Transaction Processing for Clustered Virtual
Environments

Christian Schallhart

Institut fur Informatik
Technische Universitat Minchen

schallha@cs.tum.edu

Abstract. This paper introduces Massively Multi-Player Online Roknies (MMORGY)
which are currently a main focus of the gaming industrmdRGsare Networked Vir-

tual Environments (MES) where a player can navigate his or her character through
a large game-world which is populated by thousands of otlegteps and non player
characters. Based the problems arising in the contextibRiGs, we will motivate

the development of a domain-independent middleware tosuppmMORG in partic-

ular and networked MEs in general. Finally, we will introduce AEIRON, a mid-
dleware which is based on a flexible transaction processargdwork. A EIRON is
designed to serve as basis for the next generatiormoRLG.

1 Introduction

In this paper we will motivate the development of a middlesvahich is projected as basis
for networked virtual environments (NES). Today, applications from diverse domains such
as cooperative work and military simulations are colledincalled NVEs. To cope with the
differing requirements which are associated with thesdiegdns, a couple of frameworks
have been proposed and implemented, see [7] for a categionod these approaches and an
overview over of corresponding implementations.

Each of these frameworks was built without any separatitwdxen the domain-specific and
domain-independent issues. Therefore, these solutiodddebe relatively inflexible.

Currently, the entertainment industry is developing skkeddMassively Multi-Player On-
line Role Games (MIORGS). A MMORG simulates a game-world which is populated by
thousands of different characters. Some of these chasaatercontrolled by human players
while others are controlled by theWbRG system. The user is connected to the virtual game
world through the internet and observes his or her char&cterthe third person perspective.
MMORGS are challenging for several reasons such as high scajaduid realism.

We propose a transaction based middleware, callediRoN, to support MIORGS Be-
cause of the real-time character of such simulation, thensomtransaction semantics must
be expanded to guarantee non-blocking access. We chonsadt®ns as the central abstrac-
tion in our middleware, since they allow to state the reguggnchronization guarantees in an
abstract and uniform way. Thus, we do not confront the appba developer with a number
of low-level primitives but with a single method to organtbe synchronization of different
applications. Also a number of different implementatioas be used with the same principal

2 Christian Schallhart

interface such that different platforms can be supportegtevely and more importantly, an
incremental development is manageable in clean way.

The paper starts with a brief introduction ofvEs. In the following section, NMORGS
are described and presented as an interesting researci &getion 4 gives an overview on
the domain specific services of awbRG. Finally, Section 5 proposes a domain-independent
middleware solution for MIORGS in particular (and NEs in general) followed by some
concluding remarks.

2 Networked Virtual Environments

The terms virtual reality and virtual environment have besed with varying meanings. The
ambiguity of these terms is rooted in the wide range of apfibes which are based upon
virtual reality. Examples for such applications includditary simulations, educational sys-
tems, as well as entertainment applications. Thus, manyitiefis on different flavors of
virtual reality systems have been introduced, to distislylietween these varying technolo-
gies which are related to virtual environments. For examplaugmented reality, the real
environment is seen through a display which shows someaiderirtual environment. As a
common denominator, we will use the following definition [Ihich summarizes the most
common characteristics of virtual environments.

A virtual environment (\£) is an interactive, immersive, multi-sensory, 3 dimenalpn
synthetic environment.

The appearance of the modern PC with its high-resolutigplgealisplays and the widespread
use of the Internet allow the development and broad deplaywfenetworked virtual envi-
ronments (NVES) supporting multi-user applications such as large-saabellations or col-
laboration tools. In the context of virtual environmentstworking is employed for two ends.

¢ First, networking can be used to distribute the load of thematations which are associ-
ated with a large-scale virtual environment over a numbeoaiputers.

e Second, networking allows a number of geographically disgubpersons to interact with
each other within the same virtual environment.

Both types of distribution with respect to virtual enviroents share a number of problems.
NVES are usually soft real-time applications [5], i.e., the aggr response time of thevid
should be low. Because of the complex interactions whickeabetween the objects of an
NVE, this requires a comprehensive synchronization and cornuation layer.

In addition, both aspects of networking have specific proisleln the first case, a rel-
atively small number of nodes is usually interconnectedhwit cluster, i.e., the complete
environment is dedicated to thevH. Ideally, such a cluster should mimic the behavior of
a single machine, so for example, the different tasks shioiltightly synchronized and the
load should be dynamically balanced. SMP become more and atwactive and should be
utilized effectively.

In the second case, if the Internet is used to allow a geogralphdispersed group of
people to interact within a virtual environment, the maiolgem is that the connection be-
tween the server system and client is not under the conttbkeoivE-system. Consequently,
the central problem is to provide a responsive and consistenronment to the user in the
presence of long transmission times and frequent packe{3s

Transaction Processing for Clustered Virtual Environraent 3

3 MMORGS
3.1 The World ofMMORGS

Massively Multi-Player Online Role Games (MRGS) enable a large number of players to
explore a persistently stored virtual game world using aofietry character. Although the
background stories of these games include different gesues as the middle-ages, fantasy,
and science fiction, the principal appearance is alwaysamesA typically human-like char-
acter controlled by the player and observed by the playehercomputer screen is acting
in a virtual game world which may feature 3-dimensional gapbical and architectural en-
tities such as open landscapes, buildings and dungeonsiffi@ game world is inhibited
by a number of human controlled characters and computeraiteat characters (non player
characters or Rc9. From the player’s perspective, one important goal oh@sinteractions
with the virtual game world is the development (“improvertieof the fictionary character
by gaining experience, e.g., by exploring certain areasjittpries in fights with computer
or human controlled characters. The other central motiaa play a MMORG is the inter-
action with other players within the virtual environmentagting, exchanging items of the
game world, and exploring the game world collaborativeéyessential to the experience of a
MMORG player. Usually, MMORG players maintain their evolving characters over relagivel
long periods of time. It is not uncommon that players use #mesthe character over more
than a year. To this end, aWbRG must maintain the game world itself and the characters
persistently.

3.2 Research Interest infd MORGS

MMORGS are generally considered to be the most important rece@@wment in the com-
puter game industry. The first economically successfmd®G was Ultima-Online The
success obltima Onlinewas inspiring — other MIORGS entered the emerging market, most
notably EverquestAsheron’s Call and Anarachy Online In comparison to games which
did not feature networked gaming (or only LAN-based gamitiggse early MiORGS had
a relatively weak game quality, especially with respectrapbics. The new generation of
MMORGS, such astEverquest lland Asheron’s Call I| presents to the player a world of
almost the same quality as a traditional game. The econanaeist into this genre is under-
lined by the fact that major companies in the IT-industrytsas Sony, AT&T, and Microsoft
show a strong interest in MORGS and are actively developing products in this domain. The
reason for the strong interest of the gaming industry inted®Gs is rooted in the fact that
MMORGS are client-server applications which require players tthenticate themselves.
Therefore the possibility to use illegal copies is elimeatatMoreover, for the same reason, it
is possible to charge each player a monthly subscriptian fee

From the technical and organizational point of viewmNRGsS offer a new challenge
to the gaming industry. So for example, the computationsbueces necessary to host a
MMORG are by far larger than for any other kind of game. Also, the gonents which run
server-side must be more reliable than usual game code.nergle the software qualities
necessary to build a MoORG successfully, cannot be achieved by traditional game eevel
opment strategies. For a long time, the game developmenincoity had been relatively
uninterested into academic developments. However, asteteanf the Game Developer
Magazinetitled “In Defense of Academe” (November 2002) shows, theigg community

4 Christian Schallhart

becomes more and more interested in a more academic andduktgizally grounded ap-
proach. More specifically, the following goals are shareddaay’s MMORG projects — and
none of them is able to reach all of them.

e Today’s MMORGS are supposed to allow 3.000 or more human players to be irathe s
simulated world. Roughly 30.000 #¢s must be maintained in the same world. This
requires significant computational resources.

¢ MMORGS have to offer the player a logically consistent world, itbg world should
follow its inherent game logic while the underlying implemt&tion should not cause
any unmotivated events. Of particular importance isdbamlessness a MMORG. A
MMORG is called seamless, if the distribution of a game world oveumber of server-
nodes does not lead to synchronization artifacts which easbiserved by players.

e The world of any MMORG has to evolve over time. Changes om®RGS include small
changes such as the tuning of certain parameters to keeprteig balance expansions
such as adding a new area or a new non playing character, abdl ghanges such as
adding a new skill to all characters in the game. Such chasigesld happen in a fair
manner, i.e., they should happen simultaneously for aliazttars. And ideally — changes
should be executed without down-times of th&RG server system.

¢ MMORGS are soft real-time services [5], i.e., aWbRG-system is required to respond to
requests within a given time-bound on average with a smathwee.

e Achieving high reliability is a prominent goal in theMbRG-community. Most of today’s
MMORGs display weak reliability which is degrading consumer gatgon.

e Clients of MMORGS must be considered hostile since a certain fraction of ptayel al-
ways try to cheat. Any possibility to obtain some advantageMMORG will be exploited
by cheating players.

Summarized, MIORGS combine several features which make them an interestiregcbbj
for research. First, MORGS are a growing market which is currently conquered by indus-
try. Second, MIORGS are technically very challenging and today’s tools are nffigent
to build a MMORG which satisfies all these design goals. Third, the gamingstrgt has ac-
knowledged the need for a more methodological approacharatademic support. Fourth,
MMORGS are still games, i.e., while the goals of anydRG-project are ambitious, partial
failures are tolerable. Finally, we believe thaM@RGS subsume many properties of other
NVES. Therefore, a middleware which is able to satisfy the nedds MdMORG should be
usable in a much broader context.

1A game is balanced, if there is no dominating strategy. Fangple, if a certain character type, such as a
warrior, is always superior to another character type (@.griest), then the game is unbalanced. To make a
game interesting to players, it is important to balance aggamto ensure a diversity of characters and game
approaches.

2If there is any advantage in crashing theadIRG servers, cheating players will do so. In 208&heron’s
Call has been a victim of such an attack. The attackers’ goal weapticate a set of given items. To achieve
this, they moved these items from one server to another. BhtaNfine-tuned timing, the attackers were able to
crash the first server just after leaving it. Therefore, thmiwas still stored in the backup of this server and at
the same time in the hands of the player’s character, thussibben duplicated. Once the reboot of the crashed
machine had finished, they attackers returned to obtainutpkodte.

Transaction Processing for Clustered Virtual Environraent 5

4 MMORG Services

In this section, we will present a model for the domain spedérvices of a MIORG. To
do so, we subdivide the domain of aM®RG-system into three sub-domains, namely the
gaming domainthe maintenance domajrand theproduction domainsee Figure??. The
gaming domain contains all services which are needed byligr@sto play the game while
the maintenance domain consists of those services whicheseed for the management of
the produced content, subscription management and oth@netrative tasks. Finally, the
content-production domain embodies all services whichhaoessary to produce the content
itself. Here, we will consider the content-production damanly in so far as we need to
describe the gaming and maintenance domain.

In the following, we will briefly introduce these three subrdains with their respective
services.

4.1 Gaming Domain

The services of the gaming domain collaboratively mainth@ game state and allow the
client to access this state. These services have to opender goft-realtime constraints,
must be highly available, and have to scale well. In totaldlaee the following four services.

Game-State Server: A MMORG'S game-state is held and continuously processed by a clus-
ter of game-state servers. A specific game-state serveldsmadset of zones, i.e., the
server executed the control loop of all active objects, sasmon playing characters,
which are located in this zone. Therefore, a single game-stxver must access the set
of distributed, persistent, and active objects which dtutsteach of its zones and process
their control loop.

Connection Server: Each connection server for aMbRG is responsible for managing the
connections for a number of clients, i.e., to mediate thesaugss between its clients and
the game-state servers which are currently holding theackens of these clients. To do
so, the connection server has to select, prioritize and thadkdata which is sent to the
client. This data is provided by the game-state and chaeser®n the other hand, the
connection server has to validate each (potentially lestiatum sent from the client to
the server at the application level. In the case of a posual&ation it has to forward
each datum to the responsible server.

Chat Server: Because of the large number of chat messages which typaaily in MMORGS,
dedicated chat servers are required. A chat server shouticrfeatures of a commonly
accepted chat system, such as the Internet Relay Chat (iR&@jdition to these standard
features, there must be a special chat channel which is ggloigally segmented, i.e.,
which allows geographically near objects to exchange ngessdo achieve this goal, the
chat servers need to communicate with the game-state seiivex chat servers also need
to communicate with the connection servers which constitue interface to the client.

Game-Control Server: The game-control server of aMbRG governs all services of the
gaming domain of the MORG. It controls their start-up, shut-down, patching, and bal-
ancing. In general, the game-control server acts as fachttee @aming domain with
respect to the maintenance domain.

6 Christian Schallhart

The gaming services are tightly bound to each other, sireedl access the game state. The
game-state server is maintaining the objects which canstihe game-state, i.e., it keeps
them active by executing their control loops. The conn&ctierver needs to map changes in
the game-state to messages to be sent to the client and leasltthe client-requests to these
objects. The chat server has to know the geographic positithre characters, and finally, the
game-control server has to execute global transactionseogame-state, such as expanding
it. All these operations are required to be synchronizedthund all these services should be
based on the same common middleware services and distnbutddleware.

4.2 Maintenance Domain

The maintenance services do not share the extensive ditglalnid realtime constraints

of the gaming domain. In contrast, they provide standardices and might be based on
commercial-off-the-shelf (COTS) products. To achievergguired availability, simple du-

plication of the corresponding services suffices.

Login Server: The login process into a MORG can be divided into two steps. First, the sub-
scriber’s identity and permissions have to be checkedidilidation is successful, then
in the second step the connection has to be established.r$hstéip is entirely handled
by the login server while the second step is mainly delegttéde game-control server
which activates the subscriber’s character and initidtesonnection (by issuing the nec-
essary operations on the game-state and connection gefusedogin server receives the
IP-address of the selected connection server and forweta$he client.

Download Server: The download servers of aWoRG must provide all software and data
which is needed by the clients to enter the game. Because gbtfitinuous development
of a MMORG, the download server must also provide incremental patshel that a
client can update itself by downloading only a minimal ancafrdata.

Update Server: The update server is responsible for providing the patcleshaarise from
the changes and expansions of th&®RG's world. In other words, the update server is
the interface to the content-production domain. The finatyduced content needs to be
submitted to the update server in terms of a correspondiegtcnd server patch. The
client patches have to be deployed to the download servdrafter an appropriate period
of time the associated server patch has to be executed byathe-gontrol server. Once
the game-control server applies a server patch, the caonesgrvers will be informed to
require each connecting client to be patched with the aatamticlient update. Thus the
update server provides the patches but it does not conswlapplication.

Configuration Server. The configuration server is responsible for maintainingci@aplete
configuration of all the services which constitute the ragnMMORG, i.e., it will asso-
ciate a gaming domain cluster with a set of login, download apdate servers. It will
also know the current configuration of theM@RG with respect to patching and issue
the complete patching procedure, that is, it will uploadiantlpatch onto the download
server to make it publicly available, and later, it will corand the game-control server to
apply the corresponding server patch to the game-state.

By using a configuration server to establish an associagbné®en the different services,
it is also possible to use the same services for severabRG-instances. For example, it

Transaction Processing for Clustered Virtual Environraent 7

will be necessary to maintain several test games which @ssaime update server as the
publicly running game.

The services of the maintenance domain are relatively lpasmipled. The login server
maintains its subscription database completely isolateah the other services, it only in-
teracts with the game-control server to initiate the cotinaestablishment. The download
server is the data-source for the data distribution, thg eoturring interaction with the other
services is the upload of new patches from the update s@iveupdate server is the interface
between the content production domain and the maintenamaid and provides distinct in-
terfaces to both domains. From the perspective of the maantee domain, the update server
provides a simple data-repository which is used by the gaomérol and download server.
This interface might be a standard protocol such as FTP. dhéguration server will em-
ploy a standard database product to manage its configuddi@n Again, the configuration
server can be designed as a classical stand-alone datgipdisateon.

4.3 Content-Production Domain

The content-production domain can be further subdivideatime art-pipeline and the game-
design. Both domains are populated by applications whiehuaed to create and maintain
the game world. We will not discuss the concrete applicatiohthese two domains since
any concrete production domain will be specific to the coecgame and especially to the
graphical representation.

Theart-pipeline is based on standard graphics tools for 3D-modeling. TYgi¢hese tools
are expanded by custom scripts and plug-ins, to form a pipeBecause of the massive
amount of work to be done by the art-team, the organizatiehisfvork is critical. There-
fore, the content-production domain is characterized byinkegration and modification
of existing tools to form an effective production environthdn addition to the graphics-
tools, there need to be extensive version control fadlitoe binary as well as for textual
data. Finally, the raw-models produced by the art-pipetmest be transformed into the
client’s data-format and for each model a description ofdhi@esponding object which
is sufficient for the game-state servers must be generated.

The game-desigruses these models to build, modify and expand existing afdégsmain
challenge is again the integration of different tools. Ie teal case, a game-designer
can employ an environment which allows her or him to plactedsht objects visually in
an area and to program these objects both visually and irstefra scripting language.
Naturally, the game-designer must be able to test new afé@sintegration of testing
facilities can be done in a number of different forms, raggdnom a special client which
comes with a completely integrated game-logic to the atilon of the common client
connecting to a test gaming environment.

4.4 Domain Independent Services

In this subsection, we will discuss which of the three subidims gaming, maintenance, and
production can be supported effectively by a domain inddpetmiddleware. Furthermore,
we will discuss the characteristics which should be met lmh sumiddleware.

8 Christian Schallhart

The common characteristic of tigaming domain’s servicess that they access a shared
database in a highly concurrent manner requiring repbticapersistence and synchroniza-
tion primitives under the pressure of soft-realtime caiats. This database represents the
game-world which consists of a set of active objects, i.bjeas which are changing their
state pro-actively.

Not building the gaming domain on a shared general middlewalt lead to the stovepipe
system anti-pattern [2]. This anti-pattern arises whemgtrfaces between pairs of commu-
nicating subsystems are distinct and mutually incompatibl such a situation usually multi-
ple infrastructure mechanisms are used to integrate thrsystems. This leads to difficulties
in modifying or even describing the architecture. The cqnseces of such a development
approach are large semantic gaps between architecturengotation and implemented soft-
ware. The software might even comply to the paper requirésnaut it does not meet the
user expectations, system maintenance becomes surprisosjly, the project takes more
resources than expected for no obvious reason, the systaplexty increases heavily on
even slight expansions.

There are two situations which justify to follow this antpern consciously — the exploration
of a yet unknown domain and the quick development of a pauthgtional prototype. But in
such a situation, it is usually necessary to restart theeptdjom scratch afterwards.

In contrast, thenaintenance domain’s serviceare loosely coupled and might be assem-
bled in a heterogenous manner by utilizing standard packagéhe corresponding tasks. For
example, the login-server might be developed based on tlaefgpWeb-Server and a com-
mercially available billing package, and the download secan be a simple FTP-server. The
interface between the maintenance domain and the gamingidasprovided by the game-
control server. This server will provide an interface to thaintenance domain which is not
based on the middleware, therefore the maintenance doseamipletely independent from
the middleware.

The content-production domain will consist of a set of diverse applications. Many of
these applications will not use a live gaming environmeypidally, they will be third-party
provided graphical tools which are used to model the graplaippearance of the artifacts
in the game-world. Thus, these applications can be kept ety independent from the
middleware.

On the other hand, some of the applications in the contesdtmtion domain will require
access to a (running) game-world. For example, there cauédiorld-editor, which allows to
compose new zones from base elements such as terrain tppsgshitems etc. Ideally, such
an editor would not utilize some specific implementatiornaf game but would use the same
implementation as the gaming domain itself, i.e., would &gdlol upon the same middleware.
However, game-editors display completely different asqestterns than the services of the
gaming domain. Also, a MoRG will not be built with a single editor but with a (growing)
set of editors which provided for different and specific askhus such a shared middleware
must provide the means to integrate new applications wialtbw different access patterns
at ease, i.e., the middleware must allow to compose the @mpystem out of applications
which are built as independently as possible. Consequeahtye must be a single shared
horizontal interface such that compliance to this intexfacsures integrability. This situation
IS one more strong reason to seek a strong horizontal layketoeavoid the consequences of
a stovepipe system.

Summarized, the gaming domain must be the main focus of alewwdde for MMVORGS,
I.e., the middleware has to enable a cluster to maintain eedhend persistent database of

Transaction Processing for Clustered Virtual Environraent 9

active objects which provides a broad set of synchronimgtiamitives and which supports
replication for the sake of efficiency and fault-toleranéarthermore, the middleware must
be designed to meet soft-realtime constraints, since tleeatipns of the gaming domain
require response times with small variances. The opemabonthe database which are ex-
ecuted by the gaming domain cause relatively small chargéset game state but might
require to read a comparatively large set of objects. Intamdio the services of the gaming-
domain, various editing applications of the content-puaitun domain must access the shared
database. These applications are operating on the databasevhole, for example, they
might need to change a complete zone in the world or mightireqo change a large set of
objects simultaneously.

Thus, a middleware for MORGS has to support a wide variety of different access pat-
terns. In particular, different synchronization modes tiesavailable, i.e., the applications
must be able to choose between serializable access forntssanidolated access forms, such
as reading a possibly outdated but consistent snapshaot oitfabase.

Taking this starting point, we will propose a middleware @rhallows a cluster of SMP
machines to maintain a database of active objects. The aviddé will be based on an ex-
panded transaction concept which enables its applicatooascess the database with a broad
set of synchronization strategies.

5 Transaction-based Gaming Domain
5.1 Transactions with Weak Isolation Levels

NVES (and even MIORGS) have a very broad set of different requirements such thegi-it
pears impractical to build a specific solution directly. $hwe are developing a middle-
ware, called REIRON, as a domain-independent middleware which is designedgpast
the domain-specific services introduced in Section 4 on page

The most natural modeling of anWbRG (and VES in general) is a database of option-
ally active objects. Each active object is continuouslyatpdy its state based on the current
state of its environment. Ideally, such an object is impletad without any knowledge on
the underlying distribution and concurrency issues. Haxehis ideal is hardly achievable.
While it is possible to handle the distribution of the datdaternally by the middleware, it
is not possible to handle concurrency issues implicitly.

If the implementation of the active objects has to deal withaurrency related issues
explicitly, then the primitives for the synchronizatiorostd be as uniform as possible. Also,
they should be abstract such that different concrete dlgos can be used to implement these
primitives. The transaction is a concept which is flexiblewgh to offer different synchro-
nization strategies but offers quite a uniform interface.

The classical notion of transactions are the ACID semanBi¢idD is an acronym for
atomicity, consistency, isolation, and durability. Ataity refers to the fact, that all opera-
tions of an ACID transaction are executed completely or mafrthem. Consistency means
that such a transaction transforms one consistent stateealdtabase into another one. A
transaction is isolated, if it is not affected by any oth@nsaction, i.e., the transaction is
accessing the database virtually exclusively. Finallyabity means that the effects of a
transaction once executed are made durdble.

3The ACID semantics were introduced in [3]. For a general vieer on classical transactions and their

10 Christian Schallhart

Because of their serializability, ACID-transactions aaare insufficient. In addition to
executing serializable transactions, the services of éneiigg domain must be able to access
objects in a non-blocking manner. For example, the decisioat a non playing character is
going to do next has to be made within soft-realtime, i.e time until the decision is found
must be within a given bound almost all the time. Usually, Nt has to know the state of
the objects in its neighborhood to determine its next stepvéver, the decision of the ¢
can be based on slightly outdated data.

To fit different synchronization scenarios, the transatiased in REIRON allow the
application to specifysolation leveldor each accessed object [1]. The isolation-level of an
accessed object describes the guarantees which are asdowith this object with respect
to all other objects which are locked within the same tratisacFor example, the states of
two different objects which are locked within a single tractson might be required to be
mutually consistent.

The isolation levels of REIRON form a hierarchy, i.e., every isolation-level includes the
guarantees of the preceding ones. We list them below, regaati the weakest (committed)
and finishing with the strongest (exclusive).

Committed: The object versions which are accessible under this isold@vel are only
guaranteed to be committed. Therefore, if two object aresssd under this isolation
level, it is perfectly possible that the first object is aataty presented while the second
one is already outdated.

If a transaction writes on an object under this isolatiorelethen lost updates might
occur, i.e., the object might have been changed indepelgderthe meantime.

Monotone: All objects which are locked under this isolation level (dnigher one) within
the same transaction behave monotone with respect to thbads development over
time. More precisely, once an object state is made accesththe application which
incorporates modifications of a transactidih then every object state which is locked
afterwards must incorporate the change® of he behavior in case of a modifying access
Is the same as for the committed isolation level.

Consistent: This isolation level allows to lock a set of objects withincaalled consistency
group, i.e., if one these objects reflects the effects ofrasaetion’’, then all objects in
this group must reflect the changes/ofif an object which is locked under the consistent
isolation level is modified, then REIRON enforces that no lost update occurs.

Accurate: If an object is locked under this isolation level, then thegemted version must
be up-to-date and no other transaction is allowed to chamgelbject in the meantime.
This scheme corresponds to classic ACID-transactions.

Pessimistic: The isolation level accurate and pessimistic are intergeable — the correct-
ness of a transaction is independent of this choice. Howsueh a change will have a
strong impact on the performance of a transaction: If anatbgelocked with isolation-
level pessimistic, then it is guaranteed that the corredipgrntransaction will succeed in
validating the accesses this object. In other words, one¢réimsaction has a pessimistic
transactional lock on all locked objects, it knows it will bemmittable.

This isolation-level is useful for accessing high-coni@mtdata, i.e., objects which are

implementation, see [6].

Transaction Processing for Clustered Virtual Environraent 11

modified by many transactions concurrently such that casfliose often. Naturally, ob-
taining a pessimistic lock might fail more often than acopgran accurate lock.

Exclusive: This isolation-level gives exclusive access to an objdtiss it subsumes the
guarantees of pessimistic. This isolation-level is maudgd as a synchronization primi-
tive.

More precisely, A#EIRON allows the application to specify an isolation-level whish
required immediately and another one which is requiredctlirdbefore committing to the
database.

We call the first isolation-level theinning isolation-level. The application uses the run-
ning isolation-level to specify the isolation-level whishrequired such that the transaction
itself does not crash. For example, a transaction mighhafase referential integrity of a
set of objects is not guaranteed. In such a case, the apptidatks them under the run-
ning isolation-level consistent. Summarized, the runmsagation-level is used to ensure that
the transaction itself does not crash. However, it does msare that the transaction can be
committed correctly.

The second one is called themmitment isolation-level This isolation-level is enforced
during the commitment of the corresponding transactions Tdolation-level can only be
stronger than the running isolation-level (since the isotalevel can only be expanded over
time). The commitment isolation-level is used to descrileduarantees which are required
for a transaction such that its outcome is correct. For exangptransaction might access
only two objects under the running isolation-level comedtbut might require a commit-
ment isolation-level accurate. In this case, the transaatiust be programmed such that
inter-object inconsistencies does not cause the traosatdicrash, but the outcome of the
transaction must only be correct, if the locked states otwteobjects were up-to-date and
are unmodified at the moment of commitment.

5.2 Services as Active Objects

As pointed out in [4], the migration of a character is comp&eao the migration of an
process. In both cases an active objects has to be suspdratesfered to another node,
and resumed again. In the case of the migration of a chayaloceeadditional difficulty is to
achieve migration as quickly as possible — the charactarldhie seamlessly observable.

In an NVE-cluster, the objects which are observable from more thanrmte must be
replicated in order to achieve the real time character okiimeilation. The replicas will not
be perfect but slightly outdated with respect to the masistance. The weaker isolation
levels which allow to access slightly outdated versionsrobhbject can use such replicated
versions of an object. If a character moves from one node dthan typically it has been
replicated at the new node for quite some time. In such at®tuathe migration is only
required to change a former slave replica into a masteroplnd vice versa.

Since each NE-cluster solution must come up with a solution for charaotegration, it
is actually providing a solution for process migration. dfere, within APEIRON, services
are modeled in terms of active objects. In consequencegalilfes associated with common
objects are available for services. Particularly, sewvicen be maintained in fault-tolerant
manner and can be migrated for the sake of load-balancing.

12 Christian Schallhart

5.3 Incremental Implementation

The transaction interface is the main interface for appbes. As stated in the preceding
subsections, we are using transactions as interface diegeatlow to state different syn-
chronization strategies uniformly. At the same time, theysufficiently abstract such that a
variety of different implementations can be applied. Intjgatar, it is possible to build the
underlying implementation incrementally.

An implementation can be restricted in terms of a consemathplementation, i.e., in-
stead of implementing an isolation level, the implementatan just use the next higher
isolation level.

Another option for incremental development is to vary th@lementation of the distri-
bution mechanisms. The common application interface PEIRON does not give allow to
manipulate the distribution of objects. This interfaceyoallows to constrain the replication
of an object — the way these constraints are enforces is sairadble through the interfale.
Therefore, it is possible to start with a relatively simpigiementation for SMP machines
without any distribution, or to build an implementation whidoes not maintain any replicas
for the sake of fault-tolerance.

6 Conclusion

We presented MORGSand motivated the design off e IRONby the requirements of MORGS.
However, APEIRONtself is domain-independent and provides a general ansistemt set of
functionality to the application developer. Therefore, vk that APEIRON can be used as
basis for other types of WEs — at least to solve the problem of load distributiorrEARON
leaves the problem of geographical distribution to the darspecific and/or application
level since there is no general solution for it.

The key-concept of AEIRON s a transaction interface which is based on weak isolation
levels. Such an interface is intuitive to application depelrs and clearly separates the appli-
cations from any low-level operations. Therefore, it beesmpossible to develop applications
atop of APEIRON using a uniform interface concept, based on varying impieat®ns.

Currently, we are deriving a complete architecture f@eEARON and started to implement
basic modules. We hope to have a running prototype for SMéhmas supporting at least
two weak isolation levels by the end of 2004.

References
[1] Atul Adya. Weak Consistency: A Generalized Theory and Optimisticémphtation for Distributed
Transactions PhD thesis, MIT, 1999.

[2] William J. Brown, Raphael C. Malveau, Hays W. McCormieind Thomas J. MowbrayAnti Patterns
Wiley & Sons, 1998.

[3] T.Harderand A. Reuter. Principles of transactioreated database recove§omputing Survey45(4),
1983.

[4] J. Huang, Y. Du, and C.-M. Wang. Design of the server eugb support avatar migration. Mirtual
Reality, pages 7-14, 2003.

4There is a separate interface which allows to access anguiate the underlying meta-data which contains
the underlying platform parameters and the configuratich@fctive databases.

Transaction Processing for Clustered Virtual Environraent 13

[5] Hermann KopetzReal-Time System&Iluwer Academic Publishers, 1997.

[6] Nancy Lynch, Michael Merritt, William Weihl, and Alan kete.Atomic Transactiondviorgan Kaufmann,
1994.

[7] Michael R. Macedonia and Michael J. Zyda. A taxonomy fetworked virtual environmentslEEE
MultiMedia, 4(1):48-56, — 1997.

[8] Douglas C. Schmidt and Stephen D. Hustd®++ Network Programming, Volume 1: Mastering Com-
plexity with ACE and Pattern<C++ In-Depth Series. Addison-Wesley, 2002.

[9] Sandeep Kishan Singhakffective Remote Modelling in Large-Scale Distributed@ation and Visual-
ization EnvironmentsPhD thesis, Stanford University, 1996.

[10] R. Stuart.The Design of Virtual Environment€omputing McGraw-Hill, 1996.

