
Runtime Reflection: Dynamic model-based analysis of component-based
distributed embedded systems

Andreas Bauer Martin Leucker Christian Schallhart

Institut für Informatik, Technische Universität München
{baueran, leucker, schallha}@informatik.tu-muenchen.de

Abstract

Distributed embedded systems have pervaded the auto-
motive domain, but often still lack measures to ensure ad-
equate behaviour in the presence of unforeseen events, or
even errors at runtime. As interactions and dependencies
within distributed automotive systems increase, the prob-
lem of detecting failures which depend on the exact situa-
tion and environment conditions they occur in grows. As a
result, not only the detection of failures is increasingly diffi-
cult, but also the differentiation between the symptoms of a
fault, and the actual fault itself, i. e., the cause of a problem.

In this paper, we present a novel and efficient approach
built around the notion of a software component similar to
AUTOSAR, for dynamically analysing distributed embed-
ded systems in the testing phase or even in standard oper-
ation, in that we provide a framework for detecting failures
as well as identifying their causes. Our approach is based
upon monitoring safety properties, specified in a language
that allows to express dynamic system properties. For such
specifications so-called monitor components are generated
automatically to detect violations of software components.
Based on the results of the monitors, a dedicated diagno-
sis is then performed in order to identify explanations for
the misbehaviour of a system. These may be used to store
detailed error logs, or to trigger recovery measures.

1. Introduction

Handling the ever growing share of software in present-
day cars poses an ongoing challenge to software engineer-
ing research. As a matter of fact, it is estimated that 30%
of the value added in automotive is up to electronics com-
prising embedded system functions [16]. The networking
of formerly autonomous functions causes difficult integra-
tion issues, and results in potentially error-prone develop-
ment and deployment processes. The model-based design
and development of embedded automotive systems, espe-
cially in safety-critical settings can be accompanied by the
use of formal or semi-formal methods, such as simulation
or model-based testing [5, 7, 4], in order to increase our
confidence in the correctness of the system. However, such

methods if employed in the design and development pro-
cess alone cannot guarantee that systems are sufficiently
prepared for dealing with unforeseen events or even errors,
probably induced by their nondeterministic operational en-
vironment. More so, specific assumptions made during
the development process, e. g., such as predetermined fault
models, may prove to be inadequate in a real-world setting.

Theruntime reflectionproject presented in this paper ad-
dresses these issues by putting forth a combined framework
whose constituents (1) allow thespecificationof system
properties including detailed real-time requirements, (2) fa-
cilitate theirvalidation and verificationin test and standard
systems operation, as well as (3) provide means for per-
forming a detailed on-linediagnosisgiven the occurrence
of a system failure.

Basically, the framework comprises two novel ap-
proaches, first for dynamically detecting failures in a dis-
tributed system, and then secondly for analysing their
causes requiring only a minimal communication overhead
on the network; in fact, only linear with respect to the num-
ber of used monitor components (and only in case of an
occurred system error). Unlike failure detection by means
of system monitoring, the identification of failures is only
performed using a dedicated system’s diagnosis if and only
if, prior, a monitor has noticed an aberration. As such,
there exists no continuous computation and communication
penalty for the systems diagnosis, in case the system under
scrutiny does work as expected. That is, the diagnostic layer
is triggered on-demand.

The runtime reflection framework can be employed dur-
ing testing or in normal systems operation in the actual
product. The monitors used to detect aberrations are ex-
ecuted in parallel with the distributed system, and may
later be deployed in terms of “watchdogs” to monitor, say,
safety-critical components. While the monitors operate lo-
cally on the network with scope on a certain software com-
ponent, diagnosis—if triggered—obtains a holistic system
view to differentiate from the symptoms of a failure, e. g.,
a missed bus signal, and its actual cause, e. g., deadlock in
a remote software component. As such, diagnosis allows—
given a set of observations—to deduce the according expla-
nations which then contain the set of conflicts responsible
for an aberration.



1.1. Related work

Diagnosis in the automotive domain is typically re-
stricted to either the off-line service and maintenance phase,
or if performed dynamically, mostly centred around low-
level signal processing, physical process or hardware fail-
ures [9, 13, 11], disregarding the complex interactions of
distributed functions realised in terms of individual soft-
ware components, such as will be realised by AUTOSAR-
components (cf. [15]). Diagnosis of software-failure is then
often reduced to a mere recording of symptoms on the ECU
on which a “faulty” component is deployed, which makes
it very difficult in practice to reconstruct the exact condi-
tions in which an error originally occurred. To address
this problem, various approaches have been realised, for in-
stance, adding additional information about the system un-
der scrutiny in terms of static lookup-tables comprising cer-
tain causes and symptoms, reflecting the effects of failures
on the system (cf. [12, 10]). Such tables may be obtained
prior from a dedicated hazard and risk analysis, FMEA/FTA
analysis, or directly from the engineers who designed the
system and know about its anticipated ways of failure. Al-
though practically useful, the downside of these solutionsis
that such knowledge basically constitutes design assump-
tions, and as such these may be invalidated by the real-
world, e. g., when situations occur that cannot be explained
using such knowledge.

2. Architectural overview

In this section we give a brief architectural overview over
our runtime reflection framework. First, we consider its
structure merely in terms of its layers, and without regard-
ing in particular the distribution of its underlying compo-
nents within the individual layers. Then, we describe the
organisation of the individual components of our frame-
work by means of giving a brief intuitive example, reflecting
more on the distributed nature and the functionality of our
architecture, and the application to be analysed.

2.1. Framework layers

The main architecture is a layered and modular one, in
that it supports a separation of concerns; that is, the dif-
ferent tasks of the analysis are handled by separate entities
which communicate only through minimal interfaces, as is
indicated in Fig. 1.

Let the application under scrutiny be a distributed re-
active system consisting of individual components, in-
strumented and/or annotated to produce an outside-visible
stream of (internal) system events.

2.1.1 Logging—Recording of system events

A dedicatedlogging layer in our architecture is the only
part of the runtime reflection framework directly known to
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Figure 1. Layers and information flow of the
runtime reflection framework.

the (instrumented) application itself. The distributed sys-
tem, embedded into our framework, employs custom code
annotations in order to produce the visible system events,
which are then collected and communicated further by our
logging layer. The annotations are the only prerequisites,
necessary within the application component’s source code,
in order to be able to use the runtime reflection framework.

The logging layer allows to register so-calledloggers,
i. e., software components for observing the stream of sys-
tem events, and thus, to reflect upon the dynamic behaviour
of the executed application. A logger might be part of the
application itself, e. g., to extract more general statistics on
the overall system utilisation, or to record system events
merely to a file during a unit-test session. However, when
we employ the logging layer in conjunction with the com-
plete runtime reflection framework, we use the layer to de-
liberately decouple the distributed application’s code from
the remaining layers in the framework.

In particular, the application’s code does not contain any
knowledge on the safety properties which are monitored,
and which are then used subsequently for deducing a diag-
nosis in case of an error. Therefore, we can change the mon-
itored properties and the system description (as used by the
diagnosis) even on-the-fly, during their execution without
interrupting the running application!

2.1.2 Monitoring—Failure detection

The monitoring layer consists of a number of monitors
(complying to the logger interface of the logging layer)
which observe the stream of system events provided by the
logging layer. Its task is to detect the presence of failuresin
the system without actually affecting its behaviour. It is im-
plemented viaautomatically generated monitorswhich—
each locally with respect to a certain subsystem or system’s
component—monitorsafety properties(see Sec. 3).

Intuitively a safety property asserts that “nothing bad
happens”. Therefore, safety properties impose minimal re-
quirements upon the system which must hold in order to
have some sort of a well-defined behaviour. They do not,
however, impose a specific behaviour on the system as such.
A typical example is the exclusion of certain critical system
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states, e. g., one always wants to ensure that in a present
state¬(gear upshifting ∧ gear downshifting) holds.

If a violation of a safety property is detected in some part
of the system, the generated monitors will respond with an
alarm signal for subsequent diagnosis.

2.1.3 Diagnosis—Failure identification

We deliberately separate the identification of causes from
the detection of failures in terms of a dedicated diagnosis
system. Thediagnosis layercollects the verdicts of the dis-
tributed monitors and deduces an explanation for the current
system state.

For this purpose, the diagnosis layer infers a minimal set
of system components, which must be assumed faulty in or-
der to explain the currently observed system state. The pro-
cedure is solely based upon the results of the monitors, and
as such, the diagnostic layer is not directly communicating
with the application, but rather creates with each diagnosis a
“snapshot” of the system at a given time. This bears a major
advantage in that no extra messages need to be exchanged
between all the monitors in order to obtain a holistic system
view.

Our diagnostic layer then infers a system model which
incorporates and reflects the observed failures, and com-
pares it with an internal reference model. The differences
found constitute possible causes for failure. Basically, this
approach is based upon an efficient realisation of the theory
of consistency-based diagnosis (see Sec. 4).

2.1.4 Mitigation—Failure isolation

The results of the system’s diagnosis can then be used in
order toisolatethe failure, if possible. However, depending
on the diagnosis and the occurred failure, it may not always
be possible to re-establish a determined system behaviour.
Hence, in some situations, e. g., occurrence of fatal errors, a
recovery system may merely be able to store detailed diag-
nosis information for off-line treatment.

In the following sections, for brevity, we therefore focus
on the first two layers, monitoring and diagnosis, and es-
tablish the methodological foundations for our framework,
and sketch its implementation along with some explanatory
examples.

2.2. Framework functionality

The logging layer and the monitoring layer consist both
of a number of different software components, which are
distributed throughout the system under scrutiny; that is,
depending on the granularity and number of the system’s
components. Each local monitor then computes a verdict
on the locally observed event stream and provides this ver-
dict for further, subsequent diagnosis regarding the system’s
general status. The diagnosis and mitigation layers, in con-
trast to logging and monitoring, are realised in terms of cen-
tralised components, which collect the information of the
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Figure 2. Monitoring a distributed application.

monitors in order to compute and react upon a global sys-
tem view.

For instance, consider Fig. 2, where we show an exam-
ple application consisting of four distributed components,
C1, . . . , C4. To monitor the overall system behaviour of this
application, we need to add at least four dedicated monitor-
ing components,M1, . . . , M4, to the actual system. Each
monitor,Mi, is then locally observing the output of a sin-
gle component,Ci, and computes its verdict on the correct-
ness of the observed output stream so far. These distributed
verdicts are then transmitted back to the central diagnosis
component for further treatment.

3. Runtime verification: SALT

In our setting, monitors used for failure detection
are automatically generated from high-level specifications.
Therefore, we have developed the temporal specifications
language SALT [3]. Using SALT , one can define the ex-
pected behaviour of the underlying system in a precise man-
ner.

To be conveniently used by engineers, SALT is designed
to have the look and feel of the programming language
C/Java. The main difference to a programming language
is that only assertions on the behaviour of the system are
formulated. Thus, the developer does not have deal with ac-
tually writing the monitor code but just has to specify the
monitor’s behaviour.

SALT is similar to the property specification language
PSL [6] that is used in chip development for expressing
functional assertions. In contrast to PSL, however, SALT of-
fers operators for expressing real-time requirements, which
is essential for being applicable in the automotive domain.

Unlike other specification languages SALT has a pre-
cisely defined syntax and semantics. Its root goes back to
Linear Temporal Logic, which is well-studied in the litera-
ture.

Furthermore, efficient monitor code checking the asser-
tions formulated in SALT at run-time can be generated, as
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explained in [1] in detail.
The results of monitors then constitute the basis for the

diagnosis as described in the next section.
Instead of giving a formal syntax and semantics of SALT ,

let us discuss typical examples describing its expressive-
ness.

Assume that the value of thecrank speed-signal to ob-
serve should always be greater than0. Using SALT , one
writes:

always crank_speed>0

We can then define an operating modeCranking by

Cranking := always crank_speed>0

Now, assume that we have a signalvehicle speed and
vehicle speed old , we consider their values only meaning-
ful, if their difference is not greater than someδ, since the
velocity of a vehicle is limited. We can write

VS := |vehicle_speed -
vehicle_speed_old| < δ

VSpeed := always (not VS implies
next VS)

to say that at least every second speed signal is valid.
Previously defined assertions can be combined in a

Boolean manner:

Safe := Cranking and VSpeed

Further examples, which are self-explanatory, are

always (gas_pedal > 0 implies
eventually rpm_tracking)

never gas_pedal < 0

SALT does further allow the definition of functions, fea-
turing the reuse of specifications.

fun Event_To_Mode (event, mode) {
always (event eventually mode) }

SALT provides sophisticated operators to easily support
exceptions. For example, we can write

(idle_speed > 0 until rpm_tracking)
accept on key_off

to say that the idle speed of the engine is positive un-
til switching to operating moderpm tracking—unless the
driver switched off the car.

SALT provides a notion of time which can be used to for-
mulate real-time requirements. While in SALT an abstract
notion of time units is used, a unit can be related to a real-
time value (e.g., one unit equals 10ms) during the deploy-
ment phase of monitors.

The assertion that we always get a new value denoting
the currentvehicle speed within the next 10 time units can
be formulated as

always (next(vehicle_speed) in [0,10])

The operation of the catalytic converter is controlled by
values delivered by the lambda probe. These values might
be ignored, if they are outdated. In the testing phase, we log
whenever a value is ignored and test by asserting

always (ignore_lambda implies
last(l_correction) > 200])

that indeed only values older than 200 time units are ig-
nored.

In [1], we describe how to generate efficient monitors
checking the real-time properties expressed in SALT . How-
ever, there is an intrinsic problem when facing this goal: A
monitor can have at most afinite view on the system’s be-
haviour over time, whereas temporal assertions are usually
defined over infinite behavioural traces. This leads to com-
plications as can be seen by the following example:

Consider the assertion

(not ACC_init) until idle_mode

stating that the adaptive cruise control may not be initialised
before the car finished the start-up phase.

WhenACC init is called before entering the idle mode,
the monitor should clearly report a failure. When the start-
up phase is over and the car enters idle mode, the assertion
does definitely hold. Actually, the monitor is of no need
anymore and could be stopped to save resources. While in
the start-up phase and noACC init is observed, the asser-
tion is neither wrong nor satisfied: It depends on whether
ACC init or idle mode is observed first.

One distinguishing feature of our runtime monitoring
framework is its three-valued semantics. In contrast to ex-
isting work in this domain, we generate monitors that clas-
sify the last case asinconclusive, exactly following the prac-
titioners intuition (see [1] for details).

4. Failure diagnosis

Diagnosis in the runtime reflection framework is used to
separate observed symptoms of a failure from actual causes.
Essentially, the diagnosis engine, if triggered, uses the in-
puts of the monitor components monitoring only local com-
ponents of a distributed system, and deduces possible expla-
nations for observed aberrations. This way, the framework
accommodates the complex interplay of distributed soft-
ware functions and avoids so-called false-negatives when
trying to analyse a failure.

Basically, diagnosis uses two inputs to analyse the sys-
tem: a) a propositionalsystem descriptioncomprising all
components of a distributed system and their causality, and
b) the output from the individual monitors watching over the
components. It then tries to infer explanations for matching
the monitor’s observations with its internal system descrip-
tion.
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Since the exact behaviour of a component over time is
specified in terms of monitored properties, the system de-
scription of the diagnosis engine does not contain any be-
havioural models. More so, due to the combination of run-
time verification by means of monitors and model-based di-
agnosis, our engine infers possible explanations for an ob-
served failure based on the satisfaction of a propositional
logic model [2].

Example. Consider again Fig. 2. One possibility of di-
agnosing such a system of four constituents is to use the
following simple system descriptionSD:

SD =















ok(i11) ∧ ok(i12) ∧ ¬AB(C1) ⇒ ok(o1),
ok(i2

1
) ∧ ok(i2

2
) ∧ ¬AB(C2) ⇒ ok(o2),

ok(o1) ∧ ok(o2) ∧ ¬AB(C3) ⇒ ok(o3),
ok(o1) ∧ ok(o2) ∧ ¬AB(C4) ⇒ ok(o4)















,

whereok is the predicate denoting the that the correspond-
ing input or output value is correct, which is determined
by the individual monitors in the system. TheAB predi-
cates in turn denote that a component is “abnormal”, i. e.,
not working as expected. The causality is then given by the
propositions occurring in more than one propositional sen-
tence.

Notice the semantics of whatok actually encodes is en-
tirely up to the property checked by the according monitor.

If a failure occurs, e. g.,¬ok(o3) is observed, the diag-
nosis engine then infers all possible configurations where
¬ok(o3) holds, such that the overall system description, the
observations, and the set ofAB-literals are consistent. In
this example, we obtain the following abstract conflicts ex-
plaining the observations:

CONF =







































{C1, C2, C3,¬C4},
{C1, C2,¬C3,¬C4},
{C1,¬C2, C3,¬C4},
{C1,¬C2,¬C3,¬C4},
{¬C1, C2, C3,¬A2},
{¬C1, C2,¬C3,¬C4},

{¬C1,¬C2, C3 ,¬C4}







































.

The last solution seems the most obvious one, since it
assumes that only one component failed: onlyC3 is marked
faulty in order to explain why¬o3 holds. But we cannot be
sure of that, since the values ofo1 ando2 are not modelled;
hence, the other six solutions.

Formally, our diagnosis approach is based upon the the-
ory of model-based diagnosis [14, 8]. However, unlike in
the original theories, which use first-order models compris-
ing causality as well as behaviour, our approach is strictly
reduced to propositional models and causality, since be-
havioural accordance is more efficiently encoded using the
automatically generated monitors from our specification
language SALT . As such we provide efficient means of
solving the diagnosis problem, and if desired, also on the
fly when the failures occur; that is, at runtime. Benchmarks
of our diagnosis engine are presented in [2].

5. Example

Let us put the runtime reflection framework to use by
illustrating a simple example taken from vehicle dynamics.
In Fig. 3, a distributed system is exemplified which, depend-
ing on some horizontal force, compensates the caused hori-
zontal drift by actively influencing the car’s steering. Such
compensation may be necessary due to very strong winds
coming from either side of the vehicle while driving.

Since this setup resembles a highly safety-critical sys-
tem, the components,CI and CR, which implement the
main control algorithm for generating an according PWM-
signal are laid out redundantly (possibly) on two ECUs.
Amongst other values they process the vehicle’s speed, and
a sensor value,hforce, encoding the horizontal force. Ba-
sically, CI contains an algorithm based on integer values,
whereasCR resembles the actual control algorithm based
on real or float values, such that the output ofCR can be
checked againstCI and aberrations are detected.

Using the framework’s means of specification and mon-
itoring, we can then specify four monitors which check
whether the necessary signals for control are present in a
given time-frame in milliseconds (seeM1 andM2), and sec-
ondly, whether the respective changes between the PWM-
signals that actually affect the steering are not invalid. For
example, some abrupt change, i. e., values greater than a
predefinedδ, in the signal’s values may result in a too large
steering angle and destabilise the vehicle.

In case of an aberration, the monitors’ results are propa-
gated to the diagnosis engine for further analysis. It is then
able to differentiate whether the cause of the failure origi-
nates in the vehicle dynamics system itself, e. g., in one of
the components determining the PWM-signals, or whether
the fault was induced, for instance, elsewhere from the en-
vironment. Depending on the results, it may be necessary
to shut-down the system and notify the driver of the car.

6. Conclusions

The presented framework for failure analysis provides
tools and methods that enable component-based distributed
embedded systems, such as automotive systems, to reflect
upon their overall system status at runtime. The frame-
work’s application is flexible, in that it can be used either in
testing the system during development, or be deployed with
the actual product to analyse safety-critical parts at runtime.

Due to the layered architecture and the efficient combi-
nation and realisation of different techniques for reasoning
about distributed embedded systems, we eliminate compu-
tational overhead for diagnosis. That is, our component-
oriented approach triggers diagnosis specifically at the oc-
currence of a failure, which avoids a continuous computa-
tional effort. Additionally, the use of independent and local
monitors in order to observe specific components, avoids an
expensive communication penalty in that no extra diagnos-
tic messages need to be exchanged between the respective
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always (next(hforce) in [0,10])

always (next(vehicle speed) in [0,5])
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always (|pwm2 - pwm old2|< δ)

Figure 3. Monitoring a vehicle dynamics system.

monitors in order to come to a verdict regarding a system’s
overall status.

We have successfully implemented the ideas presented in
this paper (seehttp://runtime.in.tum.de/), and
are currently in the process of streamlining the entire ar-
chitecture for ease of integration and further extensibility
towards recovery measures. The latter were, on purpose,
not intensively dealt with in this paper, since they constitute
highly domain-specific knowledge and methods, which are
not necessarily applicable to all real-time or reactive sys-
tems alike. Consider, for instance, the differences between
distributed control systems, and the wide area of the “Info-
tainment” domain.

Finally, the approach is based upon the notion of
software-components, making it suitable for future deploy-
ment in middleware-based environments, such as presented
by the AUTOSAR infrastructure. The monitor components,
the loggers, the diagnoser, as well as the system’s compo-
nents can be realised in terms of AUTOSAR components
communicating over dedicated ports and a common API.
Furthermore, our approach complements, existing model-
based approaches to automotive software development in
that we offer means to realise abstract requirements using a
formal specification language that can be used to automati-
cally generate the monitor components.
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