Malware Engineering

S. Katzenbeisser, C. Schallhart, H. Veith
Institut fur Informatik, Technische Universitat M
Boltzmannstrasse 3, D-85748 Garching bei Miinchen
{katzenbe ,schallha ,veith }@in.tum.de

Abstract: Starting from simple hand-crafted viruses, today’s madzas evolved to
constitute highly infectious computer diseases. The teahdevelopment of malware
was mainly driven by the wish to improve and accelerate btéttles and proliferation.
Although these programs have incurred significant hazaddfiaancial losses, their
mechanisms are relatively simple and are amenable to efecbuntermeasures—
once, the first attack has been launched. From a softwaradkdy point of view,
malicious software in fact is often very similar to networkrgces with the main
difference that security holes are exploited to enforcé¢igipation in the protocol.

In this position paper we outline the wide range of possikééware-specific engi-
neering techniques which are not used in known viruses amchgydout are technically
feasible and will therefore be realized in the foreseealtleré—less likely by hackers
than by organized illegal entities. The techniques we dles@nable the malware to
obfuscate its functionality, monitor and analyze its eowiment, and modify or extend

itself in non-trivial ways. Consequently, future secupiglicies and risk assessments
have to account for these new classes of malware.

WE ARE THEIR FOOD THOSE GERMS OF THE PAST
THAT BEST CONVERTED OUR BODIES INTO THEIR OWN PROPAGATION
ARE THE GERMS OF THE PRESENTTHOSE GERMS OF THE PRESENT
THAT BEST CONVERT OUR BODIES INTO THEIR OWN PROPAGATION
ARE THE GERMS OF THE FUTURE
Paul W. Ewald [Ewa00]

1 Introduction

On March 19, 2004 at approximately 8:45pm PST, a new wormerfamednitty—was
found in the wild. Witty, a program of only 700 bytes, targeted a buffer overflow in sev
eral Internet Security Systems (ISS) products. In just 4%uteis Witty managed to infect
12.000 machines all over the world, which constitutes atrtfzs entire vulnerable popu-
lation [SM04, WEO04]. Although the total number of infectecchines was too low for
sensational press coveraiféitty marks a paradigm shift in malwargVitty distinguished
itself from previous viruses in that it carried a particljatestructive payload, was error-
free and was launched in an organized manner from a set ofrooniged hosts. But most

importantly,Witty spread through a relatively small population in record tiordy one day
after the ISS vulnerability was published. As Bruce Schnleier wrote [Sch04]: Witty
represents a new chapter in malware. If it had used commod&¥is vulnerabilities to
spread, it would have been the most damaging worm we haveyséén

During the last years, the number of known viruses and worassbieen growing almost
exponentially. The number of infected computers has risgéh aach new generation
of malware: wherea€odeRed2001) infected “only” about 359.000 hosts, the versions
of the Sassel(2004) worm together infected about 1 million machines. éély the first
Bluetooth worm has been discovered [Blu04]. This showswloatm authors got interested
in targeting the increasing number of ubiquitous and mathéeices. We can expect this
trend to continue in the near future.

While the first worms were apparently written for the cynieatertainment of the authors,
we expect that explicitly criminal worms targeted at comemdifraud (e.g.access for sale
[SS03]), will become an increasingly dangerous threat.ab, fworms arguably present
a substantial threat to the world economy. Weaver and Pap§®04] estimate that a
worst-casevorm could cost the US economy $50 billion in direct econodamage, not
counting indirect costs caused by power outages, traregfmntdelays, general interrup-
tions in the industrial supply chain, etc. In the hands ohhigkilled malevolent experts,
these economic vulnerabilities may turn virus and worm nedbgy into a weapon.

This position paper expresses our conviction that the w@olgical possibilities for sys-
tematically engineering malware have hardly been explecefér. In this paper we con-
centrate on computer worms; however the techniques can dqaeatito other types of
malware, too. Notwithstanding their destructivenessaysiworms are relatively sim-
ple pieces of hand-crafted software performing straightéwd mechanisms which makes
them amenable to effective countermeasures. In fact, freaftevare technology point of
view, today’s worms are structurally similar to system waafite which goes the direct way
to provide an intended (malicious) functionality by uiitig security exploits.

Most of innovation in the past years concerned the attaclhar@sm, which makes attacks
fast and vicious but constitutes a relatively simple-moh@tough often effective) way of
information warfare. In this paper, we will focus on natueahnologies facilitating slower
but possibly more dangerous attacks.

Extrapolatingthe statusquo. Starting with the Morris Internet worm in 1988, we have
seen a permanent evolution in the world of malware. Abouteanrs later, the first virus
(ShareFun 1997) spread through e-maiMelissa(1999) was the fist worm performing
mass mailings, whil&irCam(2001) even contained its own SMTP clieNimbda(2001)
used multiple attacks to spread aBithrog (2003) targeted various existing peer-to-peer
schemes [KEO3].

Kienzle and Elder [KEO3] claim one can observe a lack of iraiimn in e-mail worms
recently. In fact, most recent e-mail worms are just minaiateons of well-known tech-
nigues: worm authors typically replace one security exfdgianother, enhance the dis-
tribution and target discovery mechanisms and modify thdgaal. This trend was also
driven by the availability of virus toolkits which enablemexperts and script-kiddies to

create a huge zoo of related viruses. Still, most worms dxe nget dangerous, pieces of
software.

The lack of recent innovation for several months does ndtatd the lack of danger, as
shown byWitty. In fact, we believe that the saturation of the known tecbgglmarks
a technical boundary which is going to provoke a new cyclennbvation, characterized
by a switch from hacker programmingtaealware engineeringVhat does malware engi-
neering set apart from hacking?

e Hand-crafted vs. engineered. Similar to the development of programming from
Knuth's art to Dijkstra’s science, we expect a correspogdiavelopment for ma-
licious programming. There is a clear evolutional line frime first hand-crafted
viruses over virus toolkits (designed to automatically gyate new virus variants)
towards well-engineered viruses and worms.

e Savagevs. tactical. Traditional viruses and worms attempted to spread and<dtac
quickly as possible, similar to the influenza virus in natdrieis makes them easily
detectable (e.qg., just by monitoring the network load); beev, at this point it may
be too late to stop their spreading efficiently. More refingctits may combine
slower infection rates with intelligent, goal-orientechiagior.

e Covert vs. ostensible. The first worms essentially amounted to mobile code, mak-
ing no attempts to obfuscate their content and existencdynfophic viruses
present the first, but by no means the last, step towards ed#labfuscation tech-
nigues. Practical experiments [CJ04] have dramaticalipatestrated that current
virus detection software fails even for relatively simpy@tactic modifications of
malicious code. This situation clearly calls for the useeshantic methods, such as
program analysis, for the sake of virus detection.

e Dynamic vs. static. The traditional understanding of software implies a prede-
termined functionality, with self-modifying code being armsity rather than an
engineering principle. Well engineered viruses may empémdomized semantic
program transformations and even accept a certain riskag corruption in their
replicas (“children”).

e Exploit oriented vs. investigative. Many worms have been created in response to
published vulnerabilities. An advanced worm may attemjteéatify vulnerabilities
on-the-fly (e.g., buffer overflows or open ports).

e Ad hoc vs. well-tested. One of the most surprising features\ditty was its cor-
rectness, in contrast to worms lil&asser In the future, we expect to see more
well-tested worms.

To wrap up this argument, we believe that future malwarertetdgy will use semantically
non-trivial methods to hit their target.

The goal of this position paper is to focus on the issue of aded malware technology.
We will explore possible ways to realize the above mentidivess of development. In

Section 2 we describe in detail various design principldse fiew malware we describe
will typically propagate more slowly. Section 3 deals in maletail with a suitable theo-
retic notion of code obfuscation.

Let us conclude the introduction with the following importanote: it is evident that the
ideas and methods presented in this paper are potentiaityedeus and not intended for
implementation. We do however strongly believe that theseds need to be raised and
openly discussed within the research community early orly @mwledge and analysis
of future attack possibilities pave the way for feasible meumeasures. “Security by
ignorance” is no better than “security by obscurity”.

2 Pergpectives of Malware Engineering

In computer science at large, the transition from hackingpftware engineering is char-
acterized by the increased utilization of theoretical issand engineering techniques
[Sha90]. The main message of this paper is that we expectitasitmend in the con-
text of malware engineering. In this section, we describane&al approaches that well-
engineered malware may perform in the future. Althoughenirmalware programs only
use these possibilities to a small extent, we can expectdtiappen once all associated
practical problems are solved. Viruses and worms relyingh@se approaches will be
considerably more difficult to detect and remove, as virdsaers will have to resort to
semantic analysis methods in the detection process.

In the rest of this section, we will survey the spectrum ofifatworms and suggest ad-
equate terminology. We will classify certain features alufe malware technology as
obfuscatedductile curious concurrentandlatent

2.1 Obfuscated Worms

Perhaps the most traditional technique to hinder virus asmdhvdetection is the use of pro-
gram obfuscation. Obfuscation techniques come in two flavbey either operate directly
on the machine code or they employ encryption techniqueghdrfirst case, obfusca-
tion techniques insert dummy instructions, unnecessanydbres and loops or re-schedule
independent program instructionso{ymorphic worms An overview of such program
obfuscation techniques can be found in [CTL97]. In the sdamase, the worm spreads
in encrypted forméncrypted worm)s The worm mostly consists of a small stub imple-
menting a decryption routine, which decrypts the core wooglec Each worm replica is
produced by randomized encryption of the parent worm’s c&d¢h techniques for pro-
gram obfuscation are essentially syntactic, i.e., theyatonodify the functionality of the
worm.

Recent research has shown that good program obfuscatidfidaltito achieve. Systems
that follow the first paradigm risk easy detection unlessaiieiscation engine uses novel
methods not known to analysis tools. A sophisticated waysafgiprogram obfuscation

is to implement a randomized obfuscation engine in the wasgifj producing randomly
obfuscated worm replicasnetamorphic wormdirst applied byZmist[Jor02]). This ap-
proach may foil virus detectors relying on syntactic detectnechanisms, but requires
the obfuscation engine itself to be obfuscated. The secanadgm (encrypted spread-
ing) has the main disadvantage that the decryption stubinsrmachanged, thereby again
opening a door for detection.

We expect to see more subtly obfuscated worms in the futu@veMer, it remains an
open question whether obfuscation techniques provide fanmeeft means for worms to
escape detection. In particular, we do not currently knowtieér it is possible to produce
provably undetectableiruses and worms through obfuscation, i.e., viruses fdckh is
possible to obtain a formal undetectability guaranteeti®e®8 explores this issue in more
detail.

An entirely different way of obfuscation is to utilize codat is already available at the
infected host. Given the large number of different exedetapresent at modern com-
puters, it is not unrealistic to assume that future wormsrease (i.e., directly call) code
of different applications. This approach is not limited @spive use of the host code. A
worm can as well change portions of the code to fits its purp8seeh a tactic does not
only reduce the detectability of a worm, but also makes itsaeal much harder.

2.2 DuctileWorms

Ductile worms are able to modify its replicas in syntacticahd/or semantically nontriv-
ial ways.

A major step in this direction was marked Bymile (2002), which was remarkable for
its metamorphic appearance, as it was able to re-write its @vde from generation to
generation. To produce a new repliGmilefirst disassembles its code into a machine-
independent intermediate language. This abstract repesm is then modified, while
preserving semantic equivalence. Finally, the abstragd¢ ¢® assembled to produce ma-
chine code. To hinder detection, redundant and unused satkled [PFS02].

Simileis a perfect example of a virus that comes very close to theeirof malware en-
gineering: it relied on a carefully engineered obfuscaéngine, was well-tested, applied
efficient mutation techniques to limit its discovery and waaghly dynamic.

However, ductile worms are not limited to syntactic modtiizas. In fact, well-engineered
worms may also change tlsemanticof the code, for example by varying the timing-
conditions or the payload. It is not even necessary to eaftirat all replicas of a worm
are functional. During semantic modifications, a worm cak g certain extent of code
corruption, if it is guaranteed that a significant portionadifreplicas are functional (in
particular, are able to produce functional replicas i)seBuch a strategy is particularly
effective, if a worm contains a small test engine, enablirig fest its replicas for correct-
ness. To implement this idea, the worm uses a metamorphinetmproduce semanti-
cally modified replicas, which it tests using its embeddsthied. If the replica is deemed
correct, the worm exposes this replica in the wild, otheewissimply produces a new

replica. Even if such a correctness test does not give 10@%ate results, it still helps to
reduce the number of defect worm replicas sent to newly tatelosts, thereby increasing
its infectious potential. For practical purposes, suchstbtd must be fast enough so that
millions of mutations can be checked within reasonable time

2.3 Curious Worms

Paraphrasing Bruce Schneier, the patch model for systemigelcas dramatically failed,
i.e., published vulnerabilities are immediately explditey malicious code authors. Clas-
sic worms utilized previously published exploits. As ardwadove,Witty is a dramatic
witness of the fact that such exploits can be incorporattedrimalware in extremely short
time. On the other hand, the patch model makes sure that sptditebased malware can
be exterminated in a simple way. There is no principle reaBowever, why a piece of
curiousmalware should not be able to use program analysis techsigueder to actively
search for vulnerabilities present in the host system. &dcurity literature, various
methods for identifying vulnerabilities (in particularfier overflows) by static program
analysis have been described [GI3, XCE03, WFBAOO], albeit usually on the level of
code and not on the level of executables. Ironically, thesthods can in principle be
applied with malicious intentions. Certainly, such worms aot expected to spread very
rapidly, but this is not necessarily an indicator of low dtyalsee Section 2.5).

The most obvious obstacle for such a malicious approaclkeisadmplexity of the analysis
which has to be performed. Let us consider buffer overflonaraexample. Identifying
buffer overflows can be broken down into two tasks: idemtifypotentially vulnerable
function entrypoints and searching for parameters whiokaté the stack integrity. While
the second task can easily be automatized by exhaustivehsélae first is more challeng-
ing as witnessed by the above cited literature. Unless ooleslfor very specific static
signatures of vulnerable code pieces, we can hardly expatatworm with small code
size will achieve this goal. Nevertheless, malicious caateiritrusive program analysis
can be hidden in large software such as web browsers, whath meavy network and
CPU load anyway. In this scenario (which we refer to as WORMeme in analogy to
the SETI-at-home project), infected browsers can even camicate vulnerabilities in a
peer-to-peer fashion.

Another option to identify function entrypoints and expatialues of parameters is to
explore publicly available documentation, such as the naayep under UNIX.

2.4 Concurrent Worms

A natural approach to obfuscate the functionality and sfirepof the malware is to trans-
port the payload in several pieces, which need to interactroimfected host in order to
achieve the intended damage. If these pieces are preseifieireit software packages
(or in different communicating devices, recall the Blugtoworm [Blu04]), their mali-

cious interaction may occur very rarely and in a nonpretietavay. In combination with
randomization, such malware may be as nasty to track antifiglas concurrency errors,
which are notoriously hard to detect.

Alternatively, a resource-heavy payload (including, feample, code to create large hit
lists [SPWO02]) can be distributed slowly in a very low-keyobitrusive approach. The
activation code, consisting of a small number of bytes,ggdig distributed at a later time.

Such an approach allows to combine rapid spread with a auateeti attack plan.

2.5 Latent Worms

The authors of latent worms have a completely different weathan juvenile worm writ-
ers. Instead of aiming at infecting a huge number of hostsualy as possible (such
worms were termeblVarholor flash wormsby [SPWO02]), the authors of latent worms try
to maintain a stable population of infected hosts over aaredé¢d and continuous period
of time. To this end, they employ worms that spread slowlyngshe techniques of the
previous sections to remain undetected. These worms ogoégioads which can be uti-
lized for illegal purposes. A basic example for illegal wities enabled by latent worms
is “access for sale” [SS03], where an attacker sells acceasitimber of infected hosts.
As another example, latent worms can be utilized as laurttfgrdast spreading worms,
providing a large initial population of infected machines.

More generally, well-engineered malware will be latent iwo reasons: first, the tech-
niques described in the previous sections preclude worractien. However, a fast
spreading worm consumes too many resources (e.g., netwdriCRBU load) to remain
undetected. In particular, anomaly detection tools witlidate the presence of a mal-
ware, although removing the worm might be hard. Second,ftbe eequired to engineer
such advanced worms can only be undertaken by resourcefubrgianized illegal enti-
ties, which will seek a suitable “return of investment’—igat cases this goal can only be
achieved over a longer period of time. On the other hanchiatermsrequiresuitable en-
gineering techniques to remain operational despite pialgnbeing known to anti-virus
systems during their lifetime; in addition, their existenoay be uncovered by a single
detection event.

3 Code Obfuscation for Worms

Recently the cryptographic community has become intedestehe concept of secure
code obfuscators [BGI01, LPS04]. Informally, a code obfuscator is a probabdigtly-
nomial time progran(® that takes a program/ as input and produces a functionally
equivalent progrand/ as output, yefi/ is “unintelligible” in some sense. The existence
of secure obfuscators has various deep consequences toitg@t general—from the
existence of homomaorphic encryption functions over soféweatermarking towards soft-
ware copyright protection.

In future malware, a cryptographically secure code obfiesosould be extremely dan-
gerous. Suppose that a worm with cddé contains an obfuscation engine that outputs
functionally equivalent, but obfuscated codi, which it distributes along the traditional
infection paths. Now, a8’ andW are functionally equivalent}’ contains the obfusca-
tion engine as well and is able to produce obfuscated repli€the obfuscation is perfect
(in a sense to be described below), this would allow the coasbn of provably unde-
tectable wormseven with access to a single copy of the wdim it would be impossible
for a virus analyzer to tell whether a specific progréis an instance of the known worm
W. Such an obfuscated worm would clearly be a new chapter ivanal

How can we tell whether an obfuscation is secure? Barak.¢B@l"01] introduced the
notion of black-box obfuscatorsThey call an obfuscation secure il information that
can be computed out of the code of an obfuscated program ceadglbe computed out

of input/output pairs of the program. In other words, knayge of the code does not help

in analyzing the program. Somewhat surprisingly, it is faesto show that under this
security notion, obfuscation isnpossible to achieveBarak et. al. [BGt01] prove this

by constructing a class of functiotsthat is unobfuscatable in the sense that there exists
a propertyr of the functionsf € F that can be efficiently computed with access to an
arbitrary code that computegs whereasr(f) can only be guessed with low probability
without code access.

However, this limiting result is not necessarily the endexdige obfuscators for two rea-
sons: first, the proof of Barak et. al. only shows that theistex class of unobfuscatable
programs. It might be the case that obfuscation still wodksaf relatively large class of
practically relevant programs [LPS04]. Second, we beltba¢ black-box obfuscators are
not directly applicable to the field of computer worms. Inidiguishability in the sense
of Barak et.al. hides every bit of information an analysisl tmay be compute from a
program in probabilistic polynomial time. In fact, this g/pf security definition is closely
related to the concept of “learnability” in formal languatheory (a function is called
learnable, if it can be reconstructed by a polynomial nunatberaluations). We conclude
that black-box obfuscators are a theoretically importarittbo restrictive notion if we
want to capture the kind of code obfuscation we have to dealiwipractice.

Consequently, we believe that finding a suitable notion dbstation which suits both
cryptographic principles and applications is a challeggand nontrivial question. We
will now discuss several approaches towards this goal:

e Indistinguishability. We can call a worm code obfuscated, if it is not possible to
decide (in randomized polynomial time) whether a specifigpamlV’ is a possible
replica of a given self-obfuscating worli. That is, even with knowledge 67, a
virus detector would be unable to efficiently test whethepecific programiV is
a possible variation of the wor¥. Note that this problem is certainly decidable
for randomized polynomidll” andW by simulating all computation paths &f in
exponential time.

e False detection. A different way of describing obfuscated worm code is thioug
the false positives and false negatives of a virus detegtéalse positive occurs, if
a detector incorrectly classifies an innocuous program asrenywvhereas a false

negative occurs if the detector incorrectly classifies amvas harmless. Although
false negatives are potentially more problematic, theuise$s of a virus detector
depends highly obotha low false positives and false negatives rate.

From this point of view, a worm can be called obfuscateaviéryvirus detector

that correctly classifies the worm in question, has eitheugelfalse positives or
false negatives rate. In other words, even though the detey correctly clas-

sify the worm together with its replicas as hostile, the deteoverlooks other
viruses/worms or classifies harmless binaries as maliciolesarly, such a behavior
would be unacceptable for practical purposes.

e Detection of existence. Another notion of obfuscation may rely on the observation
that future obfuscated viruses (or worms) can be implamtéahiocuous files on the
infected host machine. In such a setting, we may call an chfien secure, if it is
not possible to decide whether a known vikiis(or one of its potential replicad’)
is embedded in a given binary.

We pose it as an open question whether obfuscation techmicpre be found that are
indeed secure in one of the above mentioned security defisiti

4 Conclusion

In this paper, we have focussed on the risks of systematiwanalengineering based on
advanced methods from computer science, as opposed tadthiotnal design approach
which is more ad hoc. We have argued that rapid distributomt the only strategic option
for malware. In particular, latent worms that spread sloldy towards a predetermined
goal pose a significant threat to the Internet, even more smwbmbined with mature
obfuscation and mutation techniques. We have also argadhe notion of black-box
obfuscation brought forward recently by Barak et. al. isnegtrictive, and have discussed
potential alternatives which will be the topic of future otUnfortunately, the impossi-
bility results by Barak et. al. have evidently discouragegptographers from continuing
work in this direction; we believe that in the light of malveagngineering and detection a
more fine-grained look at program obfuscation is worthwhile

Acknowledgements. We thank Volker Baier, Piotr Esden-Tempski, Uwe HermanmiBla
Reutter and Michael Tautschnig for their thoughts on nettegation computer worms.

References

[BGIT01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. &aB. Vadhan, and K. Yang.
On the (Im)Possibility of Obfuscating Programs.Rroceedings of the 21st Annual In-
ternational Cryptology Conference on Advances in Cryggloolume 2139 of ecture
Notes in Computer Sciengeages 1-18. Springer Verlag, 2001.

[BIu04]
[CJ04]

[CTL97]

[Ewa00]

[GJCH03]

[Jor02]
[KEO03]

[LPS04]

[PFS02]

[Scho4]

[Sha90]
[SM04]
[SPW02]
[SS03]
[WE04]

[WFBAOO]

[WPO04]

[XCEO3]

SymbOS.Cabir. available aécurityresponse.symantec.com/avcenter/
venc/data/epoc.cabir.html ,2004.

M. Christodorescu and S. Jha. Testing Malware DetsctnProceedings of the Inter-
national Symposium on Software Testing and Analysis (I98);2004.

C. Collberg, C. Thomborson, and D. Low. A TaxonomyQ@lbfuscating Transforma-
tions. Technical Report 148, Department of Computer Seighie University of Auck-
land, 1997.

Paul Ewald.Plague Time: How Stealth Infections Cause Cancer, Heareé&¥s, and
Other Deadly AilmentsFree Press, 2000.

V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitekffer Overrun Detection
using Linear Programming and Static Analysis.Pioceedings of the 10th ACM Con-
ference on Computer and Communication Security (CCS{i)es 354—-354, 2003.

M. Jordan. Dealing with Metamorphism. availablehp://www3.ca.com/
securityadvisor/newsinfo/collateral.aspx?cid=48051 ,2002.

D. Kienzle and M. Elder. Recent Worms: A Survey andntte InWORM'03—ACM
Workshop on Rapid Malcodpages 1-10, 2003.

B. Lynn, M. Prabhakaran, and A. Sahai. Positiveltsand Techniques for Obfusca-
tion. In Advances in Cryptology—EUROCRYPT,@dlume 3027 ol ecture Notes in
Computer Scienc@ages 20-39. Springer Verlag, 2004.

Frédéric Perriot, Peter Ferrie, and Péter.iiking Similarities—W32/Simile. Virus
Bulletin, May 2002.

B. Schneier. The Witty worm: A new chapter in malwaCemputerworld, available at
http://www.computerworld.com/securitytopics/securit ylvirus/
story/0,10801,93584,00.html ,2004.

M. Shaw. Prospects for an engineering disciplireofiivare.|IEEE Software7(6):15—
24, 1990.

C. Shannon and D. Moore. The Spread of the Witty Wormailable athttp://
www.caida.org/analysis/security/witty ,2004.

S. Staniford, V. Paxson, and N. Weaver. How to Ownlrkernet in Your Spare Time.
In Proceedings of the 11th USENIX Securiy Symposffa?2.

S. Schechter and M. Smith. Access for Sale: A new @&¥¢orm. In WORM 03—
ACM Workshop on Rapid Malcodpages 19-23, 2003.

N. Weaver and D. Ellis. Reflections on Witty: Analygithe Attacker. available at
http://www.icsi.berkeley.edu/nweaver/login_witty.t xt ,2004.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.filst step towards automated
detection of buffer overrun vulnerabilities. Network and Distributed System Security
(NDSS’00) 2000.

N. Weaver and V. Paxson. A Worst-Case WornBrhAnnual Workshop on Economics
and Information Security (WEIS'042004.

Y. Xie, A. Chou, and D. Engler. ARCHER: Using symhmolpath-sensitive analysis
to detect memory access errors. 9t European Software Engineering Conference
and 11th ACM Symposium on the Foundations of Software EmgingE SEC/FSE’03)
2003.

