
Transaction Processing for Clustered Virtual
Environments

Christian Schallhart
Institut für Informatik

Technische Universität München
schallha@cs.tum.edu

Abstract. This paper introduces Massively Multi-Player Online Role Games (MMORGS)
which are currently a main focus of the gaming industry. MMORGSare Networked Vir-
tual Environments (NVES) where a player can navigate his or her character through
a large game-world which is populated by thousands of other players and non player
characters. Based the problems arising in the context of MMORGS, we will motivate
the development of a domain-independent middleware to support MMORG in partic-
ular and networked NVES in general. Finally, we will introduce APEIRON, a mid-
dleware which is based on a flexible transaction processing framework. APEIRON is
designed to serve as basis for the next generation MMORG.

1 Introduction

In this paper we will motivate the development of a middleware which is projected as basis
for networked virtual environments (NVES). Today, applications from diverse domains such
as cooperative work and military simulations are collectively called NVES. To cope with the
differing requirements which are associated with these applications, a couple of frameworks
have been proposed and implemented, see [7] for a categorization of these approaches and an
overview over of corresponding implementations.
Each of these frameworks was built without any separation between the domain-specific and
domain-independent issues. Therefore, these solutions tend to be relatively inflexible.

Currently, the entertainment industry is developing so-called Massively Multi-Player On-
line Role Games (MMORGS). A M MORG simulates a game-world which is populated by
thousands of different characters. Some of these characters are controlled by human players
while others are controlled by the MMORG system. The user is connected to the virtual game
world through the internet and observes his or her characterfrom the third person perspective.
MMORGS are challenging for several reasons such as high scalability and realism.

We propose a transaction based middleware, called APEIRON, to support MMORGS. Be-
cause of the real-time character of such simulation, the common transaction semantics must
be expanded to guarantee non-blocking access. We choose transactions as the central abstrac-
tion in our middleware, since they allow to state the required synchronization guarantees in an
abstract and uniform way. Thus, we do not confront the application developer with a number
of low-level primitives but with a single method to organizethe synchronization of different
applications. Also a number of different implementations can be used with the same principal



2 Christian Schallhart

interface such that different platforms can be supported effectively and more importantly, an
incremental development is manageable in clean way.

The paper starts with a brief introduction of NVES. In the following section, MMORGS

are described and presented as an interesting research object. Section 4 gives an overview on
the domain specific services of a MMORG. Finally, Section 5 proposes a domain-independent
middleware solution for MMORGS in particular (and NVES in general) followed by some
concluding remarks.

2 Networked Virtual Environments

The terms virtual reality and virtual environment have beenused with varying meanings. The
ambiguity of these terms is rooted in the wide range of applications which are based upon
virtual reality. Examples for such applications include military simulations, educational sys-
tems, as well as entertainment applications. Thus, many definitions on different flavors of
virtual reality systems have been introduced, to distinguish between these varying technolo-
gies which are related to virtual environments. For example, in augmented reality, the real
environment is seen through a display which shows some overlaid virtual environment. As a
common denominator, we will use the following definition [10] which summarizes the most
common characteristics of virtual environments.

A virtual environment (VE) is an interactive, immersive, multi-sensory, 3 dimensional,
synthetic environment.

The appearance of the modern PC with its high-resolution graphic displays and the widespread
use of the Internet allow the development and broad deployment of networked virtual envi-
ronments (NVES) supporting multi-user applications such as large-scale simulations or col-
laboration tools. In the context of virtual environments, networking is employed for two ends.

• First, networking can be used to distribute the load of the computations which are associ-
ated with a large-scale virtual environment over a number ofcomputers.

• Second, networking allows a number of geographically dispersed persons to interact with
each other within the same virtual environment.

Both types of distribution with respect to virtual environments share a number of problems.
NVES are usually soft real-time applications [5], i.e., the average response time of the NVE

should be low. Because of the complex interactions which arise between the objects of an
NVE, this requires a comprehensive synchronization and communication layer.

In addition, both aspects of networking have specific problems. In the first case, a rel-
atively small number of nodes is usually interconnected within a cluster, i.e., the complete
environment is dedicated to the NVE. Ideally, such a cluster should mimic the behavior of
a single machine, so for example, the different tasks shouldbe tightly synchronized and the
load should be dynamically balanced. SMP become more and more attractive and should be
utilized effectively.

In the second case, if the Internet is used to allow a geographically dispersed group of
people to interact within a virtual environment, the main problem is that the connection be-
tween the server system and client is not under the control ofthe NVE-system. Consequently,
the central problem is to provide a responsive and consistent environment to the user in the
presence of long transmission times and frequent packet loss [9].



Transaction Processing for Clustered Virtual Environments 3

3 MMORGS

3.1 The World ofMMORGS

Massively Multi-Player Online Role Games (MMORGS) enable a large number of players to
explore a persistently stored virtual game world using a fictionary character. Although the
background stories of these games include different genressuch as the middle-ages, fantasy,
and science fiction, the principal appearance is always the same: A typically human-like char-
acter controlled by the player and observed by the player on the computer screen is acting
in a virtual game world which may feature 3-dimensional geographical and architectural en-
tities such as open landscapes, buildings and dungeons. Thevirtual game world is inhibited
by a number of human controlled characters and computer controlled characters (non player
characters or NPCS). From the player’s perspective, one important goal of his/her interactions
with the virtual game world is the development (“improvement”) of the fictionary character
by gaining experience, e.g., by exploring certain areas, byvictories in fights with computer
or human controlled characters. The other central motivation to play a MMORG is the inter-
action with other players within the virtual environment. Chatting, exchanging items of the
game world, and exploring the game world collaboratively are essential to the experience of a
MMORG player. Usually, MMORG players maintain their evolving characters over relatively
long periods of time. It is not uncommon that players use the same the character over more
than a year. To this end, a MMORG must maintain the game world itself and the characters
persistently.

3.2 Research Interest intoMMORGS

MMORGS are generally considered to be the most important recent development in the com-
puter game industry. The first economically successful MMORG was Ultima-Online. The
success ofUltima Onlinewas inspiring – other MMORGSentered the emerging market, most
notably Everquest, Asheron’s Call, and Anarachy Online. In comparison to games which
did not feature networked gaming (or only LAN-based gaming), these early MMORGS had
a relatively weak game quality, especially with respect to graphics. The new generation of
MMORGS, such asEverquest IIand Asheron’s Call II, presents to the player a world of
almost the same quality as a traditional game. The economic interest into this genre is under-
lined by the fact that major companies in the IT-industry such as Sony, AT&T, and Microsoft
show a strong interest in MMORGS and are actively developing products in this domain. The
reason for the strong interest of the gaming industry into MMORGS is rooted in the fact that
MMORGS are client-server applications which require players to authenticate themselves.
Therefore the possibility to use illegal copies is eliminated. Moreover, for the same reason, it
is possible to charge each player a monthly subscription fee.

From the technical and organizational point of view, MMORGS offer a new challenge
to the gaming industry. So for example, the computational resources necessary to host a
MMORG are by far larger than for any other kind of game. Also, the components which run
server-side must be more reliable than usual game code. In general, the software qualities
necessary to build a MMORG successfully, cannot be achieved by traditional game devel-
opment strategies. For a long time, the game development community had been relatively
uninterested into academic developments. However, as an article of the Game Developer
Magazinetitled “In Defense of Academe” (November 2002) shows, the gaming community



4 Christian Schallhart

becomes more and more interested in a more academic and methodologically grounded ap-
proach. More specifically, the following goals are shared bytoday’s MMORG projects – and
none of them is able to reach all of them.

• Today’s MMORGS are supposed to allow 3.000 or more human players to be in the same
simulated world. Roughly 30.000 NPCS must be maintained in the same world. This
requires significant computational resources.

• MMORGS have to offer the player a logically consistent world, i.e.,the world should
follow its inherent game logic while the underlying implementation should not cause
any unmotivated events. Of particular importance is theseamlessnessof a MMORG. A
MMORG is called seamless, if the distribution of a game world over anumber of server-
nodes does not lead to synchronization artifacts which can be observed by players.

• The world of any MMORG has to evolve over time. Changes on MMORGS include small
changes such as the tuning of certain parameters to keep the game in balance1, expansions
such as adding a new area or a new non playing character, and global changes such as
adding a new skill to all characters in the game. Such changesshould happen in a fair
manner, i.e., they should happen simultaneously for all characters. And ideally – changes
should be executed without down-times of the MMORG server system.

• MMORGS are soft real-time services [5], i.e., a MMORG-system is required to respond to
requests within a given time-bound on average with a small variance.

• Achieving high reliability is a prominent goal in the MMORG-community. Most of today’s
MMORGS display weak reliability which is degrading consumer satisfaction.

• Clients of MMORGSmust be considered hostile since a certain fraction of players will al-
ways try to cheat. Any possibility to obtain some advantage in a MMORG will be exploited
by cheating players.2

Summarized, MMORGS combine several features which make them an interesting object
for research. First, MMORGS are a growing market which is currently conquered by indus-
try. Second, MMORGS are technically very challenging and today’s tools are not sufficient
to build a MMORG which satisfies all these design goals. Third, the gaming industry has ac-
knowledged the need for a more methodological approach and for academic support. Fourth,
MMORGS are still games, i.e., while the goals of any MMORG-project are ambitious, partial
failures are tolerable. Finally, we believe that MMORGS subsume many properties of other
NVES. Therefore, a middleware which is able to satisfy the needs of a MMORG should be
usable in a much broader context.

1A game is balanced, if there is no dominating strategy. For example, if a certain character type, such as a
warrior, is always superior to another character type (e.g., a priest), then the game is unbalanced. To make a
game interesting to players, it is important to balance a game as to ensure a diversity of characters and game
approaches.

2If there is any advantage in crashing the MMORG servers, cheating players will do so. In 2001,Asheron’s
Call has been a victim of such an attack. The attackers’ goal was toduplicate a set of given items. To achieve
this, they moved these items from one server to another. But with a fine-tuned timing, the attackers were able to
crash the first server just after leaving it. Therefore, the item was still stored in the backup of this server and at
the same time in the hands of the player’s character, thus it has been duplicated. Once the reboot of the crashed
machine had finished, they attackers returned to obtain the duplicate.



Transaction Processing for Clustered Virtual Environments 5

4 MMORG Services

In this section, we will present a model for the domain specific services of a MMORG. To
do so, we subdivide the domain of a MMORG-system into three sub-domains, namely the
gaming domain, the maintenance domain, and theproduction domain, see Figure??. The
gaming domain contains all services which are needed by the clients to play the game while
the maintenance domain consists of those services which areneeded for the management of
the produced content, subscription management and other administrative tasks. Finally, the
content-production domain embodies all services which arenecessary to produce the content
itself. Here, we will consider the content-production domain only in so far as we need to
describe the gaming and maintenance domain.

In the following, we will briefly introduce these three sub-domains with their respective
services.

4.1 Gaming Domain

The services of the gaming domain collaboratively maintainthe game state and allow the
client to access this state. These services have to operate under soft-realtime constraints,
must be highly available, and have to scale well. In total there are the following four services.

Game-State Server:A M MORG’s game-state is held and continuously processed by a clus-
ter of game-state servers. A specific game-state server handles a set of zones, i.e., the
server executed the control loop of all active objects, suchas non playing characters,
which are located in this zone. Therefore, a single game-state server must access the set
of distributed, persistent, and active objects which constitute each of its zones and process
their control loop.

Connection Server: Each connection server for a MMORG is responsible for managing the
connections for a number of clients, i.e., to mediate the messages between its clients and
the game-state servers which are currently holding the characters of these clients. To do
so, the connection server has to select, prioritize and bulkthe data which is sent to the
client. This data is provided by the game-state and chat servers. On the other hand, the
connection server has to validate each (potentially hostile) datum sent from the client to
the server at the application level. In the case of a positivevalidation it has to forward
each datum to the responsible server.

Chat Server: Because of the large number of chat messages which typicallyoccur in MMORGS,
dedicated chat servers are required. A chat server should mimic features of a commonly
accepted chat system, such as the Internet Relay Chat (IRC).In addition to these standard
features, there must be a special chat channel which is geographically segmented, i.e.,
which allows geographically near objects to exchange messages. To achieve this goal, the
chat servers need to communicate with the game-state servers. The chat servers also need
to communicate with the connection servers which constitute the interface to the client.

Game-Control Server: The game-control server of a MMORG governs all services of the
gaming domain of the MMORG. It controls their start-up, shut-down, patching, and bal-
ancing. In general, the game-control server acts as facade of the gaming domain with
respect to the maintenance domain.



6 Christian Schallhart

The gaming services are tightly bound to each other, since they all access the game state. The
game-state server is maintaining the objects which constitute the game-state, i.e., it keeps
them active by executing their control loops. The connection server needs to map changes in
the game-state to messages to be sent to the client and has to send the client-requests to these
objects. The chat server has to know the geographic positionof the characters, and finally, the
game-control server has to execute global transactions on the game-state, such as expanding
it. All these operations are required to be synchronized andthus all these services should be
based on the same common middleware services and distribution middleware.

4.2 Maintenance Domain

The maintenance services do not share the extensive scalability and realtime constraints
of the gaming domain. In contrast, they provide standard services and might be based on
commercial-off-the-shelf (COTS) products. To achieve therequired availability, simple du-
plication of the corresponding services suffices.

Login Server: The login process into a MMORG can be divided into two steps. First, the sub-
scriber’s identity and permissions have to be checked. If this validation is successful, then
in the second step the connection has to be established. The first step is entirely handled
by the login server while the second step is mainly delegatedto the game-control server
which activates the subscriber’s character and initiates the connection (by issuing the nec-
essary operations on the game-state and connection servers). The login server receives the
IP-address of the selected connection server and forwards it to the client.

Download Server: The download servers of a MMORG must provide all software and data
which is needed by the clients to enter the game. Because of the continuous development
of a MMORG, the download server must also provide incremental patchessuch that a
client can update itself by downloading only a minimal amount of data.

Update Server: The update server is responsible for providing the patches which arise from
the changes and expansions of the MMORG’s world. In other words, the update server is
the interface to the content-production domain. The finallyproduced content needs to be
submitted to the update server in terms of a corresponding client and server patch. The
client patches have to be deployed to the download servers and after an appropriate period
of time the associated server patch has to be executed by the game-control server. Once
the game-control server applies a server patch, the connection servers will be informed to
require each connecting client to be patched with the associated client update. Thus the
update server provides the patches but it does not control their application.

Configuration Server. The configuration server is responsible for maintaining thecomplete
configuration of all the services which constitute the running MMORG, i.e., it will asso-
ciate a gaming domain cluster with a set of login, download and update servers. It will
also know the current configuration of the MMORG with respect to patching and issue
the complete patching procedure, that is, it will upload a client patch onto the download
server to make it publicly available, and later, it will command the game-control server to
apply the corresponding server patch to the game-state.
By using a configuration server to establish an association between the different services,
it is also possible to use the same services for several MMORG-instances. For example, it



Transaction Processing for Clustered Virtual Environments 7

will be necessary to maintain several test games which use the same update server as the
publicly running game.

The services of the maintenance domain are relatively loosely coupled. The login server
maintains its subscription database completely isolated from the other services, it only in-
teracts with the game-control server to initiate the connection establishment. The download
server is the data-source for the data distribution, the only occurring interaction with the other
services is the upload of new patches from the update server.The update server is the interface
between the content production domain and the maintenance domain and provides distinct in-
terfaces to both domains. From the perspective of the maintenance domain, the update server
provides a simple data-repository which is used by the game-control and download server.
This interface might be a standard protocol such as FTP. The configuration server will em-
ploy a standard database product to manage its configurationdata. Again, the configuration
server can be designed as a classical stand-alone database application.

4.3 Content-Production Domain

The content-production domain can be further subdivided into the art-pipeline and the game-
design. Both domains are populated by applications which are used to create and maintain
the game world. We will not discuss the concrete applications of these two domains since
any concrete production domain will be specific to the concrete game and especially to the
graphical representation.

Theart-pipeline is based on standard graphics tools for 3D-modeling. Typically, these tools
are expanded by custom scripts and plug-ins, to form a pipeline. Because of the massive
amount of work to be done by the art-team, the organization ofthis work is critical. There-
fore, the content-production domain is characterized by the integration and modification
of existing tools to form an effective production environment. In addition to the graphics-
tools, there need to be extensive version control facilities for binary as well as for textual
data. Finally, the raw-models produced by the art-pipelinemust be transformed into the
client’s data-format and for each model a description of thecorresponding object which
is sufficient for the game-state servers must be generated.

Thegame-designuses these models to build, modify and expand existing areas. The main
challenge is again the integration of different tools. In the ideal case, a game-designer
can employ an environment which allows her or him to place different objects visually in
an area and to program these objects both visually and in terms of a scripting language.
Naturally, the game-designer must be able to test new areas.The integration of testing
facilities can be done in a number of different forms, ranging from a special client which
comes with a completely integrated game-logic to the utilization of the common client
connecting to a test gaming environment.

4.4 Domain Independent Services

In this subsection, we will discuss which of the three sub-domains gaming, maintenance, and
production can be supported effectively by a domain independent middleware. Furthermore,
we will discuss the characteristics which should be met by such a middleware.



8 Christian Schallhart

The common characteristic of thegaming domain’s servicesis that they access a shared
database in a highly concurrent manner requiring replication, persistence and synchroniza-
tion primitives under the pressure of soft-realtime constraints. This database represents the
game-world which consists of a set of active objects, i.e., objects which are changing their
state pro-actively.
Not building the gaming domain on a shared general middleware will lead to the stovepipe
system anti-pattern [2]. This anti-pattern arises when allinterfaces between pairs of commu-
nicating subsystems are distinct and mutually incompatible. In such a situation usually multi-
ple infrastructure mechanisms are used to integrate these subsystems. This leads to difficulties
in modifying or even describing the architecture. The consequences of such a development
approach are large semantic gaps between architecture documentation and implemented soft-
ware. The software might even comply to the paper requirements but it does not meet the
user expectations, system maintenance becomes surprisingly costly, the project takes more
resources than expected for no obvious reason, the system complexity increases heavily on
even slight expansions.
There are two situations which justify to follow this anti-pattern consciously – the exploration
of a yet unknown domain and the quick development of a partly functional prototype. But in
such a situation, it is usually necessary to restart the project from scratch afterwards.

In contrast, themaintenance domain’s servicesare loosely coupled and might be assem-
bled in a heterogenous manner by utilizing standard packages for the corresponding tasks. For
example, the login-server might be developed based on the Apache Web-Server and a com-
mercially available billing package, and the download server can be a simple FTP-server. The
interface between the maintenance domain and the gaming domain is provided by the game-
control server. This server will provide an interface to themaintenance domain which is not
based on the middleware, therefore the maintenance domain is completely independent from
the middleware.

The content-production domain will consist of a set of diverse applications. Many of
these applications will not use a live gaming environment. Typically, they will be third-party
provided graphical tools which are used to model the graphical appearance of the artifacts
in the game-world. Thus, these applications can be kept completely independent from the
middleware.
On the other hand, some of the applications in the content-production domain will require
access to a (running) game-world. For example, there could be a world-editor, which allows to
compose new zones from base elements such as terrain types, houses, items etc. Ideally, such
an editor would not utilize some specific implementation of the game but would use the same
implementation as the gaming domain itself, i.e., would be based upon the same middleware.
However, game-editors display completely different access patterns than the services of the
gaming domain. Also, a MMORG will not be built with a single editor but with a (growing)
set of editors which provided for different and specific tasks. Thus such a shared middleware
must provide the means to integrate new applications which follow different access patterns
at ease, i.e., the middleware must allow to compose the complete system out of applications
which are built as independently as possible. Consequently, there must be a single shared
horizontal interface such that compliance to this interface ensures integrability. This situation
is one more strong reason to seek a strong horizontal layer and to avoid the consequences of
a stovepipe system.

Summarized, the gaming domain must be the main focus of a middleware for MMORGS,
i.e., the middleware has to enable a cluster to maintain a shared and persistent database of



Transaction Processing for Clustered Virtual Environments 9

active objects which provides a broad set of synchronization primitives and which supports
replication for the sake of efficiency and fault-tolerance.Furthermore, the middleware must
be designed to meet soft-realtime constraints, since the operations of the gaming domain
require response times with small variances. The operations on the database which are ex-
ecuted by the gaming domain cause relatively small changes to the game state but might
require to read a comparatively large set of objects. In addition to the services of the gaming-
domain, various editing applications of the content-production domain must access the shared
database. These applications are operating on the databaseas a whole, for example, they
might need to change a complete zone in the world or might require to change a large set of
objects simultaneously.

Thus, a middleware for MMORGS has to support a wide variety of different access pat-
terns. In particular, different synchronization modes must be available, i.e., the applications
must be able to choose between serializable access forms andless isolated access forms, such
as reading a possibly outdated but consistent snapshot of the database.

Taking this starting point, we will propose a middleware which allows a cluster of SMP
machines to maintain a database of active objects. The middleware will be based on an ex-
panded transaction concept which enables its applicationsto access the database with a broad
set of synchronization strategies.

5 Transaction-based Gaming Domain

5.1 Transactions with Weak Isolation Levels

NVES (and even MMORGS) have a very broad set of different requirements such that itap-
pears impractical to build a specific solution directly. Thus, we are developing a middle-
ware, called APEIRON, as a domain-independent middleware which is designed to support
the domain-specific services introduced in Section 4 on page5.

The most natural modeling of an MMORG (and VES in general) is a database of option-
ally active objects. Each active object is continuously updating its state based on the current
state of its environment. Ideally, such an object is implemented without any knowledge on
the underlying distribution and concurrency issues. However, this ideal is hardly achievable.
While it is possible to handle the distribution of the database internally by the middleware, it
is not possible to handle concurrency issues implicitly.

If the implementation of the active objects has to deal with concurrency related issues
explicitly, then the primitives for the synchronization should be as uniform as possible. Also,
they should be abstract such that different concrete algorithms can be used to implement these
primitives. The transaction is a concept which is flexible enough to offer different synchro-
nization strategies but offers quite a uniform interface.

The classical notion of transactions are the ACID semantics. ACID is an acronym for
atomicity, consistency, isolation, and durability. Atomicity refers to the fact, that all opera-
tions of an ACID transaction are executed completely or noneof them. Consistency means
that such a transaction transforms one consistent state of the database into another one. A
transaction is isolated, if it is not affected by any other transaction, i.e., the transaction is
accessing the database virtually exclusively. Finally, durability means that the effects of a
transaction once executed are made durable.3

3The ACID semantics were introduced in [3]. For a general overview on classical transactions and their



10 Christian Schallhart

Because of their serializability, ACID-transactions alone are insufficient. In addition to
executing serializable transactions, the services of the gaming domain must be able to access
objects in a non-blocking manner. For example, the decisionwhat a non playing character is
going to do next has to be made within soft-realtime, i.e., the time until the decision is found
must be within a given bound almost all the time. Usually, theNPC has to know the state of
the objects in its neighborhood to determine its next step. However, the decision of the NPC

can be based on slightly outdated data.
To fit different synchronization scenarios, the transactions used in APEIRON allow the

application to specifyisolation levelsfor each accessed object [1]. The isolation-level of an
accessed object describes the guarantees which are associated with this object with respect
to all other objects which are locked within the same transaction. For example, the states of
two different objects which are locked within a single transaction might be required to be
mutually consistent.

The isolation levels of APEIRON form a hierarchy, i.e., every isolation-level includes the
guarantees of the preceding ones. We list them below, starting at the weakest (committed)
and finishing with the strongest (exclusive).

Committed: The object versions which are accessible under this isolation level are only
guaranteed to be committed. Therefore, if two object are accessed under this isolation
level, it is perfectly possible that the first object is accurately presented while the second
one is already outdated.
If a transaction writes on an object under this isolation level, then lost updates might
occur, i.e., the object might have been changed independently in the meantime.

Monotone: All objects which are locked under this isolation level (or ahigher one) within
the same transaction behave monotone with respect to the database development over
time. More precisely, once an object state is made accessible to the application which
incorporates modifications of a transactionT , then every object state which is locked
afterwards must incorporate the changes ofT . The behavior in case of a modifying access
is the same as for the committed isolation level.

Consistent: This isolation level allows to lock a set of objects within a so-called consistency
group, i.e., if one these objects reflects the effects of a transactionT , then all objects in
this group must reflect the changes ofT . If an object which is locked under the consistent
isolation level is modified, then APEIRON enforces that no lost update occurs.

Accurate: If an object is locked under this isolation level, then the presented version must
be up-to-date and no other transaction is allowed to change the object in the meantime.
This scheme corresponds to classic ACID-transactions.

Pessimistic: The isolation level accurate and pessimistic are interchangeable – the correct-
ness of a transaction is independent of this choice. However, such a change will have a
strong impact on the performance of a transaction: If an object is locked with isolation-
level pessimistic, then it is guaranteed that the corresponding transaction will succeed in
validating the accesses this object. In other words, once the transaction has a pessimistic
transactional lock on all locked objects, it knows it will becommittable.
This isolation-level is useful for accessing high-contention data, i.e., objects which are

implementation, see [6].



Transaction Processing for Clustered Virtual Environments 11

modified by many transactions concurrently such that conflicts arise often. Naturally, ob-
taining a pessimistic lock might fail more often than acquiring an accurate lock.

Exclusive: This isolation-level gives exclusive access to an objects,thus it subsumes the
guarantees of pessimistic. This isolation-level is mainlyused as a synchronization primi-
tive.

More precisely, APEIRON allows the application to specify an isolation-level whichis
required immediately and another one which is required directly before committing to the
database.

We call the first isolation-level therunning isolation-level. The application uses the run-
ning isolation-level to specify the isolation-level whichis required such that the transaction
itself does not crash. For example, a transaction might crash if the referential integrity of a
set of objects is not guaranteed. In such a case, the application locks them under the run-
ning isolation-level consistent. Summarized, the runningisolation-level is used to ensure that
the transaction itself does not crash. However, it does not ensure that the transaction can be
committed correctly.

The second one is called thecommitment isolation-level. This isolation-level is enforced
during the commitment of the corresponding transaction. This isolation-level can only be
stronger than the running isolation-level (since the isolation-level can only be expanded over
time). The commitment isolation-level is used to describe the guarantees which are required
for a transaction such that its outcome is correct. For example, a transaction might access
only two objects under the running isolation-level committed but might require a commit-
ment isolation-level accurate. In this case, the transaction must be programmed such that
inter-object inconsistencies does not cause the transaction to crash, but the outcome of the
transaction must only be correct, if the locked states of thetwo objects were up-to-date and
are unmodified at the moment of commitment.

5.2 Services as Active Objects

As pointed out in [4], the migration of a character is comparable to the migration of an
process. In both cases an active objects has to be suspended,transfered to another node,
and resumed again. In the case of the migration of a character, the additional difficulty is to
achieve migration as quickly as possible – the character should be seamlessly observable.

In an NVE-cluster, the objects which are observable from more than one node must be
replicated in order to achieve the real time character of thesimulation. The replicas will not
be perfect but slightly outdated with respect to the master instance. The weaker isolation
levels which allow to access slightly outdated versions of an object can use such replicated
versions of an object. If a character moves from one node to another, typically it has been
replicated at the new node for quite some time. In such a situation, the migration is only
required to change a former slave replica into a master replica and vice versa.

Since each NVE-cluster solution must come up with a solution for charactermigration, it
is actually providing a solution for process migration. Therefore, within APEIRON, services
are modeled in terms of active objects. In consequence, all features associated with common
objects are available for services. Particularly, services can be maintained in fault-tolerant
manner and can be migrated for the sake of load-balancing.



12 Christian Schallhart

5.3 Incremental Implementation

The transaction interface is the main interface for applications. As stated in the preceding
subsections, we are using transactions as interface since they allow to state different syn-
chronization strategies uniformly. At the same time, they are sufficiently abstract such that a
variety of different implementations can be applied. In particular, it is possible to build the
underlying implementation incrementally.

An implementation can be restricted in terms of a conservative implementation, i.e., in-
stead of implementing an isolation level, the implementation can just use the next higher
isolation level.

Another option for incremental development is to vary the implementation of the distri-
bution mechanisms. The common application interface of APEIRON does not give allow to
manipulate the distribution of objects. This interface only allows to constrain the replication
of an object – the way these constraints are enforces is not observable through the interface.4

Therefore, it is possible to start with a relatively simple implementation for SMP machines
without any distribution, or to build an implementation which does not maintain any replicas
for the sake of fault-tolerance.

6 Conclusion

We presented MMORGSand motivated the design of APEIRONby the requirements of MMORGS.
However, APEIRON itself is domain-independent and provides a general and consistent set of
functionality to the application developer. Therefore, wethink that APEIRON can be used as
basis for other types of NVES – at least to solve the problem of load distribution. APEIRON

leaves the problem of geographical distribution to the domain-specific and/or application
level since there is no general solution for it.

The key-concept of APEIRON is a transaction interface which is based on weak isolation
levels. Such an interface is intuitive to application developers and clearly separates the appli-
cations from any low-level operations. Therefore, it becomes possible to develop applications
atop of APEIRON using a uniform interface concept, based on varying implementations.

Currently, we are deriving a complete architecture for APEIRONand started to implement
basic modules. We hope to have a running prototype for SMP-machines supporting at least
two weak isolation levels by the end of 2004.

References

[1] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementation for Distributed
Transactions. PhD thesis, MIT, 1999.

[2] William J. Brown, Raphael C. Malveau, Hays W. McCormick,and Thomas J. Mowbray.Anti Patterns.
Wiley & Sons, 1998.

[3] T. Härder and A. Reuter. Principles of transaction-oriented database recovery.Computing Surveys, 15(4),
1983.

[4] J. Huang, Y. Du, and C.-M. Wang. Design of the server cluster to support avatar migration. InVirtual
Reality, pages 7–14, 2003.

4There is a separate interface which allows to access and manipulate the underlying meta-data which contains
the underlying platform parameters and the configuration ofthe active databases.



Transaction Processing for Clustered Virtual Environments 13

[5] Hermann Kopetz.Real-Time Systems. Kluwer Academic Publishers, 1997.

[6] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete.Atomic Transactions. Morgan Kaufmann,
1994.

[7] Michael R. Macedonia and Michael J. Zyda. A taxonomy for networked virtual environments.IEEE
MultiMedia, 4(1):48–56, – 1997.

[8] Douglas C. Schmidt and Stephen D. Huston.C++ Network Programming, Volume 1: Mastering Com-
plexity with ACE and Patterns. C++ In-Depth Series. Addison-Wesley, 2002.

[9] Sandeep Kishan Singhal.Effective Remote Modelling in Large-Scale Distributed Simulation and Visual-
ization Environments. PhD thesis, Stanford University, 1996.

[10] R. Stuart.The Design of Virtual Environments. Computing McGraw-Hill, 1996.


