
Verification Across Intellectual Property Boundaries ⋆

Sagar Chaki1, Christian Schallhart2, and Helmut Veith2

1 Software Engineering Institute, Carnegie Mellon University, USA
chaki@sei.cmu.edu

2 Institut für Informatik, Technische Universität München, Germany
schallha@in.tum.de, veith@in.tum.de

Abstract. In many industries, the share of software components provided by
third-party suppliers is steadily increasing. As the suppliers seek to secure their
intellectual property (IP) rights, the customer usually has no direct access to the
suppliers’ source code, and is able to enforce the use of verification tools only
by legal requirements. In turn, the supplier has no means to convince thecus-
tomer about successful verification without revealing the source code. This pa-
per presents a new approach to resolve the conflict between the IP interests of
the supplier and the quality interests of the customer. We introduce a protocol
in which a dedicated server (called the “amanat”) is controlled by both parties:
the customer controls the verification task performed by the amanat, while the
supplier controls the communication channels of the amanat to ensure thatthe
amanat does not leak information about the source code. We argue that the proto-
col is both practically useful and mathematically sound. As the protocol is based
on well-known (and relatively lightweight) cryptographic primitives, it allows
a straightforward implementation on top of existing verification tool chains. To
substantiate our security claims, we establish the correctness of the protocol by
cryptographic reduction proofs.

1 Introduction

In the classical verification scenario, the software authorand the verification engineer
share a common interest to verify a piece of software; the author provides the source
code to be analyzed, whereon the verification engineer communicates the verification
verdict. Both parties are mutually trusted, i.e., the verification engineer trusts that he
has verified production code, and the author trusts that the verification engineer will not
use the source code for unintended purposes.

Industrial production of software-intensive technology however often employs sup-
ply chains which render this simple scenario obsolete. Complex products are being
increasingly assembled from multiple components whose development is outsourced
to supplying companies. Typical examples of outsourced software components com-
prise embedded controller software in automobiles and consumer electronics [1, 2] as
well as Windows device drivers [3]. Although the suppliers may well use verification

⋆ Supported by the European FP6 project ECRYPT, the DFG grant FORTAS, and the Predictable
Assembly from Certifiable Components (PACC) initiative at the Software Engineering Insti-
tute, Pittsburgh, USA.



Fig. 1.A High-Level View of the Amanat Protocol

techniques for internal use, they are usually not willing toreveal their source code,
as the intellectual property (IP) contained in the source code is a major asset for their
company.

This setting constitutes a principal conflict between thesupplierSup who owns the
source code, and thecustomerCus who purchaseso n l y the executable. While both
parties share a basic interest in producing high quality software, it is in the customer’s
interest to have the source code inspected, and in the supplier’s interest to protect the
source code. More formally, this amounts to the following basic requirements:

(a) Conformance.The customer must be able to validate that the purchased executable
was compiled from successfully verified source code.

(b) Secrecy.The supplier must be able to validate that no information about the source
code other than the verification result is revealed to the customer.

The main technical contribution of this paper is a new cryptographic verification proto-
col tailored for IP-aware verification. Our protocol is based on standard cryptographic
primitives, and provably satisfies both the above requirements with little overhead in
the system configuration. Notably, the proposed scheme applies not only to automated
verification in a model checking style, but also encompassesa wide range of validation
techniques, both automated and semi-manual.

Our solution centers around the notion of anamanat. This terminology is derived
from the historic judicial notion of amanats, i.e., noble prisoners who were kept hostage
as part of a contract. Intuitively, our protocol applies a similar principle: The amanat is
a trusted expert of the customer who settles down in the production plant of the supplier
and executes whatever verification job the customer has entrusted on him. The supplier
accepts this procedure because (i) all of the amanat’s communications are subject to the
censorship of the supplier, and, (ii) the amanat will never return to the customer again.



It is evident that clauses (i) and (ii) above make it impossible for a human inspector
to act as the amanat; instead, our protocol will utilize a dedicated serverAma for this
task. The protocol guarantees thatAma is simultaneously controlled by both parties:
Cus controls the verification task performed byAma, while Sup controls the commu-
nication channels ofAma. To convinceCus about conformance, the verification tool
executed onAma produces a cryptographic certificate which proves that the purchased
executable is derived from the same source file as the verification verdict.

To achieve this goal, we use public key cryptography; the amanat uses the secret
private key of the customer, and signs outgoing informationwith this secret key such
thatno additional information can be hidden in the signature.This enables the supplier
to inspect (and possibly block) all outgoing information, and simultaneously enables
the customer to validate that the certificate indeed stems from the amanat. Thus, the
amanat protocol achieves the two requirements above. Figure 1 presents a high-level
illustration of the protocol.

Verification by Model Checking and Beyond. Motivated by discussions with indus-
trial companies, our primary intention for the protocol wasto facilitate software model
checking across IP boundaries in a B2B setting where the supplier and the customer
are businesses. Our guiding examples for this B2B setting have been Windows device
drivers and automotive controller software, for which our protocols are practically fea-
sible with state-of-the-art technology.

Software model checking is now able to verify important properties of simply struc-
tured code [4–6]. Most notably, SLAM/SDV is a fully automatic tool for a narrow ap-
plication area, and we expect to see more such tools. Note that SDV has built-in speci-
fications because the device drivers access and implement a clearly defined API. Other
tools such as Terminator [7] and Slayer [8] do not require specifications as they are built
to verify specific critical properties – termination and memory-safety, respectively. Au-
tomotive software is similar to device drivers in that it also accesses standardized APIs.

For less standardized software and more specific properties, it may be necessary for
the customer and the supplier to negotiate about the formulation of the specification
without revealing the source code. In the course of this negotiation, the supplier can
decide to reveal a blueprint of the software, and the amanat can certify the accuracy of
the blueprint by a mutually agreed algorithm.

The example of blueprints shows that the amanat protocol isnot restrictedto model
checking, because the amanat can run any verification/validation tool whose output
does not compromise the secrecy of the source code. For example, in future work and
applications,Ama can:

1. apply static analysis tools such as ASTREE [9] and TVLA [10].
2. check the correctness of a manual proof provided bySup, e.g., in PVS, ISABELLE,

Coq or another prover [11].
3. evaluate worst case execution times experimentally [12]or statically [13].
4. generate white box test cases, and execute them.
5. validate that the source code comes with a set of test caseswhich satisfies previ-

ously agreed coverage criteria.
6. check that the source code is syntactically safe, e.g. using LINT.



7. compute numerical quality and quantity measures which are agreed betweenSup

andCus, e.g. nesting depth, LOC, etc.
8. compare two versions of the source code, and quantify the difference between them;

this is important in situations whereSup claims charges for a reimplementation.
9. check if third party IP is included in the source code, e.g.libraries etc.

10. ensure that certain algorithms are (not) used.
11. check that the source is well documented.
12. ensure a certain senior programmer has put his name on thesource code.
13. validate the development steps by analyzing the CVS or SVN tree.
14. ensure compatibility of the source code with language standards.

We note that in all scenarios the code supplierbears the burden of proof: either the
supplier has to write the source code in such a way that it is accepted byAma as is, or
the supplier has to provide auxiliary information (e.g.proofs, command line options,
abstraction functions, test cases, etc.) which help the amanat in the verification without
affecting correctness.

Security of the Amanat Protocol. In Section 4, we present a cryptographic proof for
the secrecyandconformanceof the amanat verification protocol. Stronger than term-
based proofs in the Dolev-Yao model, these proofs assure that under standard crypto-
graphic assumptions, randomized polynomial time attacks against the protocol (which
may involve e.g. guessing the private keys) can succeed onlywith negligible probabil-
ity [14]. The practical security of the protocol is also ensured by the simplicity of our
protocol: As the protocol is based on well-known cryptographic encryption and signing
schemes, it can be readily implemented.

The IP boundary between the supplier and the customer makes is inevitable that the
amanat owns asecretunknown to the supplier, namely the private key of the customer;
this secret enables the amanat to prove its identity to the customer and to compute
the certificate. Consequently, the cryptographic proofs need to assume a system con-
figuration whereAma can neither be reverse-engineered, nor closely monitored by the
supplier. Thus, from the point of view of the supplier,Ama is a black box with input
and output channels. For secrecy, the supplier requires ownership ofAma to make sure
it will not return to the customer after verification. There are two natural scenarios to
realize this hardware configuration:

A Ama is physically located at the site of a trusted third party. All communication
channels ofAma are hardwired to go through a second server, the communication
filter of the supplier, cf. Figure 1.

While scenario A involves a trusted third party, its role is limited to providing physical
security for the servers. Thus, the third party does not needany expertise beyond server
hosting. For the supplier, scenario A has the disadvantage that the encrypted source
code has to be sent to the third party, and thus, to leave the supplier site.

B Ama is physically located at the site of the supplier, but in a sealed location or
box whose integrity is assured through (i) regular checks bythe customer, (ii) a
third party, (iii) a traditional alarm system, or (iv) the use of sealed hardware. All



communication channels ofAma are hardwired to the communication filter of the
supplier.

In scenarios B(ii) and B(iii), the third party again plays a very limited role in that it only
ensures physical integrity of the amanat. We believe that inour B2B settings, scenario
B is realistic. We do not require custom-made hardware, but just a sealed location at the
supplier’s site, e.g. a locked room. Off-the-shelf hardware ensures that neither party can
evade the protocol by radio transmission etc. In the B2B setting, it is realistic that before
final deployment of a new controller software (but after the verification), the integrity
of the seal is checked. Thus, there is no business incentive for the supplier to break the
seal.

The supplier has total control over the information leavingthe production site. Thus,
it can also prevent attempts by the amanat to leak information by sending messages at
specific time points. Because the supplier can read all outgoing messages, there is also
a convincing argument for the supplier’s non-technical management that no sensitive
information is leaking. In our opinion, this simplicity of the amanat protocol is a major
advantage for practical application.

Organization of the Paper. In Section 2, we survey related work and discuss alterna-
tive approaches to the amanat protocol. The protocol is described in detail in Section 3,
and the correctness is addressed in Section 4. The paper is concluded in Section 5.

2 Related Work and Alternative Solutions

The last years have seen renewed activity in the analysis of executables from the verifi-
cation and programming languages community. Despite remarkable advances (see e.g.
[15–18]), the computer-aided analysis of executables remains a hard problem; natural
applications are reverse engineering, automatic detection of low level errors such as
memory violations, as well as malicious code detection [19,20]. The technical difficul-
ties in the direct analysis of executables are often exacerbated by code obfuscation to
prevent reverse engineering, or, in the case of malware, recognition of the malicious
code. Although dynamic analysis [21] and black box testing [22, 23] are relatively im-
mune to obfuscation, they only give a limited assurance of system correctness.

The current paper is orthogonal to executable analysis. We consider a scenario
where the software author is willing to assert the quality ofthe source code by for-
mal methods, but not willing or able to make the source code available to the customer.
It is evident that the visibility of the source code to the amanat and the cooperation of
the software author/supplier significantly increase the leverage of formal methods.

Proof-Carrying Code [24] is able to generate certificates directly from binaries, but
only for a restricted class of safety policies. It is evidentthat a proof for a non-trivial
system property will for all practical purposes explain theinternal logic of the binary.
Thus, publishing this proof is tantamount to losing intellectual property.

The current paper takes an engineer’s view on computer security. The results of the
paper are quite specific to verification, as it exploits the conceptual difference between
the source code and the executable. While we are aware of advanced methods such as



secure multiparty computation [25] and zero-knowledge proofs [26], we believe that
they are not practicable for our problem. To implement secure multiparty computation,
it would be necessary to convert significant parts of the model checking tool chain into
a Boolean circuit which is not a realistic option. To apply zero-knowledge proofs, one
would require the verification tools to produce highly structured and detailed formal
proofs. Except for the provers in item 2 of the list in Section1, it is impractical to
obtain such proofs by state of the art technology. More generally, we believe that any
advanced method for which secrecy is not intuitively clear to the supplier will be hard
to establish in practice. Thus, we are convinced that the conceptual simplicity of our
protocol is an asset for practical applicability.

3 The Amanat Protocol

The amanat protocol aims to resolve the conflict between the code customerCus who
wants to verify the source code, and the code supplierSup who needs to protect its IP.
To this end, the amanatAma computes a certificate which contains enough information
to assure the correctness of the program. On the other hand, to secure the IP ofSup,
the certificate must not reveal any information beyond the intentionally communicated
correctness properties.

3.1 Requirements and Tool Landscape

To make the protocol requirements more precise, we fix some notation and assumptions
about the tool landscape. Note that all tools are available to all involved parties.

ThecompilerCompiler takes an inputsource and computes an executableexec =
Compiler(source). Note thatCompiler does not take any other input. In practice, this
means thatsource can be thought of as a directory tree containing a make file, and
Compiler stands for the tool chain composed of the make command, the compiler, the
linker etc.

The verification toolVerifier also takes the inputsource and computes two verifi-
cation verdicts,logSup andlogCus. Here,logSup is the “internal” verdict for the supplier
which may contain, for example, detailed IP-critical information such as counterexam-
ples or witnesses for certain properties. The second outputlogCus in contrast contains
only uncritical verification verdicts about whichSup andCus have agreed beforehand.
Similar as for the compiler, we assume thatVerifier does not take any other input pa-
rameters. In particular, this means that the specificationsare part ofsource, i.e., they are
agreed between the parties and output intologCus together with the verification result.
Moreover, all auxiliary information necessary for a successful run of Verifier– com-
mand line parameters, code annotations, abstraction functions etc. – are provided by
Sup as part ofsource.

Before we formally describe the cryptographic primitives for signing and verifying
messages, we note that the underlying algorithms are not deterministic but randomized.
This randomization is a countermeasure to attacks against naive implementations of
RSA and other schemes which exploit algebraically related messages, see for exam-
ple [27]. In most applications, the randomization is not important for the protocol, as



each participant can locally generate random values. In ourprotocol however, we have
to make sure that the signatures generated byAma do not contain hidden information
for Cus. The way forAma to leak information toCus would be to replace the ran-
dom bits by specifically chosen bits which describe (part of)the source code, similar
to steganography [28]. Then,Cus could try to reconstruct the bits from the received
message. To exclude this possibility, our protocol will enforceAma to commit its ran-
dom bitsbeforeit sees the source code. Thus, in our description of the cryptographic
primitives, we have to treat the random values explicitly.

We also note that in our discussions of randomized algorithms, we usually describe
the behavior of the algorithm as it occurs in all but a negligible fraction of the executions
of the algorithm [29].

– All parties employ the sameasymmetric encryption and signing scheme[30] which
is based upon RSA [31] and SHA [32]. Given a key pair〈Kpri,Kpub〉 and a mes-
sagem, we writec = Kpub(m) for the encryption ofm with key Kpub yielding
the cipher textc. Similarly, m = Kpri(c) denotes the decryption of the cipher text
c with key Kpri resulting again in the original messagem. Furthermore, we write
s = csign(Kpri,m,R) for the signatures of a messagem signed with keyKpri

and generated with random seedR. If a signatures is valid and has been generated
with seedR, thencverify(Kpub,m, s,R) will succeed and fail otherwise. In situa-
tions where the random seed is of no concern, we can also usecverify(Kpub,m, s)
which succeeds ifs is a valid signature.3 The algorithms for encryption, decryption,
signature generation and signature verification are assumed to require polynomial
time with respect to the length of their inputs.

– Communication Channels.We assume that the channels betweenSup, Cus and
Ama are secure, i.e., the protocol is not concerned with eavesdropping on these
channels. Moreover, all ingoing and outgoing information for Ama is controlled by
Sup, i.e.,Sup can manipulate all data exchanged betweenAma andCus.

Having fixed the environment and the notation, we can paraphrase the requirements
in a more precise manner:

1. ConformanceenablesCus to validate thatexec andlogCus have been produced from
the samesource.

2. SecrecypreventsCus from extracting, by any tractable process, any IP ofSup ex-
ceptexec andlogCus.

We note that some of the possible verification tasks discussed in Section 1 – in par-
ticular 7, 10, 11, 12 – are concerned with non-functional properties of the source code
which do not affect the executable produced by the compiler.The conformance prop-
erty proves to the customer that at the time of compilation, asource with the required
properties did exist. Thus, in the case of a legal conflict, a court can require the supplier
to provide a source code which (i) compiles into the purchased executable, and (ii) pro-
duces the same verification outputlogCus. There is no mathematical guarantee however,
that the revealed code will beidentical to the original code. This stronger property can
be achieved by requiringVerifier to compute a hash ofsource, and output it intologCus.

3 The existence of the 4-parameter variant ofcverify is specific to the chosen scheme [30].



3.2 Summary Description of the Protocol

Our protocol is based on the principle thatCus trustsAma, and thus,Cus will believe
that a verification verdictlogCus originating fromAma is conformant with a correspond-
ing binaryexec. Therefore,Cus andSup installAma atSup’s site such thatSup can use
Ama to generate trusted verification verdicts subsequently. Onthe other hand,Sup con-
trols all the communication to and fromAma and consequentlySup is able to prohibit
the communication of any piece of information beyond the verification verdict, i.e.,Sup

can enforce thesecrecyof its IP. To ensure thatSup does not alter the verdict ofAma,
Ama signs the verdicts with a key which is only known toAma andCus but not toSup.
Also, to ensure that the toolsCompiler andVerifier given toAma are untampered,Sup

must provide certificates which guarantee that these tools have been approved byCus.
A protocol based on this simple idea does indeed ensure the conformance property,

but a naive implementation with common cryptographic primitives may fail to guaran-
tee the secrecy property: As argued above, the certificates generated byAma involve
random seeds, andSup cannot checkthat these random seeds do not carry hidden in-
formation. In our protocol, to prohibit such hidden transmission of information,Ama is
not allowed to generate the required random seeds after it has accessedsource. Instead,
Ama generates a large supply of random seedsbeforeit has access tosource, and sends
them toSup. In this way,Ama commits to the random seeds, because later,Sup will
check thatAma actually uses the random values which it has sent before. Thus,Ama is
not able to encode any information aboutsource into these seeds.

The only remaining problem is thatSup is not allowed to know the random seeds
in advance,since it could use this knowledge to compromise the cryptographic security
of the certificates computed byAma. Thus,Ama encrypts the random seeds before
transmitting them toSup. Each random seed is encrypted with a specific key, and each
time a random seed is used byAma, the corresponding key is revealed toSup.

3.3 Detailed Protocol Description

Our protocol consists of three phases, namely theinstallation,thesession initialization,
and thecertification.

Installation Phase. Cus initializesAma with a master key pair〈Km
Cus,K

m
Pub〉 which will

be used later to exchange a session key pair. Then,Ama is transported to and installed
at Sup’s site. All further communication betweenAma andCus will be controlled by
Sup.

I1 Master Key Generation [Cus ]
Cus generates the master keys〈Km

Cus,K
m
Pub〉 and initializesAma with 〈Km

Cus,K
m
Pub〉.

I2 Installation of the Amanat [Sup, Cus ]
Ama is installed atSup’s site andSup receivesKm

Pub.

Session Initialization Phase.After installation,Sup andCus must agree on a specific
Verifier andCompiler. OnceVerifier andCompiler have been fixed, the session initial-
ization phase starts: First,Cus generates a new pair of session keys〈KCus,KPub〉 and



sends them toAma via Sup. Then, the new session keys are used to produce certificates
certVerifier andcertCompiler for Verifier andCompiler, respectively.Sup checks the con-
tents of the certificates and uses them, if they are indeed valid certificates forVerifier

andCompiler, to setupAma with Verifier andCompiler. Ama in turn acceptsVerifier

andCompiler if their certificates are valid.
In the last step of the initialization,Ama generates a supply of random seeds

R1, . . . , Rt for t subsequent executions of the certification phase. It also generates a se-
quence of key pairs〈KR

1

Cus,KR
1

Pub〉, . . . , 〈KR
t
Cus,KR

t
Pub〉 for each random seedRi.

Ama finally encrypts each random seed to obtain and sendKR
i
Pub(Ri) to Sup. Ama

andSup both keep a variableround which is initialized to 0 and will be incremented by
1 for each execution of the certification phase.

S1 Session Key Generation [Cus, Sup ]
Cus generates the session keys〈KCus,KPub〉 and sendsKm

Pub(KCus) andKPub to
Sup. Sup forwardsKm

Pub(KCus) andKPub unchanged toAma.
S2 Generation of the Tool Certificates [Cus ]

Cus computes the certificates

– certVerifier = csign(KCus,Verifier) and
– certCompiler = csign(KCus,Compiler).

Cus sends both certificates toSup.
S3 Supplier Validation of the Tool Certificates [Sup ]

Sup checks the contents of the certificates, i.e.,Sup checks that

– cverify(KPub,Verifier, certVerifier) and
– cverify(KPub,Compiler, certCompiler) succeed.

If one of the checks fails,Sup aborts the protocol.
S4 Amanat Tool Transmission [Sup ]

Sup sends toAma bothVerifier andCompiler as well as the certificatescertVerifier

andcertCompiler.
S5 Amanat Validation of the Tool Certificates [Ama ]

Ama checks whetherVerifier andCompiler are properly certified, i.e., it checks
whether

– cverify(KPub,Verifier, certVerifier) and
– cverify(KPub,Compiler, certCompiler) succeed.

If this is not the case, thenAma refuses to process any further input.
S6 Amanat Random Seed Generation [Ama ]

Ama generates

– a series of random seedsR1, . . . , Rt together with a series of corresponding
key pairs〈KR

1

Cus,KR
1

Pub〉, . . . , 〈KR
t
Cus,KR

t
Pub〉,

– encrypts the random seeds with the corresponding keysKR
i
Pub(Ri) for i =

1, . . . , t, and
– initializes round counterround = 0.

Ama then sends allKR
i
Pub(Ri) andKR

i
Pub for i = 1, . . . , t to Sup.



Certification Phase. Ama is now ready for the certification phase, i.e., it will accept
source and produce a certified verdict onsource which can be forwarded toCus and
whose trustworthy origin can be checked byCus.

During certification,Ama runsVerifier andCompiler on source, generates a cer-
tificate cert for the outputlogCus dedicated toCus. The certificate is based upon the
random seedRround whichAma committed to use in this round of the certification pro-
tocol during the session initialization phase.Ama sends the certificatecert, the outputs
logSup andlogCus, and the keyKR

round
Cus to Sup.

To validate secrecy, Sup computes the random seedRround =
KR

round
Cus (KRPub(Rround)) whichAma supposedly used for the generation ofcert. Then

Sup checks that the certificatecert is indeed a valid certificate and is based upon the
random seedRround. If this is the case, i.e., the certificate is valid and is generated based
on the predetermined random seed, thenAma cannot hide any unintended information
in the certificates. If the checks fails,Sup aborts the protocol. Depending on the output
of theVerifier, Sup decides whether to forward the results toCus or whether to abort
the certification phase. Finally,Cus checks conformance of outputlogCus usingcert.

C1 Source Code Transmission [Sup ]
Sup sendssource to Ama.

C2 Source Code Verification by the Amanat [Ama ]
Ama computes

– the verdict〈logSup, logCus〉 = Verifier(source) of Verifier on source,
– the binaryexec = Compiler(source),
– increments the round counterround, and
– computescert = csign(KCus, 〈exec, logCus〉 ,Rround).

Ama sendsexec, logSup, logCus, cert, andKR
round
Cus to Sup.

C3 Secrecy Validation [Sup ]
Upon receivingexec, logSup, logCus, cert, andKR

round
Cus , Sup

– decrypts the random seedRround = KR
round
Cus (KR

round
Pub (Rround)), and

– verifies thatcverify(KPub, 〈exec, logCus〉 , cert,Rround) succeeds.
If the checks fails,Sup concludes that the secrecy requirement was violated, and
refuses to further work withAma.
Otherwise,Sup evaluateslogCus andlogSup and decides whether to deliver the bi-
naryexec, logCus, andcert to Cus in stepC4 or whether to abort the protocol.

C4 Conformance Validation [Cus ]
Upon receiving exec, logCus, and cert, Cus verifies that
cverify(KPub, 〈exec, logCus〉 , cert) succeeds.
If the checks fails,Cus concludes that the conformance requirement was vio-
lated, and refuses to further work withSup.
OtherwiseCus evaluates the contents oflogCus and decides whether the verification
verdict supports the purchase of the productexec.

4 Protocol Correctness

In this section, we prove conformance and secrecy of our protocol using standard cryp-
tographic assumptions. Following [14], we assume that the public-key encryption isse-
mantically secureand that the used signature scheme issecure against adaptive chosen



message attacks, such as the RSA-based scheme proposed in [30]. We briefly introduce
these security properties:

Semantic securitymeans that whatever can be learnt from the ciphertext within
probabilistic polynomial time, can be computed, again within probabilistic polynomial
time, from the length of the plaintext alone. Formally, semantic security means that each
probabilistic polynomial time algorithm which takes as arguments a security parameter,
a public key, a number of messages encrypted with this key, the respective messages
lengths, and any further partial information on the messages, can be replaced by another
probabilistic polynomial time algorithm which only receives the security parameter, the
message lengths, and the partial information on the messages [14]. In other words,
no probabilistic polynomial time algorithm can extract anyinformation from a set of
encrypted messages.

An adaptive chosen message attackis an attack against a signature scheme, where
the attacker has access to an oracle which can sign arbitrarymessages, and uses this
ability to sign some new messagewithout consulting the oracle.More formally, asign-
ing oracleS[KCus] with private keyKCus is a function which takes a messagem and
returns a signatures = csign(KCus,m,R) for a uniformly and randomly chosen random
seedR. An attack is a forging algorithmF which (i) knows the public keyKPub and
(ii) has access to the signing oracleS[KCus], whereKCus is the private key correspond-
ing to KPub. The algorithmF is allowed to queryS[KCus] for an arbitrary number of
signatures.F can adaptively choose the messages to be signed, i.e., each newly chosen
message can depend on the outcome of the previous queries. Atthe end of the com-
putation, a successful attackF must output a messagem and a signatures such that
cverify(KPub,m, s) succeeds, althoughm has never been sent toS[KCus]. A signature
scheme is secure against adaptive chosen message attacks, if there is no probabilistic
polynomial time algorithmF which has a non-negligible success probability.

We can now precisely state the main theorems.

Theorem 1 (Conformance).If the protocol terminates (in StepC4 of the certification
phase) with the customerCus accepting the binaryexec and the output filelogCus, then
exec and logCus must be produced from the samesource in all but a negligible fraction
of the protocol executions (under standard cryptographic assumptions).

Proof Sketch.Towards a contradiction, we assume that with non-negligible probability,
Sup can forge a certificate which is accepted byCus in stepC4. Thus,Sup computes
a certificatecert for a pair 〈exec, logCus〉 which has not been signed byAma but is
accepted byCus. Using semantic security, we show that such a malicious instanceMSup

of Sup gives rise to a forging algorithmF which implements a successful adaptive
chosen message attack. This implies that the underlying signature scheme is not secure
against adaptive chosen message attacks—which is a contradiction. ⊓⊔

We present a more extensive proof of Theorem 1 in [33]. We now turn to secrecy,
which, not surprisingly, is quite straight forward to prove.

Theorem 2 (Secrecy).By the execution of the protocol,Cus cannot extract any piece
of information on the sourcesource which is not contained inexec and logCus.



Proof. During the execution of the protocol,Cus receives the binaryexec, the output
file logCus, and the certificatecert. The certificatecert = csign(KCus, 〈exec, logCus〉,Ri)
can be generated fromexec, logCus, the keyKCus, and the underlying random seed
Ri. Cus generatesKCus itself and obtains access toexec and tologCus. Thus the only
additional information communicated fromAma to Sup is the underlying random seed
Ri. But this random seedRi has been fixed byAma before having access tosource,
and consequentlyAma cannot encode any information on the sourcesource which is
not contained inexec andlogCus into the certificate. ⊓⊔

5 Conclusion

We have introduced the amanat protocol which facilitates software verification without
violating IP rights on the source code. The intended scenario for our protocol is a B2B
setting with a small numbers of customers, e.g. controller software and device drivers.

We also envision wider applications of our protocol in a B2C setting, i.e., for
commercial-off-the-shelf software. In this case, the customer party of the amanat proto-
col will not be enacted by an end customer, but by a certification agency which provides
commercial verification services. A detailed exploration of this scenario will be part of
future work.

Acknowledgments.We are thankful to Josh Berdine and Byron Cook for discussions
on the device driver scenario and to Andreas Holzer and Stefan Kugele for comments
on early draft of the paper.

References

1. Heinecke, H.: Automotive Open System Architecture-An Industry-Wide Initiative to Man-
age the Complexity of Emerging Automotive E/E Architectures. In: Society of Automotive
Engineers World Congress. (2004)

2. Broy, M.: Challenges in automotive software engineering. In: ICSE’06. (2006) 33–42
3. Ball, T., Cook, B., Levin, V., Rajamani, S.: SLAM and Static Driver Verifier: Technology

Transfer of Formal Methods inside Microsoft. In: Proc. of IFM. (2004) Invited talk.
4. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties of Interfaces.

In: SPIN Workshop on Model Checking of Software. Volume 2057 of LNCS. (2001)
5. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc. 29th POPL,

Association for Computing Machinery (2002) 58–70
6. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software compo-

nents in C. In: Proc. ICSE ’03. (2003) 385–395
7. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: CAV. (2006) 415–

418
8. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with separated heap

abstractions. In: SAS. (2006) 240–260
9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The

astŕee analyser. In: ESOP 2005. Volume 3444 of LNCS. (2005) 21–30
10. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via3-valued logic. ACM

Trans. Program. Lang. Syst.24(3) (2002) 217–298



11. Wiedijk, F., ed.: The Seventeen Provers of the World. Volume 3600of Lecture Notes in
Computer Science. (2006)

12. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.P.: Measurement-based worst-case execution
time analysis. In: SEUS 2005. (2005) 7–10

13. Ferdinand, C., Heckmann, R., Wilhelm, R.: Analyzing the worst-case execution time by
abstract interpretation of executable code. In: ASWSD 2004. (2004) 1–14

14. Goldreich, O.: Foundations of Cryptography. Volume II: Basic Applications. Cambridge
University Press (2004)

15. Balakrishnan, G., Reps, T.: DIVINE: DIscovering Variables INExecutables. In: Proc. VM-
CAI ’07. Volume 4349 of LNCS. (2007) 1–28

16. Debray, S.K., Muth, R., Weippert, M.: Alias analysis of executablecode. In: Proc. 26th
POPL. (1999)

17. Reps, T.W., Balakrishnan, G., Lim, J., Teitelbaum, T.: A next-generation platform for ana-
lyzing executables. In: Third Asian Symposium on Programming Languages and Systems
(APLAS 2005). Volume 3780 of LNCS. (2005) 212–229

18. Cifuentes, C., Fraboulet, A.: Intraprocedural static slicing of binary executables. In: ICSM.
(1997) 188–195

19. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-aware mal-
ware detection. In: IEEE Symposium on Security and Privacy. (2005)32–46

20. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detectingmalicious code by model
checking. In: DIMVA. (2005) 174–187

21. Colin, S., Mariani, L.: Run-Time Verification. In: Model-based Testing of Reactive Systems.
Volume 3472 of Lecture Notes in Computer Science. Springer (2005)

22. Lee, D., Yannakakis, M.: Testing finite-state machines: State identification and verification.
IEEE Transactions on Computers43(3) (1994) 306–320

23. Lee, D., Yannakakis, M.: Principles and methods of testing finite statemachines – a survey.
Proceedings of the IEEE84(8) (1996) 1090–1126

24. Necula, G.C.: Proof-Carrying Code. In: Proc. 24th POPL, Paris, France, January 15–17,
1997. New York, NY, Association for Computing Machinery (1997) 106–119

25. Goldreich, O.: Secure multi-party computation. Final Draft, Version1.4 (2002)
26. Ben-Or, M., Goldreich, O., Goldwasser, S., Hastad, J., Kilian, J., Micali, S., Rogaway, P.:

Everything Provable is Provable in Zero-Knowledge. In: CRYPTO ’88.(1988) 37–56
27. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. Siam Journal on Computing

30(2) (2000) 391–437
28. Petitcolas, F., Katzenbeisser, S., eds.: Information Hiding Techniques for Steganography and

Digital Watermarking. Artech House (2000)
29. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press (1997)
30. Cramer, R., Shoup, V.: Signature Schemes Based on the String RSA Assumption. ACM

Transactions on Information and System Security3(3) (2000) 161–185
31. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. Communications of the ACM21(2) (1978) 120–126
32. NIST: NIST FIPS PUB 180-1, Secure Hash Standard (1995)
33. Chaki, S., Schallhart, C., Veith, H.: Verification Across IntellectualProperty Boundaries.

http://arxiv.org/abs/cs.OH/0701187 (2007)


