R) will succeed and fail otherwise. In situa-
tions where the random seed is of no concern, we can alseveisty (K., m, s)
which succeeds i is a valid signature’ The algorithms for encryption, decryption,
signature generation and signature verification are assuonesquire polynomial
time with respect to the length of their inputs.

— Communication Channel$Ve assume that the channels betw&ap, Cus and
Ama are secure, i.e., the protocol is not concerned with eagppilrg on these
channels. Moreover, all ingoing and outgoing informationfma is controlled by
Sup, i.e.,Sup can manipulate all data exchanged betwaera andCus.

Having fixed the environment and the notation, we can paesggthe requirements
in a more precise manner:

1. Conformancenablesus to validate thatxec andlogc,s have been produced from
the same&ource.

2. SecrecypreventsCus from extracting, by any tractable process, any IBaf ex-
ceptexec andlogcs.

We note that some of the possible verification tasks discuss8ection 1 —in par-
ticular 7, 10, 11, 12 — are concerned with non-functionapprties of the source code
which do not affect the executable produced by the compilee. conformance prop-
erty proves to the customer that at the time of compilatiosg@rce with the required
properties did exist. Thus, in the case of a legal conflicguatocan require the supplier
to provide a source code which (i) compiles into the purcti@&secutable, and (i) pro-
duces the same verification outpogc,s. There is no mathematical guarantee however,
that the revealed code will hdenticalto the original code. This stronger property can
be achieved by requiringerifier to compute a hash @burce, and output it intdogcs.

% The existence of the 4-parameter variantadrify is specific to the chosen scheme [30].



3.2 Summary Description of the Protocol

Our protocol is based on the principle tiats trustsAma, and thusCus will believe
that a verification verdidbgc,s originating fromAma is conformant with a correspond-
ing binaryexec. Therefore Cus andSup install Ama atSup’s site such thabup can use
Ama to generate trusted verification verdicts subsequentlyh®wther handsup con-
trols all the communication to and frofma and consequentl§up is able to prohibit
the communication of any piece of information beyond théfieation verdict, i.e.Sup
can enforce theecrecyof its IP. To ensure th&up does not alter the verdict @&ma,
Ama signs the verdicts with a key which is only knownAma andCus but not toSup.
Also, to ensure that the tool®mpiler andVerifier given toAma are untamperedgup
must provide certificates which guarantee that these t@ols heen approved kyus.

A protocol based on this simple idea does indeed ensure tiferosance property,
but a naive implementation with common cryptographic pties may fail to guaran-
tee the secrecy property: As argued above, the certificaesrgted byAma involve
random seeds, arfslip cannot checkhat these random seeds do not carry hidden in-
formation. In our protocol, to prohibit such hidden transsin of informationAma is
not allowed to generate the required random seeds aftes id@essesburce. Instead,
Ama generates a large supply of random sdmefsreit has access teurce, and sends
them toSup. In this way,Ama commits to the random seeds, because 1&tgs,will
check thatAma actually uses the random values which it has sent befores, Alma is
not able to encode any information abeuiirce into these seeds.

The only remaining problem is th&up is not allowed to know the random seeds
in advancesince it could use this knowledge to compromise the cryaolgic security
of the certificates computed byma. Thus, Ama encrypts the random seeds before
transmitting them t&up. Each random seed is encrypted with a specific key, and each
time a random seed is used Aynha, the corresponding key is revealedSiap.

3.3 Detailed Protocol Description

Our protocol consists of three phases, namelyrihtallation,the session initialization,
and thecertification.

Installation Phase. Cus initializesAma with a master key paifK~.., Kg.,) which will
be used later to exchange a session key pair. TAen, is transported to and installed
at Sup’s site. All further communication betweefma and Cus will be controlled by
Sup.

I1 Master Key Generation [us]
Cus generates the master keyfs’., Kg.,) and initializesAma with (K7, Kg7, ).

12 Installation of the Amanat  [Sup, Cus ]
Ama is installed abup’s site andSup receivesk ), .

Session Initialization Phase.After installation,Sup andCus must agree on a specific
Verifier and Compiler. OnceVerifier and Compiler have been fixed, the session initial-
ization phase starts: Firdtus generates a new pair of session ké¥% s, Kp,p) and



sends them tédma via Sup. Then, the new session keys are used to produce certificates
certverifier @aNdcertcompiter fOr Verifier and Compiler, respectivelySup checks the con-
tents of the certificates and uses them, if they are indeed eettificates foVerifier

and Compiler, to setupAma with Verifier and Compiler. Ama in turn acceptd/erifier
andCompiler if their certificates are valid.

In the last step of the initializatiorAma generates a supply of random seeds
Ry, ..., R, for t subsequent executions of the certification phase. It alsergées a se-
quence of key pairéKR¢,., KRpp), - - -, (KRE,., KRb,p) for each random seeh;.
Ama finally encrypts each random seed to obtain and s€Rd , (R;) to Sup. Ama
andSup both keep a variableound which is initialized to 0 and will be incremented by
1 for each execution of the certification phase.

S1 Session Key Generation (us, Sup ]
Cus generates the session keyfSc,s, Kpyp) and sendsk’, (Kcus) and Kpyp to
Sup. Sup forwards K27, (Kcys) andKp,, unchanged téma.

S2 Generation of the Tool Certificates  Cus ]
Cus computes the certificates

— certyerifier = csign(Kcys, Verifier) and
— certcompiler = csign(Kcus, Compiler).
Cus sends both certificates Sup.
S3 Supplier Validation of the Tool Certificates  $up ]
Sup checks the contents of the certificates, Sep checks that
— cverify(Kpyp, Verifier, certyerifier) @nd
— cverify(Kpyb, Compiler, certcompiler) SUCCEE.
If one of the checks failSup aborts the protocol.
S4 Amanat Tool Transmission  Bup ]
Sup sends toAma both Verifier and Compiler as well as the certificate®rtyerifier
andcertCOmp”er.
S5 Amanat Validation of the Tool Certificates Ama]
Ama checks whetheWerifier and Compiler are properly certified, i.e., it checks
whether
— cverify(Kpyp, Verifier, certyerifier) @nd
— cverify(Kpyp, Compiler, certcompiler) SUCCEEM.
If this is not the case, theima refuses to process any further input.
S6 Amanat Random Seed Generation Ama ]
Ama generates
— a series of random seeds, ..., R; together with a series of corresponding
key pairs(KR¢,o, KRpyp)s - - -, (KRE ., KRb,),
— encrypts the random seeds with the corresponding k&5, (R;) for i =
1,...,t,and
— initializes round countefound = 0.
Ama then sends alkRb,, (R;) and KR, fori =1,...,t to Sup.



Certification Phase. Ama is now ready for the certification phase, i.e., it will accept
source and produce a certified verdict anurce which can be forwarded tGus and
whose trustworthy origin can be checkedys.

During certification,Ama runs Verifier and Compiler on source, generates a cer-
tificate cert for the outputlogc,s dedicated toCus. The certificate is based upon the
random seed,..,q Which Ama committed to use in this round of the certification pro-
tocol during the session initialization phagena sends the certificateert, the outputs
logsup andlogc,s, and the keyK RE“™ to Sup.

To validate secrecy, Sup computes the random seedR,ound =
KRE’Lj’S”d(KRpub(R,ound)) which Ama supposedly used for the generatiorceft. Then
Sup checks that the certificatert is indeed a valid certificate and is based upon the
random seed, ... If thisis the case, i.e., the certificate is valid and is gatesl based
on the predetermined random seed, tAem cannot hide any unintended information
in the certificates. If the checks failSup aborts the protocol. Depending on the output
of the Verifier, Sup decides whether to forward the resultsGoes or whether to abort
the certification phase. Finall¢us checks conformance of outplsigc,s Usingcert.

C1 Source Code Transmission Hup ]
Sup sendssource to Ama.
C2 Source Code Verification by the Amanat Ama ]
Ama computes
— the verdict(logsup, logcus) = Verifier(source) of Verifier onsource,
— the binaryexec = Compiler(source),
— increments the round counterund, and
— computesert = csign(Kcys, (exec, logcus) , Rround)-
Ama sendsexec, logsyp, logcus, cert, andKR'C"J‘S"d to Sup.
C3 Secrecy Validation Bup]
Upon receivingexec, logs,p, logcus, cert, and KRZ", Sup
— decrypts the random seétoung = KRZ (KRS (Rround)), and
— verifies thatcverify (Kpyp, (exec, logeys) , cert, Ryound) SUCCEEUS.
If the checks failsSup concludes that the secrecy requirement was violate@nd
refuses to further work witlhma.
Otherwise Sup evaluatedogc,s andlogs,, and decides whether to deliver the bi-
naryexec, logc,s, andcert to Cus in stepC4 or whether to abort the protocol.
C4 Conformance Validation [Cus]
Upon receiving exec, logcys, and cert, Cus verifies that
cverify(Kpyp, (exec, logcys) , cert) succeeds.
If the checks failsCus concludes that the conformance requirement was vio-
lated, and refuses to further work witup.
OtherwiseCus evaluates the contentslogc,s and decides whether the verification
verdict supports the purchase of the produet.

4 Protocol Correctness

In this section, we prove conformance and secrecy of ouopobusing standard cryp-
tographic assumptions. Following [14], we assume that thi@-key encryption ise-
mantically secur@nd that the used signature schemgeisure against adaptive chosen



message attacksuch as the RSA-based scheme proposed in [30]. We briefbdinte
these security properties:

Semantic securityneans that whatever can be learnt from the ciphertext within
probabilistic polynomial time, can be computed, again imifprobabilistic polynomial
time, from the length of the plaintext alone. Formally, setiasecurity means that each
probabilistic polynomial time algorithm which takes aswangents a security parameter,
a public key, a number of messages encrypted with this keyrebpective messages
lengths, and any further partial information on the messagpn be replaced by another
probabilistic polynomial time algorithm which only recethe security parameter, the
message lengths, and the partial information on the mesqadé In other words,
no probabilistic polynomial time algorithm can extract @nformation from a set of
encrypted messages.

An adaptive chosen message attéglan attack against a signature scheme, where
the attacker has access to an oracle which can sign arbitrasgages, and uses this
ability to sign some new messagithout consulting the oracléore formally, asign-
ing oracle S[Kc.s) with private keyKc,s is a function which takes a messageand
returns a signature= csign(Kc,s, m, R) for a uniformly and randomly chosen random
seedR. An attack is a forging algorithn#' which (i) knows the public key<p,, and
(i) has access to the signing oradléXc,s], whereKc,s is the private key correspond-
ing to Kpyb. The algorithm£ is allowed to queryS|[Kc,s| for an arbitrary number of
signaturesF' can adaptively choose the messages to be signed, i.e., eabhahosen
message can depend on the outcome of the previous queriése and of the com-
putation, a successful attaédk must output a message and a signature such that
cverify(Kpyp, m, s) succeeds, although has never been sent 8§ K¢,s|. A signature
scheme is secure against adaptive chosen message attdlokse iis no probabilistic
polynomial time algorithn¥” which has a non-negligible success probability.

We can now precisely state the main theorems.

Theorem 1 (Conformance).If the protocol terminates (in Step4 of the certification
phase) with the customélius accepting the binargxec and the output fildogc,s, then
exec andlogc,s must be produced from the saswirce in all but a negligible fraction
of the protocol executions (under standard cryptograplssuanptions).

Proof SketchTowards a contradiction, we assume that with non-negkgiobbability,
Sup can forge a certificate which is accepted@ys in stepC4. Thus,Sup computes

a certificatecert for a pair (exec, logc,s) Which has not been signed #yma but is
accepted by us. Using semantic security, we show that such a maliciouam&MSup

of Sup gives rise to a forging algorithnd" which implements a successful adaptive
chosen message attack. This implies that the underlyimggige scheme is not secure
against adaptive chosen message attacks—which is a cativadi a0

We present a more extensive proof of Theorem 1 in [33]. We now to secrecy,
which, not surprisingly, is quite straight forward to prove

Theorem 2 (Secrecy)By the execution of the protocdlus cannot extract any piece
of information on the sourcsurce which is not contained iaxec andlogcs.



Proof. During the execution of the protocdlus receives the binargxec, the output
file logcus, and the certificateert. The certificateert = csign(Kcys, (exec, logcys), Ri)
can be generated fromxec, logc,s, the key Kc,s, and the underlying random seed
R;. Cus generatesic,s itself and obtains access égec and tologc,s. Thus the only
additional information communicated froAma to Sup is the underlying random seed
R;. But this random see®; has been fixed byAma before having access tource,
and consequenthima cannot encode any information on the soweerce which is
not contained irexec andlogc,s into the certificate. a

5 Conclusion

We have introduced the amanat protocol which facilitatésvsoe verification without
violating IP rights on the source code. The intended scerfariour protocol is a B2B
setting with a small numbers of customers, e.g. controbéimare and device drivers.
We also envision wider applications of our protocol in a B2€iting, i.e., for

commercial-off-the-shelf software. In this case, the cor party of the amanat proto-
col will not be enacted by an end customer, but by a certiicadigency which provides
commercial verification services. A detailed exploratidéthis scenario will be part of
future work.

AcknowledgmentsWe are thankful to Josh Berdine and Byron Cook for discussion
on the device driver scenario and to Andreas Holzer and istéfgele for comments
on early draft of the paper.
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