
Towards a Formal Semantics for ODRL

(Extended Abstract)

Markus Holzer, Stefan Katzenbeisser, Christian Schallhart

Institut für Informatik
Technische Universität München

Boltzmannstrasse 3
D–85748 Garching

{holzer,katzenbe,schallha}@in.tum.de
April 2, 2004

Abstract

We give a brief overview of a new way to model the semantics of ODRL
permissions in a formal manner by using finite-automata like struc-
tures. The constructed automata capture the sequence of actions that
a user is allowed to perform according to a specific permission. In con-
trast to previous approaches, our semantics is able to model sell and
lend permissions.

1 Introduction

With the increasing availability and distribution of media in digital form,
the protection of intellectual property faces new challenges. Popular file
formats (like MPEG and MP3) facilitate the exchange of digital videos or
sound clips, books are published electronically and films are distributed on
DVDs. The possibility to easily and cheaply reproduce digital content with-
out permission has raised the concern of the music, film and entertainment
industries. Although classical analogue storage media (like VHS video or
audio cassettes) can also be copied, the inevitable quality loss present in
all analogue copies naturally limits the illegal distribution of copyrighted
content. In the digital age, however, thousands of lossless copies can be
produced easily and distributed over public networks.

In the past few years various techniques for preventing copying or re-
stricting the access to copyrighted material (called copy protection mecha-
nisms) were implemented. Examples of copy protection include encrypted

1

Renato Iannella
Proceedings of the First International ODRL Workshop (Eds. Renato Iannella & Susanne Guth) 22–23 April, 2004, Vienna, Austria



digital TV broadcast (conditional access systems), access controls to copy-
righted software through the use of license servers and technical copy protec-
tion mechanisms on the media (like the content management mechanism on
DVDs). A copy protection scheme is a special flavor of a digital rights man-
agement system, which attempts to enable secure distribution of copyrighted
content via open networks.

An integral part of a DRM system is a contract between the parties
involved. This contract may (among other things) describe the permissions
granted on an object distributed over a network, together with constraints
and requirements to be met before the permission can be executed. For
example, a typical constraint limits the number of times an object can be
displayed or printed. A requirement may express that a certain fee has to be
paid before executing the permission. Rights expression languages, such as
ODRL [2] and XrML [5], allow to express such contracts in a formal manner.
In this paper we deal with ODRL, but the construction is applicable to a
large class of rights expression languages. Currently, the semantics of ODRL
is described in the specification as English language text, whereas the syntax
is expressed in XML. Unfortunately, the lack of a precisely defined formal
semantics results in possible ambiguities. For example, ODRL allows a
copyright holder to lend an object to another user; however, the specification
does not precisely describe the the act of lending (and later returning) an
object. Ambiguities can only be avoided if there exists a formal semantics
for ODRL, specifying in an exact way the operations that are allowed by
the contract.

This year, Pucella and Weissman [3, 4] presented a semantics for a frag-
ment of ODRL (specifying agreements between two or more parties about
one fixed object) based on many-sorted first order logic with equality. In
this paper, we follow an alternative approach. More precisely, we give a
semantics that models the actions that are allowed according to a contract;
technically, this model is given in terms of automata. Each trace through
the automaton describes a valid sequence of actions for one participant.
Our model also enables to express sell and lend actions, where the object
is transfered to different users. In Section 2 we introduce the fragment of
ODRL that we are attempting to model in our semantics. Section 3 gives
an informal overview of the model we propose for the semantics of ODRL.
Finally, we present future research topics in Section 4.

2 A fragment of ODRL

ODRL is an extremely rich language that contains many different opera-
tions, requirements and constraints. For the sake of simplicity, we deal only
with a fragment of ODRL in this paper. In fact, we are merely concerned
with modeling offers that are not bound to a particular person. However,

2



extensions of our model to the complete ODRL language (except descriptive
elements like the ODRL context, which have no operational semantics) are
possible.

In this work, we concentrate on the following permissions:

• play, print, display, execute. If no constraints are specified, a play,
print, or display permission enables a party to play, print or display
an object an arbitrary number of times. Similarly, execute allows an
executable file to be processed on a computer.

• sell, give. Here, one party is allowed to transfer all rights over an
object to a different party (either with or without paying a fee).

• lend, lease. Here, one party transfers for a certain period of time
all rights over an object to a different party (either with or without
paying a fee). After the specified time period, the object is returned
to the original person.

In addition, we allow the following constraints that restrict the rights
listed above:

• user. A right is bound to a specific user.

• device. A right can only be executed on a specific output device.

• bound. A right can be executed a maximum number of times.

• transfer. The transfer constraints specifies the permissions that are
associated to an object after it is transferred with the sell, give, lend
or lease action. By default, no permission is granted on the transferred
object unless it is stated in a transfer constraint.

• temporal. A right is constrained to a specific time period.

From the list of ODRL requirements, we only consider payment; a per-
mission that has an associated payment requirement can only be executed
if a certain fee is paid in advance. Again, our model can be extended to
cover other requirements as specified in the ODRL language definition.

For more information on the syntax of ODRL, we refer to [2]. As XML
documents are hard to parse for humans, we deviate from the official ODRL
syntax and present all examples in this paper in a more “human-readable”
format.

In the rest of this work, we consider the following offers:

3



Example 1 A user is granted a print and display permission; no constraints
are imposed on the number of times these actions may be performed.

<offer>
...
<permission>

<display/>
<print/>

</permission>
</offer>

Example 2 A user is allowed to display an object at most three times.

<offer>
...
<permission>

<display>
<constraint>

<count>3</count>
</constraint>

</display>
</permission>

</offer>

Example 3 A user is allowed to display an object at most two times in the
(fictive) time interval 2–5.

<offer>
...
<permission>

<display>
<constraint>

<interval>2-5</interval>
<constraint>
<count>2</count>

</constraint>
</constraint>

</display>
</permission>

</offer>

Example 4 A user is allowed to display and print the object; furthermore,
he can sell it to a different user in such a way that the recipient is able to
print and display the object.

4



<offer>
...
<permission>

<display>
<print>
<sell>
<constraint>
<transferPerm>

<display>
<print>

</transferPerm>
</constraint>

</sell>
</permission>

</offer>

Example 5 A user is allowed to display and print the object; furthermore,
he can lend it to a different user in such a way that the recipient is able to
print and display the object. The ODRL code is similar to the code above,
except that <sell> is replaced by <lend>. In addition, a temporal constraint
describes the time period for the lending process.

Example 6 A user is allowed to display and print the object; furthermore,
he can sell it to a different user, who has the same permissions (i.e., display,
print and sell).

<offer>
...
<permission id="perm">

<display/>
<print/>
<sell>
<constraint>
<transferPerm

downStream="equal"
idref="perm">

</constraint>
</sell>

</permission>
</offer>

Example 7 A user is allowed to display and print the object; furthermore,
he can lend it to a different user, who has the same permissions (i.e., display,
print and lend).

5



3 A Semantics based on Automata

As said previously, we model the semantics of an ODRL contract in terms
of an automaton. First we outline the construction for ODRL expressions
that do not contain sell and lend permission; an extension that handles
these permissions will be given in Sections 3.1 and 3.2.

The states of the automaton implicitly code the “state” of the license, i.e.,
which actions are allowed at which point in time, considering the actions that
have occurred “in the past”; each edge of the automaton specifies an action
that can be performed at a specific license state, according to a contract.
In addition, there is a special null-action, called τ , which is applicable in
(almost) each state. We make the simplifying assumption that each party
can only perform one action at a time, where all actions of the party are
atomic and take a fixed amount of time (a tick). By this convention, the τ
action specifies a tick in which no action is performed by the user.

To illustrate this concept, consider Example 1; based on the above men-
tioned model, we can model its semantics as:

τ,print,display

Here, the automaton has only one state and a self-loop. Printing and dis-
playing the document once does not affect the state of the license; therefore,
we only need one automaton state to code the permission. It is thus al-
lowed to print and display an object an arbitrary number of times (by our
convention, we also allow the null operation τ).

Formally, the actions that are allowed by an automaton (i.e., its “com-
putation”) is defined in terms of a labeling function f that assigns each
state s ∈ S of the automaton a finite set of integers, f : S �→ 2N. For the
moment, assume that each state of the automaton is labeled either with the
set ∅ or the set {1}; only the modeling of lend permissions will require more
complex labels. The state that is labeled with a nonempty set is called the
active state. Intuitively, the numbers in the labels represent a person. At a
specific point in time, a person can only perform the actions that are rep-
resented as transitions from an active state that contains its identity (i.e.,
number) in the label. The construction of the automaton will assure that
all labels are mutually disjoint sets.

The labeling function changes with each tick. Initially, only the ini-
tial state of the automaton is labeled with {1}, each other state with ∅.
Whenever the user (encoded with the symbol “1”) performs an action, the

6



labeling function changes. In particular, the label {1} is erased from the
currently active state (it is replaced by ∅) and applied to the state that can
be reached by the edge representing the action. This way we get, for each
possible sequence of transitions, an infinite sequence of labeling functions
f1, f2, . . . representing the “status” of the license at each point in time.

Requirements and some of the constraints are modeled as labels that
are associated to edges; such an edge can only be taken if the annotated
constraint or requirement is fulfilled. For example, if we augment Example
1 with a payment requirement, we get the following automaton:

τ,print,display [payment]

Let us turn to example 2; here, the automaton is more complex, as it
requires to count the number of times an object was displayed “in the past.”
This can be done by using four different states:

τ τ τ

τ

display display

display

Here, the second state can only be reached from the initial state by a display
action. It is easy to see that from this state each (infinite) sequence of actions
that is allowed by the automaton contains at most two other display actions,
which shows that each path through the automaton contains at most three
display actions. Note that the license also allows users not to make use of
their display rights at all; this is modeled by the self loop in the initial state.

Modeling of time constraints may require to introduce a large number of
different states; for example, the following automaton represents Example 3;
for space reasons we abbreviate display by d:

7



τ

τ τ τ,d

d
τ

d

τ

τ

d

τ,d

Here, the number of states increases dramatically, as it is necessary to count
both the elapsed time as well as the number of times the object was dis-
played. Again, it is easy to see that the number of display actions on each
path throughout the automaton is at most two, as required by the license.

3.1 Extending the model to support SELL and GIVE

So far, we only had to consider one person that is active in the automaton.
This changes if we model the sell and give permissions. Once a person
(say, 1) performs a sell action, this person loses all rights on the object; the
rights are transferred to a new person (say, 2). Once person 1 performed
the sell action, he cannot perform any more actions and is removed from
further considerations. In the automaton, both the sell and give actions
are modeled by two dashed transitions, connected with a trigger:

s0 s2

s1

sell

Consider the last figure. The trigger and the dashed transitions have the
following intuitive meaning: Suppose that state s0 is labeled with {1}, i.e.,
person 1 is active. If person 1 performs a sell action, the label {1} disappears

8



in the next tick and is replaced with ∅ (you can think of 1 moving into the
dead-end state s1, where he is removed, yielding to label ∅ for s1). In the
same tick, a different person (say, 2) appears in state s2, yielding to the
label {2} for s2. That is, dashed transitions triggered by other transitions
introduce a new person, whereas dashed transitions that are not triggered
remove a person.

Using this convention, we can model Example 4 as:

τ,print,display τ,print,display

sell

Here, we have a self-loop in the initial state, as the user 1 is allowed to print
and display the object an arbitrary number of times. Once he chooses the
sell action, the user 1 disappears and the triggered transition introduces a
new person (2) in the state on the right. This new user can print and display
the object, but is not allowed to sell it a second time.

Example 6 differs from Example 4 in the way that the sell action may
be performed an arbitrary number of times. That is, person 1 can sell the
object to person 2, who in turn can sell it to 3, etc. This situation can be
modeled by a second self-loop in the initial state that is triggered by the
sell transition:

τ,print,display

sell

Note that, up to now, the labels of each state contain at most the identity
of one person.

9



3.2 Extending the model to support LEND and LEASE

It turns out that the lend and lease permissions are more complex to handle
semantically; in our semantics, both lend and lease are modeled in the same
manner. In contrast to sell, where the identity of a person is removed from
the labels after a sell action has occurred, this cannot be done in case of
lend or sell, as the person can perform other actions after the object is
returned.

We model this situation with two triggers:

s0 s1

s2 s3

s4

τ

release

lend

Suppose person 1 is in state s0 (i.e., s0 is labeled with {1}) and performs
a lend action; now, 1 moves into state s2, where it loops without action (note
that there is only the null action that can be performed by 1) until the object
is returned. The lend action triggers a dashed transition, indicating that
a new person (say, 2) is created, whose identity is placed in state s1 (now,
state s1 is labeled with {2}). This new person can use the object until it
gives it back to the original user; in the automaton, we model this action
by the operation release. Once person 2 returns the object, its identity is
destroyed, as indicated by the dashed transition between states s1 and s4.
The release action triggers a transition that “frees” person 1 from state s1

(the identity of 1 moves to a different state, in this case s3).
Using this convention, we can model Example 5 in the following manner:

τ,print,display τ

τ,print,display

lend

10



In fact, this is only half of the truth, since arbitrarily long chains of lend
actions cannot be modeled this way. Consider the following example: person
1 lends an object to person 2, who in turn lends it to person 3, etc. Now, as
the object must be returned to the person that initiated the lend operation,
3 must return it to 2 who can eventually give the object back to 1. If there
is no upper bound on the lend operations, it is not possible to model this
behavior by finite automata (intuitively, we had to construct an automaton
that accepts the word wwR, where wR denotes the mirror image of w, which
is impossible). In order to overcome this situation, we propose to introduce
a pushdown (stack) that controls the update of the labeling function when
the object is returned. Returning to the above example, when person 1 lends
the object to 2, the number 1 is stored (with some appropriate additional
information) on the pushdown; the same is done if 2 lends to 3. When 3
gives the object back, the top element of the pushdown holds the necessary
information for the user 2 to be activated. This topic is subject of current
research.

4 Conclusion

We have shown in this paper that finite-automaton like structures are a
promising tool to formally define the semantics of rights expression lan-
guages. We have seen that most ODRL expressions can intuitively be mod-
eled as automata. However, the lend permission turns out to be the most
complex operation in ODRL; to model infinite chains of model operations,
one has to go beyond finite automata.

We believe that the automata resulting out of our construction can be
used to intuitively visualize the meaning of an ODRL expression. In addi-
tion, once automata can be constructed automatically from ODRL expres-
sions, it becomes possible to verify properties of the ODRL contract by logics
like CTL or LTL that are commonly used in current verification software
[1].

References

[1] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.

[2] R. Ianello, Open Digital Rights Language (ODRL), Specification, Ver-
sion 1.1, available at www.odrl.net, 2002.

[3] R. Pucella and V. Weissman, “A Logic For Reasoning about Digital
Rights”, Proceedings of the Computer Security Foundations Work-
shop, 2002.

11



[4] R. Pucella, V. Weissman, “A Formal Foundation for ODRL”, in Work-
shop on Issues in the Theory of Security (WITS), 2004.

[5] eXtensible rights Markup Language (XrML) 2.0, Specification, avail-
able at www.xrml.org, 2001.

12




